JP2822465B2 - Method for producing fiber reinforced thermoplastic resin product - Google Patents

Method for producing fiber reinforced thermoplastic resin product

Info

Publication number
JP2822465B2
JP2822465B2 JP1190065A JP19006589A JP2822465B2 JP 2822465 B2 JP2822465 B2 JP 2822465B2 JP 1190065 A JP1190065 A JP 1190065A JP 19006589 A JP19006589 A JP 19006589A JP 2822465 B2 JP2822465 B2 JP 2822465B2
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
reinforced thermoplastic
mold
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1190065A
Other languages
Japanese (ja)
Other versions
JPH0353928A (en
Inventor
孚尚 原
正人 松本
信裕 臼井
重義 松原
Original Assignee
住友化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学工業株式会社 filed Critical 住友化学工業株式会社
Priority to JP1190065A priority Critical patent/JP2822465B2/en
Publication of JPH0353928A publication Critical patent/JPH0353928A/en
Application granted granted Critical
Publication of JP2822465B2 publication Critical patent/JP2822465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は自動車外板パネル、自動車用構造材、バッテ
リートレイ等の自動車部品、土木・建築資材等の工業材
料に供する繊維強化熱可塑性樹脂製品の製造方法に関す
る。詳しくは、繊維配向、樹脂の成形収縮によるねじ
れ、変形等が少なく、表面外観の良好な、かつ、機械的
強度の優れた繊維強化熱可塑性樹脂製品の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a fiber-reinforced thermoplastic resin product used for industrial materials such as automobile exterior panel panels, automobile structural materials, battery parts and other automobile parts, and civil engineering and building materials. And a method for producing the same. More specifically, the present invention relates to a method for producing a fiber-reinforced thermoplastic resin product having a good surface appearance and excellent mechanical strength with little fiber orientation, twisting, deformation, and the like due to resin molding shrinkage.

〈従来の技術〉 従来、繊維強化熱可塑性樹脂成形品の製造方法として
は、短繊維強化樹脂ペレットを射出成形等の一般的成形
法を用いて成形するのが代表的な方法である。また、樹
脂ペレット製造時のペレット切断長さとほぼ同じ長さの
中繊維長(繊維長10mm以下)の繊維で強化された熱可塑
性樹脂ペレットを用い、射出成形等で繊維強化熱可塑性
樹脂成形品を製造する方法もある。
<Prior Art> Conventionally, as a method of manufacturing a fiber-reinforced thermoplastic resin molded product, a typical method is to form short fiber-reinforced resin pellets by using a general molding method such as injection molding. In addition, using thermoplastic resin pellets reinforced with medium fiber length (fiber length 10 mm or less) fiber, which is almost the same length as the pellet cut length at the time of resin pellet production, fiber-reinforced thermoplastic resin molded products are injection molded. There is also a manufacturing method.

一方、近年、繊維強化熱可塑性樹脂シートを再加熱
し、プレス成形により製品を得る、いわゆるスタンパブ
ルシートの技術が注目されている。スタンパブルシート
の技術は、強化に用いられる繊維により、2つに大別さ
れる。1つは、数ミリ〜100ミリ長さの単繊維と熱可塑
性樹脂粉末を湿式、または乾式で混合し、加熱、ロール
プレスを経てスタンパブルシートを製造し、このシート
を予備加熱後、プレス成形をして繊維強化熱可塑性樹脂
成形品を得る方法である。(例えば特開昭57-28135号公
報)。もう一つのスタンパブルシート技術は、編んだ長
繊維マットに溶融した熱可塑性樹脂を押出ラミネーショ
ンし、ロール・プレスを経てスタンパブルシートを製
造、このシートを予備加熱し、プレス成形で繊維強化熱
可塑性樹脂成形品を製造する方法である。
On the other hand, in recent years, a so-called stampable sheet technique of reheating a fiber-reinforced thermoplastic resin sheet to obtain a product by press molding has attracted attention. Stampable sheet technology is roughly classified into two types according to the fibers used for reinforcement. First, a single fiber of several millimeters to 100 millimeters in length and a thermoplastic resin powder are mixed in a wet or dry method, heated, roll-pressed to produce a stampable sheet, and after preheating this sheet, press molding To obtain a fiber-reinforced thermoplastic resin molded product. (For example, JP-A-57-28135). Another stampable sheet technology is extrusion lamination of a molten thermoplastic resin into a knitted long fiber mat, producing a stampable sheet via a roll press, preheating the sheet, and press molding to form a fiber reinforced thermoplastic. This is a method for producing a resin molded product.

