JP2825262B2 - Method for forming thick film on AIN substrate - Google Patents

Method for forming thick film on AIN substrate

Info

Publication number
JP2825262B2
JP2825262B2 JP1081413A JP8141389A JP2825262B2 JP 2825262 B2 JP2825262 B2 JP 2825262B2 JP 1081413 A JP1081413 A JP 1081413A JP 8141389 A JP8141389 A JP 8141389A JP 2825262 B2 JP2825262 B2 JP 2825262B2
Authority
JP
Japan
Prior art keywords
thick film
less
aln substrate
substrate
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1081413A
Other languages
Japanese (ja)
Other versions
JPH02263777A (en
Inventor
芳明 岡本
暢男 岩瀬
啓二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1081413A priority Critical patent/JP2825262B2/en
Publication of JPH02263777A publication Critical patent/JPH02263777A/en
Application granted granted Critical
Publication of JP2825262B2 publication Critical patent/JP2825262B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は導体,抵抗体あるいは誘電体として用いるこ
とのできる厚膜ペーストに関し、特にAlN基板に用いる
のに好適な厚膜ペーストに関する。
Description: Object of the Invention (Industrial application field) The present invention relates to a thick film paste that can be used as a conductor, a resistor or a dielectric, and particularly a thick film suitable for use in an AlN substrate. Regarding paste.

(従来の技術) 近年の電子機器における小型化に伴ない、素子の高密
度な実装が求められるようになるにつれ、素子を実装す
る基板の放熱が問題となってきている。この問題を解決
するために、以前より基板として用いられてきたAl2O3
基板と比較して熱伝導率が5〜10倍大きく、電気絶縁性
にも優れたAlN基板が注目されている。このAlN基板を実
用化するには、AlN基板上で導体,抵抗体及び誘電体等
を形成するために好適な厚膜ペーストが必要不可欠であ
る。
(Prior Art) With the recent miniaturization of electronic devices, with the demand for high-density mounting of elements, heat dissipation of a substrate on which the elements are mounted has become a problem. To solve this problem, Al 2 O 3
An AlN substrate, which has a thermal conductivity 5 to 10 times larger than that of a substrate and also has excellent electrical insulation properties, has attracted attention. To put this AlN substrate into practical use, a thick film paste suitable for forming conductors, resistors, dielectrics, and the like on the AlN substrate is indispensable.

このようなAlN基板上で好適に用いることのできる厚
膜ペーストには焼成し厚膜とした場合に、必要とされる
電気的特性に加えて、AlN基板との充分な接合強度が要
求される。このAlN基板と厚膜との接合強度は、AlNと厚
膜ペーストに用いた材料との反応性に由来する密着性、
このような反応に伴なう発泡現象の有無、さらにはAlN
基板と厚膜ペーストとの熱膨張係数の差等に左右される
ことが知られている。すなわちAlNと厚膜ペーストとの
反応性が大きいと、AlN基板と厚膜との界面に反応生成
物からなる一種の接合層が生成され、AlN基板と厚膜と
の密着性が増大し接合強度が強化される。しかしながら
このような反応に伴ない、N2やNO2等のガスが発生する
発泡現象が激しくなると、厚膜表面に多数のふくれやAl
N基板と厚膜との界面に隙間が生じること等が原因で、
接合強度が急激に低下してしまう。さらにはAlN基板と
厚膜ペーストとの熱膨張係数の差が大きいと、焼成時の
加熱後、室温まで冷却された際に、AlN基板または厚膜
において過剰の応力が発生し、AlN基板より厚膜が剥離
し易い状態となり接合強度が低下してしまう。
A thick film paste that can be suitably used on such an AlN substrate requires sufficient bonding strength with the AlN substrate in addition to the required electrical characteristics when fired to form a thick film. . The bonding strength between the AlN substrate and the thick film is determined by the adhesiveness derived from the reactivity between AlN and the material used for the thick film paste,
The presence or absence of a foaming phenomenon accompanying such a reaction
It is known that it depends on the difference in thermal expansion coefficient between the substrate and the thick film paste. In other words, when the reactivity between AlN and the thick film paste is large, a kind of bonding layer made of a reaction product is generated at the interface between the AlN substrate and the thick film, and the adhesion between the AlN substrate and the thick film increases, and the bonding strength increases. Is strengthened. However, when the foaming phenomenon of generating gas such as N 2 and NO 2 becomes severe due to such a reaction, a large number of blisters and Al
Due to a gap at the interface between the N substrate and the thick film, etc.
The joining strength is rapidly reduced. Furthermore, if the difference between the thermal expansion coefficients of the AlN substrate and the thick film paste is large, excessive stress is generated in the AlN substrate or the thick film when cooled to room temperature after heating during firing, and the thickness is larger than that of the AlN substrate. The film is easily peeled, and the bonding strength is reduced.