〈発明が解決しようとする課題〉 従来の技術はそれぞれ固有の技術的問題点を有してい
る。繊維強化熱可塑性樹脂成形品の製造法として最も一
般的な短繊維強化樹脂ペレット法は、繊維強化の最大の
目的である機械的強度の向上、特に、耐衝撃強度の点で
効果が低いという欠点を有している。この理由は、繊維
と樹脂の混合、分散過程、すなわち造粒時、および射出
成形時の2回の可塑化、混練工程で繊維は著しく短く切
断されるためである。さらに射出成形過程で、繊維は溶
融樹脂とともに金型内の狭いキャビティクリアランス内
を著しい剪断をうけ流動するために、繊維強化熱可塑性
樹脂成形品中に強い繊維配向が残り繊維強化熱可塑性樹
脂成形品が大きく変形し、繊維強化熱可塑性樹脂成形品
の各方向への寸法安定性も悪い欠点も有している。次
に、中繊維長強化ペレットの場合、ペレット中の繊維は
長くても射出成形時の可塑化工程及び金型内流動時の著
しい剪断のため、繊維は短く切断され、耐衝撃強度は向
上しない。繊維強化熱可塑性樹脂成形品の変形も短繊維
強化ペレットの場合と同様に大きく又寸法安定性も悪
い。
<Problems to be Solved by the Invention> Conventional technologies have their own technical problems. The shortest fiber-reinforced resin pellet method, which is the most common method for producing fiber-reinforced thermoplastic resin molded products, has the drawback of improving mechanical strength, which is the primary purpose of fiber reinforcement, and is particularly ineffective in terms of impact strength. have. The reason for this is that the fiber is cut extremely short in the mixing and dispersing process of the fiber and the resin, that is, in the two plasticizing and kneading steps during granulation and injection molding. Furthermore, during the injection molding process, the fibers flow along with the molten resin in the narrow cavity clearance in the mold under remarkable shear, so that a strong fiber orientation remains in the fiber-reinforced thermoplastic resin molded product and the fiber-reinforced thermoplastic resin molded product Has a disadvantage that the fiber reinforced thermoplastic resin molded article is greatly deformed, and the dimensional stability in each direction of the fiber-reinforced thermoplastic resin molded article is poor. Next, in the case of the medium fiber length reinforced pellets, even if the fibers in the pellets are long, the fibers are cut short due to the plasticization step during injection molding and the remarkable shearing during the flow in the mold, and the impact strength is not improved. . The deformation of the fiber-reinforced thermoplastic resin molded product is large as in the case of the short fiber-reinforced pellet, and the dimensional stability is poor.

中および長繊維長の繊維強化スタンパブルシートで
は、繊維強化熱可塑性樹脂成形品中に残留する繊維が、
原料として用いられた繊維の長さをそのまま保つためき
わめて高い機械的強度が得られる。しかしながら中繊維
長の単繊維強化スタンパブルシートの技術においては、
熱可塑性樹脂原料は粉末でなければならず、製品は粉砕
コストのため割高となる。さらに抄紙機、ロール・プレ
ス、予熱機など高価で特殊な設備を要する。繊維強化熱
可塑性樹脂成形品内の繊維配向は、成形時に溶融樹脂と
共に一部の繊維が流れるため、繊維強化ペレットの場合
より少ないが、発生し、成形品は変形しやすい。
In medium and long fiber length fiber reinforced stampable sheets, the fibers remaining in the fiber reinforced thermoplastic resin molded product are
Since the length of the fiber used as the raw material is kept as it is, extremely high mechanical strength can be obtained. However, in the technology of single-fiber reinforced stampable sheet of medium fiber length,
The raw material of the thermoplastic resin must be a powder, and the product is expensive due to the cost of grinding. Furthermore, expensive and special equipment such as a paper machine, a roll press, and a preheater are required. The fiber orientation in the fiber-reinforced thermoplastic resin molded article is smaller than that in the case of the fiber-reinforced pellet because some fibers flow together with the molten resin at the time of molding, but the fiber orientation occurs and the molded article is easily deformed.