このようにAlN基板と厚膜ペーストとの接合強度を考
慮すると、以前よりAl2O3基板用に用いられてきた厚膜
ペーストは、上述した要件を満たさず、AlN基板に適用
することができない。そのためAlN基板に適用すること
のできる新たな厚膜ペーストの開発が進められ、例えば
HYBRIDS vol.4,No.4号では、ZnO,B2O3及びSiO2の三成分
系の結晶化ガラス成分を含んだ厚膜抵抗体ペーストが開
示されている。しかしながら、このようなAlN基板用と
して新たに開発された厚膜ペーストにおいても、未だAl
N基板との接合強度が実用化できるほど充分ではなかっ
た。
Considering the bonding strength between the AlN substrate and the thick film paste, the thick film paste that has been used for the Al 2 O 3 substrate does not satisfy the above requirements and cannot be applied to the AlN substrate. . Therefore, the development of a new thick-film paste that can be applied to AlN substrates has been promoted.
HYBRIDS vol.4, No.4 discloses a thick film resistor paste containing a ternary crystallized glass component of ZnO, B 2 O 3 and SiO 2 . However, even in a thick film paste newly developed for such an AlN substrate, Al
The bonding strength with the N substrate was not enough to be practical.

(発明が解決しようとする課題) 上記したように優れた特性を有するAlN基板ではある
が、AlN基板との充分な接合強度を有し、AlN基板上に直
接形成することのできる厚膜ペーストは、未だ実用化に
は至っていない。
(Problems to be Solved by the Invention) Although the AlN substrate has excellent characteristics as described above, it has a sufficient bonding strength with the AlN substrate and can be directly formed on the AlN substrate. Has not yet been put to practical use.

本発明ではこのような問題に鑑みて、AlN基板上に直
接形成することのできる厚膜ペーストを提供することを
目的としている。
In view of such a problem, an object of the present invention is to provide a thick film paste that can be directly formed on an AlN substrate.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段及び作用) 本発明は、構成成分を酸化物に換算した時の重量%表
示で20%以上70%以下のZnO、10%以上70%以下のB
2O3、30%以下のSiO2、および40%以下の添加成分とが
混合された組成を有するガラス成分を含有し、前記添加
成分がガラス成分中における重量%で、20%以下のAl2O
3、10%以下のPbO、10%以下のCuO、10%以下のBi2O3
20%以下のMgO、40%以下のZrO2、10%以下のP2O5、及
び5%以下のZnF2からなる群より選ばれた少なくとも1
種からなる厚膜ペーストをAlN基板表面に形成する工程
と、前記厚膜ペーストを焼結する工程とを具備するAlN
基板への厚膜形成方法である。
(Means and Actions for Solving the Problems) In the present invention, ZnO of 20% or more and 70% or less and B of 10% or more and 70% or less in terms of% by weight when converted into oxides.
It contains a glass component having a composition in which 2 O 3 , 30% or less of SiO 2 , and 40% or less of an additive component are mixed, and the additive component is 20% or less of Al 2 by weight% in the glass component. O
3 , 10% or less of PbO, 10% or less of CuO, 10% or less of Bi 2 O 3 ,
At least one selected from the group consisting of MgO of 20% or less, ZrO 2 of 40% or less, P 2 O 5 of 10% or less, and ZnF 2 of 5% or less.
Forming a thick film paste made of a seed on the surface of an AlN substrate, and sintering the thick film paste.
This is a method for forming a thick film on a substrate.

厚膜ペーストは、通常ガラス成分、機能成分(導体材
料,誘電体材料など)及び有機ビヒクルを所望の割合で
含有するが、本発明では前記ガラス成分を上記したよう
な各組成範囲を有する成分から構成した。すなわち本発
明の厚膜ペーストは、前記ガラス成分が適当量の機能成
分とともに有機ビヒクル中に溶解されてなる。また機能
成分とは、導体厚膜ペーストにおいてはAg,Pd,Cu等の金
属材料、抵抗体厚膜ペーストにおいてはRuO2等の抵抗体
材料、誘電体厚膜ペーストにおいてはBaTiO3等の誘電体
材料である。ただし誘電体厚膜ペーストでは、ガラス成
分が誘電体としての性質を有するので、ガラス成分とは
別に機能成分を含有しない厚膜ペーストとしても構わな
い。
The thick film paste usually contains a glass component, a functional component (a conductive material, a dielectric material, and the like) and an organic vehicle in a desired ratio. In the present invention, the glass component is prepared from components having the above-described composition ranges. Configured. That is, the thick film paste of the present invention is obtained by dissolving the glass component in an organic vehicle together with an appropriate amount of the functional component. The functional component is a metal material such as Ag, Pd, or Cu in a conductor thick film paste, a resistor material such as RuO 2 in a resistor thick film paste, or a dielectric material such as BaTiO 3 in a dielectric thick film paste. Material. However, in the dielectric thick film paste, since the glass component has a property as a dielectric, a thick film paste containing no functional component separately from the glass component may be used.

本発明者らはAlN基板と厚膜ペーストとの接合強度を
調べるため、ZnO、B2O3及びSiO2の三成分系からなるガ
ラス成分を含んだ厚膜ペーストをAlN基板上に形成し、
焼成中の界面における変化を観察したところ、次のよう
な知見を得た。
The present inventors formed a thick film paste containing a glass component consisting of a ternary system of ZnO, B 2 O 3 and SiO 2 on an AlN substrate in order to examine the bonding strength between the AlN substrate and the thick film paste,
When the change in the interface during firing was observed, the following knowledge was obtained.

ZnOとSiO2はAlNと反応し界面にZnAl2O4等の反応生成
物を形成して、AlN基板と厚膜の密着性を増大させる。
反応は界面におけるN2やNO2ガスの発泡現象を伴なう
が、反応が進むと界面に反応生成物からなる接合層が形
成されるため、以後は反応に伴なう発泡現象は起こらな
い。また接合層が形成されるまでに生じたN2やNO2ガス
も少量であり、接合強度劣化の原因となるふくれも発生
しない。さらにB2O3は焼成中界面で液相膜を形成し、Al
Nの反応による発泡現象を抑制する働きを有する。また
上記三成分系からなるガラス成分は、組成範囲や焼成条
件により一部が結晶化することがあるが、このような結
晶化する量を少なくする程AlN基板と厚膜との接合強度
は強化される。この理由は特に定かではないが、ガラス
成分が結晶化すると基板との有効接触面積が減少し、ガ
ラスの接着効果が弱くなるためと推定される。
ZnO and SiO 2 react with AlN to form a reaction product such as ZnAl 2 O 4 at the interface, thereby increasing the adhesion between the AlN substrate and the thick film.
The reaction involves the foaming of N 2 and NO 2 gas at the interface, but as the reaction proceeds, a bonding layer consisting of the reaction product is formed at the interface, so that the subsequent foaming does not occur with the reaction . Also, the amount of N 2 and NO 2 gas generated before the formation of the bonding layer is small, and no blistering which causes deterioration of the bonding strength is generated. In addition, B 2 O 3 forms a liquid phase film at the interface during firing, and Al
It has the function of suppressing the foaming phenomenon due to the reaction of N. Also, the above three-component glass component may partially crystallize depending on the composition range and firing conditions, but the smaller the amount of such crystallization, the stronger the bonding strength between the AlN substrate and the thick film. Is done. The reason for this is not particularly clear, but it is presumed that when the glass component crystallizes, the effective contact area with the substrate decreases, and the adhesive effect of the glass weakens.