長繊維長のスタンパブルシートの場合、成形時の溶融
樹脂のみ流動し、繊維が流れ難いために繊維強化熱可塑
性樹脂成形品外周部が樹脂のみの部分が発生し、強度的
に安定しない。さらに中繊維のスタンパブルシートと同
様に繊維織機、押出機、ロール・プレス、予熱機などの
高価で特殊な設備を要する。
In the case of a long fiber-length stampable sheet, only the molten resin flows during molding, and the fibers are unlikely to flow, so that the outer periphery of the fiber-reinforced thermoplastic resin molded product has a resin-only portion and is not stable in strength. In addition, expensive and special equipment such as a fiber loom, an extruder, a roll press, and a preheater is required as in the case of the medium fiber stampable sheet.

〈課題を解決するための手段〉 このように、従来の技術は機械的物性、変形、などに
それぞれ問題点を持ち、工業的技術としては十分なもの
と言えない。本願発明者らはこれらの問題点を克服する
成形加工技術を開発すべく鋭意研究を進めてきたがつい
に以下に述べる工業的にすぐれた繊維強化熱可塑性樹脂
製品の新しい製造方法を開発するに至った。
<Means for Solving the Problems> As described above, the conventional technology has problems in mechanical properties, deformation, and the like, and cannot be said to be sufficient as an industrial technology. The inventors of the present application have intensively studied to develop a molding technique for overcoming these problems, but have finally developed a new method for producing an industrially excellent fiber-reinforced thermoplastic resin product described below. Was.

すなわち本発明は、成形収縮率10/1000以下で曲げ弾
性率が25000kg/cm2以上の値を有する成形品を与える熱
可塑性樹脂をマトリックス樹脂とし、これを可塑化溶融
した後、未閉鎖の金型内に載置した多孔性繊維質シート
の一方の側より型内の供給し、プレス圧力により、多孔
性繊維質シートの空隙を通し、溶融した熱可塑性樹脂を
多孔性繊維質シートの反対側表面まで浸透させ、成形す
ることを特徴とする繊維強化熱可塑性樹脂製品の製造方
法である。
That is, the present invention, after the thermoplastic resin which gives a molded article flexural modulus less molding shrinkage 10/1000 has 25000kg / cm 2 or more values as a matrix resin, which was melted plasticized, non-closure of the gold The inside of the mold is supplied from one side of the porous fibrous sheet placed in the mold, and through a gap of the porous fibrous sheet by pressing pressure, the molten thermoplastic resin is supplied to the opposite side of the porous fibrous sheet. This is a method for producing a fiber-reinforced thermoplastic resin product, characterized in that it is penetrated to the surface and molded.

本発明においては、金型内に多孔性繊維質シートを置
き、溶融樹脂をシートの一方の側から供給し、加圧成形
するために繊維強化熱可塑性樹脂製品全面が均一に強化
され、繊維が切断されることがなく又溶融樹脂が繊維シ
ートの一方の表面から他の表面に向かって流れるため
に、繊維強化熱可塑性樹脂製品の内部に気泡が残らず、
きわめて補強効果の高い繊維強化熱可塑性樹脂製品が得
られる。特に金型を開いた状態で溶融樹脂を供給する場
合、射出成形に比べて成形時の圧力が均一にかかるため
繊維質シート内部の溶融樹脂の流れは成形品全面にわた
ってより均一化されるため好ましい。
In the present invention, a porous fibrous sheet is placed in a mold, a molten resin is supplied from one side of the sheet, and the entire surface of the fiber-reinforced thermoplastic resin product is uniformly reinforced in order to perform pressure molding. Because it is not cut and the molten resin flows from one surface of the fiber sheet to the other surface, no air bubbles remain inside the fiber reinforced thermoplastic resin product,
A fiber-reinforced thermoplastic resin product having an extremely high reinforcing effect can be obtained. Particularly when the molten resin is supplied in a state where the mold is opened, the pressure during molding is more evenly applied than in injection molding, so that the flow of the molten resin inside the fibrous sheet is more uniform over the entire surface of the molded product, which is preferable. .