次いで本発明者らは、このような知見に基づき、ガラ
ス成分における上記三成分系の組成範囲を変えて実験を
行なったところ、重量比でZnOが20%以上70%以下、B2O
3が10%以上70%以下、SiO2が30%以下のとき、AlN基板
と厚膜との接着強度が強固であることがわかった。さら
にSiO2は1重量%以上含有されることが好ましい。また
このような組成範囲において、ガラス成分の熱膨張係数
は3.0〜4.6×10-6/℃であり、AlN基板の熱膨張係数4.4
×10-6/℃と近似し、さらにガラス成分中の結晶化成分
も少ない。
Next, based on such knowledge, the present inventors conducted experiments by changing the composition range of the above-mentioned ternary system in the glass component. As a result, the weight ratio of ZnO was 20% or more and 70% or less, and B 2 O
When 3 was 10% or more and 70% or less and SiO 2 was 30% or less, it was found that the adhesive strength between the AlN substrate and the thick film was strong. Further, it is preferable that SiO 2 be contained in an amount of 1% by weight or more. In such a composition range, the thermal expansion coefficient of the glass component is 3.0 to 4.6 × 10 −6 / ° C., and the thermal expansion coefficient of the AlN substrate is 4.4.
It is close to × 10 -6 / ° C, and the crystallization component in the glass component is also small.

さらに本発明者らは、AlN基板と厚膜との接着強度を
より増大させるために、前記組成範囲を有する三成分系
に対する添加成分を捜したところ次のようなことがわか
った。
Further, the present inventors have searched for an additive to a ternary system having the above composition range in order to further increase the adhesive strength between the AlN substrate and the thick film, and have found the following.

PbO,CuO,Bi2O3は500℃以上の高温下でAlNとの反応性
に富み、ガラス成分中への添加によりAlN基板と厚膜と
の密着性が増大する。しかしながらPbO,CuOまたはBi2O3
とAlNとの反応が進むと、N2ガス発生によるふくれの現
象を伴なうため、ガラス成分中への添加含有はそれぞれ
10重量%以下とする。特にPbOはAlNと 2AlN+3PbO→Al2O3+3Pb+N2 の反応を起こし激しい発泡現象を伴なうため、5重量%
未満の添加含有が好ましい。さらにPbO,CuO,Bi2O3三成
分の添加含有量の合計が10重量%以下であることが好ま
しい。またAl2O3,MgO,ZrO2もガラス成分中に添加するこ
とにより、PbO,CuO,Bi2O3と同様の効果が得られるが、A
lNとの反応性はPbO,CuO,Bi2O3よりも小さいため、Al
2O3,MgOについては最大量20重量%、ZrO2については最
大量40重量%までの添加含有が許容される。
PbO, CuO, and Bi 2 O 3 are highly reactive with AlN at a high temperature of 500 ° C. or higher, and the adhesion between the AlN substrate and the thick film is increased by adding it to the glass component. However, PbO, CuO or Bi 2 O 3
As the reaction between AlN and AlN progresses, blistering occurs due to the generation of N 2 gas.
Not more than 10% by weight. Especially PbO Because the accompanied vigorous foaming phenomenon causes a reaction of AlN and 2AlN + 3PbO → Al 2 O 3 + 3Pb + N 2, 5 wt%
The addition content of less than is preferred. Further, the total content of the three components of PbO, CuO and Bi 2 O 3 is preferably 10% by weight or less. Also, by adding Al 2 O 3 , MgO, and ZrO 2 to the glass component, the same effects as those of PbO, CuO, and Bi 2 O 3 can be obtained.
The reactivity with 1N is smaller than that of PbO, CuO, Bi 2 O 3
The maximum content of 2 O 3 and MgO is 20% by weight, and the maximum content of ZrO 2 is 40% by weight.

またP2O5及びZnF2はガラス成分の結晶化を抑制する機
能を有するので、これらの添加によりAlN基板と厚膜と
の接合強度が強化される。P2O5は最大量10重量%、ZnF2
は最大量5重量%までの添加含有が許容され、特にP2O5
はガラス成分の結晶化抑制に大きな効果がある。
Further, since P 2 O 5 and ZnF 2 have a function of suppressing crystallization of the glass component, the addition thereof enhances the bonding strength between the AlN substrate and the thick film. P 2 O 5 up to 10% by weight, ZnF 2
Adding content of up to a maximum amount 5 wt% is acceptable, especially P 2 O 5
Has a great effect on suppressing crystallization of the glass component.

従って前述したような組成範囲のZnO,B2O3及びSiO2
三成分系に、前述した範囲のAl2O3,PbO,CuO,Bi2O3,MgO,
ZrO2,P2O5,ZnF2の少なくとも1種を添加含有した、非晶
質成分が主たるガラス成分を含有した厚膜ペーストは、
AlN基板との接合強度が優れ、AlN基板上に直接形成する
ことができる。ただし個々の添加成分の添加効果は0.1
重量%以上で顕著となる。また添加成分中特にP2O5は結
晶化防止効果により好ましい成分である。
Therefore, in the ternary system of ZnO, B 2 O 3 and SiO 2 in the composition range described above, Al 2 O 3 , PbO, CuO, Bi 2 O 3 , MgO,
A thick film paste containing an amorphous component mainly containing a glass component containing at least one of ZrO 2 , P 2 O 5 , and ZnF 2 ,
It has excellent bonding strength with AlN substrates and can be formed directly on AlN substrates. However, the effect of each additive is 0.1
It becomes remarkable at more than weight%. Further, among the added components, P 2 O 5 is particularly preferred because of its crystallization preventing effect.

(実施例) 以下に本発明の実施例を詳細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail.

実施例−1 導体材料として平均粒径0.5μmのAgと平均粒径0.8μ
mのPdの90/10(重量%)混合粉末(三井金属鉱業製)
を用い、ガラス成分として第1表に示す組成を有するガ
ラス成分を、導電材料に対して5重量%添加した。これ
らをバインダー成分のエチルセルロース(東京化成工業
製)をテルピネオール(和光純薬工業製)に溶解してな
るビヒクルと共に充分に混合して、均一な厚膜導体ペー
ストを調製した。
Example 1 Ag having an average particle size of 0.5 μm and an average particle size of 0.8 μm were used as the conductor material.
90/10 (wt%) mixed powder of m Pd (Mitsui Metal Mining)
Was used, and a glass component having a composition shown in Table 1 as a glass component was added in an amount of 5% by weight based on the conductive material. These were thoroughly mixed with a vehicle obtained by dissolving the binder component ethyl cellulose (manufactured by Tokyo Chemical Industry) in terpineol (manufactured by Wako Pure Chemical Industries) to prepare a uniform thick film conductor paste.

得られた厚膜導体ペーストを、直接AlN基板(東芝製T
AN−170)上に325メッシュのスクリーンを用いて2×2m
mの正方形状に印刷し、120℃で10分空気中で乾燥後、85
0℃で10分空気中で焼成した。焼成後、厚膜表面を目視
ならびに光学顕微鏡で観察したところふくれは全く認め
られなかった。
The obtained thick film conductor paste is directly applied to an AlN substrate (Toshiba T
AN-170) 2 × 2m using a 325 mesh screen
After printing in a square shape of 120 m and drying in air at 120 ° C for 10 minutes, 85
Calcination was performed in air at 0 ° C. for 10 minutes. After firing, the surface of the thick film was visually observed and observed with an optical microscope, and no blister was observed.