金型内に繊維質シートを置き、その一方の表面側に溶
融樹脂を供給するこの成形方法の場合、溶融樹脂を供給
する側のマトリックス樹脂のみの層は比較的厚く、一
方、その反対側のマトリックス樹脂層は薄くなるため、
すなわち繊維質シートが偏在するためマトリックス樹脂
の収縮力の差により繊維強化熱可塑性樹脂製品が大きく
変形することがある。この変形を防ぐには、成形収縮率
が10/1000以下でかつ曲げ弾性率が少なくとも25000kg/c
m2のマトリックス樹脂を用いるのが好ましく、成形収縮
率が8.5/1000以下でかつ曲げ弾性率が30000kg/cm2のマ
トリックス樹脂を用いるのがさらに好ましい。
In the case of this molding method in which the fibrous sheet is placed in a mold and the molten resin is supplied to one surface side of the mold, the layer of only the matrix resin on the side supplying the molten resin is relatively thick, while the layer on the opposite side is provided. Because the matrix resin layer becomes thinner,
That is, since the fibrous sheet is unevenly distributed, the fiber-reinforced thermoplastic resin product may be greatly deformed due to a difference in contraction force of the matrix resin. In order to prevent this deformation, the molding shrinkage is not more than 10/1000 and the flexural modulus is at least 25,000 kg / c.
It is preferable to use a matrix resin of m 2 , more preferably a matrix resin having a molding shrinkage of 8.5 / 1000 or less and a flexural modulus of 30000 kg / cm 2 .

ここでいう成形収縮率は、200mm×200mmサイズで、厚
さが2.0mmのプレス用型枠を用い、マトリックス樹脂と
して使用する熱可塑性樹脂が完全に溶融する温度で10分
以上の予熱を行った後、該熱可塑性樹脂を冷却プレス内
で十分冷却して得たプレス成形試料を、23℃、65%湿度
の室に24時間放置した後に、下式により算定する。
The molding shrinkage here is 200 mm x 200 mm in size, using a 2.0 mm thick press mold, and preheated for 10 minutes or more at a temperature at which the thermoplastic resin used as the matrix resin is completely melted. Thereafter, a press-formed sample obtained by sufficiently cooling the thermoplastic resin in a cooling press is left in a room at 23 ° C. and 65% humidity for 24 hours, and then calculated by the following equation.

また曲げ弾性率は、成形収縮率測定用試料と同一の方
法で作成した試料を用い、JIS K6758に準拠して測定を
実施する。
The flexural modulus is measured according to JIS K6758 using a sample prepared in the same manner as the sample for measuring the molding shrinkage.

以下、本発明における成形方法の例を図面を用いて説
明する。その一例は第1図に示すように、未閉鎖の金型
内に多孔性繊維質シートを載置し、金型内の供給口を通
して溶融樹脂を繊維質シートの片側に供給しながら又は
供給完了後金型を閉じ成形を行なう方法である。また、
第2図に示すように未閉鎖の金型内の多孔性繊維質シー
トを載置し、金型外の供給口から溶融樹脂をシート上に
供給し、次いで金型を閉じ加圧、冷却を経て繊維強化熱
可塑性樹脂製品を得ることもできる。
Hereinafter, examples of the molding method in the present invention will be described with reference to the drawings. As an example, as shown in FIG. 1, a porous fibrous sheet is placed in an unclosed mold, and molten resin is supplied to one side of the fibrous sheet through a supply port in the mold, or the supply is completed. This is a method in which the mold is closed and the molding is performed. Also,
As shown in FIG. 2, a porous fibrous sheet in an unclosed mold is placed, molten resin is supplied onto the sheet from a supply port outside the mold, and then the mold is closed and pressurized and cooled. Through the process, a fiber-reinforced thermoplastic resin product can be obtained.