次にこの厚膜上にリード線として軟銅線(約0.5mm
φ)をハンダ付けし、インストロン引っ張り試験機によ
り0.2cm/secの速度で引上げ、はがれが発生した時の荷
重を測定することによりAlN基板との密着性を評価し
た。結果を第1表に示す。いずれの厚膜においても引っ
張り強度は1.0kg/mm2以上であり、充分な密着性を有す
ることがわかった。
Next, a soft copper wire (about 0.5 mm
φ) was soldered, pulled up at a speed of 0.2 cm / sec by an Instron tensile tester, and the load when peeling occurred was measured to evaluate the adhesion to the AlN substrate. The results are shown in Table 1. Each of the thick films had a tensile strength of 1.0 kg / mm 2 or more, indicating that they had sufficient adhesion.

さらにこれらの厚膜についてヒートサイクル試験(−
55℃,30分+125℃,30分;1000サイクル)を行なった。
初期の引っ張り強度に対するヒートサイクル試験機の強
度比S1000/S0を第1表に示す。いずれの厚膜においても
S1000/S0は0.80以上であり、ヒートサイクル試験後もほ
とんど強度の劣化は見られなかった。
Furthermore, a heat cycle test (-
55 ° C, 30 minutes + 125 ° C, 30 minutes; 1000 cycles).
The intensity ratio S 1000 / S 0 of the heat cycle tester to the initial tensile strength shown in Table 1. For any thick film
S 1000 / S 0 was 0.80 or more, and almost no deterioration in strength was observed even after the heat cycle test.

このように本実施例に係る厚膜導体ペーストは、AlN
基板との密着性が良好で、ふくれがなく、ヒートサイク
ル試験に対しても充分な耐性を示し、AlN基板との優れ
た接合強度が得られている。さらにP2O5を含有した厚膜
導体ペーストでは、特に優れた接合強度が得られている
ことがわかる。
Thus, the thick film conductor paste according to the present embodiment is
It has good adhesion to the substrate, no blistering, shows sufficient resistance to the heat cycle test, and has excellent bonding strength with the AlN substrate. Further, it can be seen that particularly excellent bonding strength was obtained with the thick film conductor paste containing P 2 O 5 .

実施例−2 抵抗体用材料として平均粒径0.4μmのRuO2(添川理
化学製)を用い、実施例−1と同様のガラス成分と重量
比60:40で混合し、これを実施例−1と同様のビヒクル
に混合し、厚膜抵抗体ペーストを調製した。
Example 2 RuO 2 having an average particle size of 0.4 μm (manufactured by Soegawa Rikagaku Co., Ltd.) was used as a material for a resistor, mixed with the same glass components as in Example 1 at a weight ratio of 60:40, and mixed with Example 1. The mixture was mixed with the same vehicle as in Example 1 to prepare a thick film resistor paste.

得られた厚膜抵抗体ペーストを、実施例−1と同様の
AlN基板上に325メッシュのスクリーンを用いて3×3mm
のパターンに印刷し、120℃で10分空気中で乾燥後、850
℃で10分空気中で焼成した。焼成後、厚膜表面を目視な
らびに光学顕微鏡で観察したところふくれは全く認めら
れなかった。
The obtained thick film resistor paste was used in the same manner as in Example-1.
3 × 3mm using 325 mesh screen on AlN substrate
After printing in a pattern of
Calcination was performed in air at ℃ for 10 minutes. After firing, the surface of the thick film was visually observed and observed with an optical microscope, and no blister was observed.

次に厚膜のAlN基板との密着性を調べた。抵抗体では
ガラス成分の含有量が多く、リード線のハンダ付けが出
来ないためAlN基板及び厚膜を界面と垂直な方向で切断
し、破断面のSEM(走査形電子顕微鏡)による観察を行
なった。その結果、AlN基板と厚膜との界面においてガ
ラス成分が両者を強固に密着させていることがわかり、
充分な密着性が得られていることが確認された。
Next, the adhesion to the thick AlN substrate was examined. Since the resistor contained a large amount of glass components and soldering of the lead wire was not possible, the AlN substrate and the thick film were cut in a direction perpendicular to the interface, and the fracture surface was observed by SEM (scanning electron microscope). . As a result, it was found that at the interface between the AlN substrate and the thick film, the glass component firmly adhered the two,
It was confirmed that sufficient adhesion was obtained.

実施例−3 誘電体用材料として平均粒径10μmのBaTiO3(高純度
化学研究所製)を用い、実施例−1と同様のガラス成分
と重量比80:20で混合し、これを実施例−1と同様のビ
ヒクルに混合し、厚膜誘電体ペーストを調製した。
Example 3 BaTiO 3 having an average particle diameter of 10 μm (manufactured by Kojundo Chemical Laboratory) was used as a dielectric material and mixed with the same glass components as in Example 1 at a weight ratio of 80:20. -1 was mixed with the same vehicle to prepare a thick film dielectric paste.

得られた厚膜誘電体ペーストを実施例−2と同様の方
法で焼成し、実施例−2と同様の観察を行なった。AlN
基板と厚膜との界面においてふくれは全く認められず、
また充分な密着性が得られていることが確認された。
The obtained thick film dielectric paste was fired in the same manner as in Example 2, and the same observation as in Example 2 was performed. AlN
No blistering is observed at the interface between the substrate and the thick film,
It was also confirmed that sufficient adhesion was obtained.

比較例 第2表に示す組成を有するガラス成分を用い、実施例
−1と同様にして厚膜導体ペーストを調製した。得られ
た厚膜導体ペーストを実施例−1と同様の方法で焼成し
て、AlN基板上に厚膜を形成した。焼成後、厚膜表面を
目視ならびに光学顕微鏡で観察したところ、いずれの厚
膜においても表面に多数のふくれが認められた。
Comparative Example A thick film conductor paste was prepared in the same manner as in Example 1 using a glass component having the composition shown in Table 2. The obtained thick film conductor paste was fired in the same manner as in Example 1 to form a thick film on the AlN substrate. After the firing, the surface of the thick film was visually observed and observed with an optical microscope. As a result, many blisters were observed on the surface of each of the thick films.

さらに実施例−1と同様の引っ張り強度試験及びヒー
トサイクル試験を行なったところ、第2表に示したよう
にずれも引っ張り強度は0.6kg/mm2以下、S1000/S0は0.5
0以下であり、実施例−1よりもAlN基板と厚膜との接合
強度が大きく劣っていた。
Was further repeated except tensile strength test and heat cycle test as in Example 1, the deviation also tensile strength as shown in Table 2 0.6 kg / mm 2 or less, S 1000 / S 0 is 0.5
0 or less, and the bonding strength between the AlN substrate and the thick film was much lower than in Example-1.

また第1表に示した組成のガラス成分を用いて、実施
例−2,3と同様に厚膜抵抗体ペースト及び厚膜誘電体ペ
ーストを調製し、AlN基板上に抵抗体及び誘電体を形成
した。それぞれ厚膜表面を目視ならびに光学顕微鏡で観
察したところ、多数のふくれが認められ、AlN基板と厚
膜との接合強度が不充分であることがわかった。
Also, using the glass components having the compositions shown in Table 1, thick film resistor pastes and thick film dielectric pastes were prepared in the same manner as in Examples 2 and 3 to form resistors and dielectrics on the AlN substrate. did. When the surface of each thick film was visually observed and observed with an optical microscope, many blisters were observed, and it was found that the bonding strength between the AlN substrate and the thick film was insufficient.

〔発明の効果〕 以上詳述したように本発明によれば、AlN基板との接
合強度が優れ、AlN基板上に直接形成することのできる
厚膜ペーストを提供することができる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide a thick film paste which has excellent bonding strength with an AlN substrate and can be directly formed on an AlN substrate.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C04B 41/80 - 41/91──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C04B 41/80-41/91

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】構成成分を酸化物に換算した時の重量%表
示で20%以上70%以下のZnO、10%以上70%以下のB
2O3、30%以下のSiO2、および40%以下の添加成分とが
混合された組成を有するガラス成分を含有し、前記添加
成分がガラス成分中における重量%で、20%以下のAl2O
3、10%以下のPbO、10%以下のCuO、10%以下のBi2O3
20%以下のMgO、40%以下のZrO2、10%以下のP2O5、及
び5%以下のZnF2からなる群より選ばれた少なくとも1
種からなる厚膜ペーストをAlN基板表面に形成する工程
と、前記厚膜ペーストを焼結する工程とを具備すること
を特徴とするAlN基板への厚膜形成方法。
(1) 20% or more and 70% or less of ZnO and 10% or more and 70% or less of B in terms of weight% when the constituent components are converted into oxides.
It contains a glass component having a composition in which 2 O 3 , 30% or less of SiO 2 , and 40% or less of an additive component are mixed, and the additive component is 20% or less of Al 2 by weight% in the glass component. O
3 , 10% or less of PbO, 10% or less of CuO, 10% or less of Bi 2 O 3 ,
At least one selected from the group consisting of MgO of 20% or less, ZrO 2 of 40% or less, P 2 O 5 of 10% or less, and ZnF 2 of 5% or less.
A method for forming a thick film on an AlN substrate, comprising: a step of forming a thick film paste made of a seed on the surface of an AlN substrate; and a step of sintering the thick film paste.
JP1081413A 1989-04-03 1989-04-03 Method for forming thick film on AIN substrate Expired - Lifetime JP2825262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1081413A JP2825262B2 (en) 1989-04-03 1989-04-03 Method for forming thick film on AIN substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1081413A JP2825262B2 (en) 1989-04-03 1989-04-03 Method for forming thick film on AIN substrate

Publications (2)

Publication Number Publication Date
JPH02263777A JPH02263777A (en) 1990-10-26
JP2825262B2 true JP2825262B2 (en) 1998-11-18

Family

ID=13745655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1081413A Expired - Lifetime JP2825262B2 (en) 1989-04-03 1989-04-03 Method for forming thick film on AIN substrate

Country Status (1)

Country Link
JP (1) JP2825262B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100324266B1 (en) * 1999-07-19 2002-02-25 구자홍 Composition of Thick Film Dielectric for Solid State Display Device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205386A (en) * 1981-06-08 1982-12-16 Matsushita Electric Ind Co Ltd Electroconductive paste

Also Published As

Publication number Publication date
JPH02263777A (en) 1990-10-26

Similar Documents

Publication Publication Date Title
JP2793912B2 (en) Silver-rich conductor composition with high heat cycle adhesion and aging adhesion
JPH01128488A (en) Thick film copper conductor ink
JP2005150120A (en) Thick film conductor paste composition for ltcc tape
JP6869531B2 (en) Conductive paste, aluminum nitride circuit board and its manufacturing method
JP2825262B2 (en) Method for forming thick film on AIN substrate
KR100585909B1 (en) Thick Film Conductor Compositions for Use on Aluminum Nitride Substrates
JP2967929B2 (en) Conductor paste for aluminum nitride substrate
JPH03238705A (en) Conductor paste composition and ceramic substrate
JPH0945130A (en) Conductor paste composite
JP2941002B2 (en) Conductor composition
JP2002362987A (en) Electronic component and method for manufacturing the same
JP2550630B2 (en) Copper paste for conductive film formation
JPH06342965A (en) Ceramic circuit board and manufacture thereof
JPH11284296A (en) Wiring board
JPH0917232A (en) Conductor paste composition
JP3152854B2 (en) Multilayer wiring board
JP2005285957A (en) Conductive paste and ceramic multilayered circuit board using the same
JPH0737420A (en) Conductive paste composition and circuit board using conductive paste composition
JPS63283184A (en) Circuit substrate covered with conductor composition
JPH0541110A (en) Conductive paste
JPS6166305A (en) Conductor composition
JP2002231049A (en) Conductive paste
JP6836184B2 (en) Composition for forming a thick film conductor and a method for producing a thick film conductor
JPH0368485B2 (en)
JPS622405A (en) Thick film conductive composition