本願発明に用いられる熱可塑性樹脂としては、ポリエ
チレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニ
ル、ポリアミド、ポリカーボネート、ABS樹脂、ポリア
クリロニトリル、ポリエチレンテレフタレート等の樹脂
が、単独あるいはこれらの混合物、ポリマーアロイとし
て、必要に応じ、タルク、ガラス繊維、マイカあるいは
木粉等の無機質充填材を充填して使用される。さらに、
これらの熱可塑性樹脂には熱安定剤、紫外線防止剤など
の添加剤、着色剤などを含有させてもよい。
As the thermoplastic resin used in the present invention, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyamide, polycarbonate, ABS resin, polyacrylonitrile, resins such as polyethylene terephthalate, alone or as a mixture thereof, a polymer alloy is required. Depending on the usage, the filler may be filled with an inorganic filler such as talc, glass fiber, mica or wood flour. further,
These thermoplastic resins may contain additives such as heat stabilizers and UV inhibitors, coloring agents, and the like.

本発明に用いられる多孔性繊維質シートの材質はガラ
ス繊維、カーボン繊維、ステンレス繊維等の無機繊維、
又、ポリアミド繊維、ポリエステル繊維、アラミド繊維
等の有機繊維及び無機・有機繊維の混合物を使用するこ
とができる。特にガラス繊維の場合は低コストで高い補
強効果が得られる。繊維の直径は1μm〜50μmの一般
的に得られる繊維を使用することができる。又、該多孔
性繊維質シートはシート形状を保持するために3〜50wt
%のポリビニルアルコール、エポキシ樹脂等の凝結剤を
用いたものを使用してもよい。
The material of the porous fibrous sheet used in the present invention is glass fiber, carbon fiber, inorganic fiber such as stainless steel fiber,
Also, a mixture of organic fibers such as polyamide fibers, polyester fibers, and aramid fibers and inorganic / organic fibers can be used. Particularly in the case of glass fiber, a high reinforcing effect can be obtained at low cost. Generally available fibers having a fiber diameter of 1 μm to 50 μm can be used. The porous fibrous sheet is 3 to 50 wt.
% Using a coagulant such as polyvinyl alcohol or epoxy resin.

本願発明で用いる多孔性繊維質シートは一枚で使用し
ても複数枚を重ねて使用してもよい。複数枚の多孔性繊
維質シートを重ねて使用する場合は、該シートは同質の
ものの組合せでも、又異質のものの組合せでも良く、用
途、要求性能に応じて組合せ方を選択することができ
る。
The porous fibrous sheet used in the present invention may be used as a single sheet or as a plurality of sheets. When a plurality of porous fibrous sheets are used in a stack, the sheets may be a combination of the same or different materials, and the combination may be selected according to the application and required performance.

とくに最外層とする多孔質繊維質シートは、連続また
は不連続の単繊維からなるものを使用するのが、凹凸の
少ない滑らかな表面外観の製品を得る上で好ましい。
In particular, it is preferable to use a continuous or discontinuous single fiber as the porous fibrous sheet as the outermost layer, in order to obtain a product having a smooth surface appearance with less unevenness.

又、本願発明において、その成形過程において溶融樹
脂は多孔性繊維質シートの間隙を圧力により流動してい
くが流動抵抗が大きくかつ特に無機繊維の場合は繊維に
より熱を奪われ樹脂温度の低下が大きいため流動性が低
下し、繊維強化熱可塑性樹脂製品表面までの樹脂の浸透
性が不十分となることがある。これを防ぐために用いる
繊維質シートを金型間に載置する前に例えば60℃以上に
予備加熱しておくことも効果的である。
Further, in the present invention, in the molding process, the molten resin flows through the gaps of the porous fibrous sheet by pressure, but the flow resistance is large, and particularly in the case of inorganic fibers, heat is taken away by the fibers and the resin temperature decreases. Due to the large size, the fluidity is reduced, and the permeability of the resin to the surface of the fiber-reinforced thermoplastic resin product may be insufficient. It is also effective to preheat the fibrous sheet used to prevent this, for example, to 60 ° C. or higher before placing it between the molds.

〈実施例〉 以下、本発明の実施例を示すが、本発明はこれに限定
されるものではない。なお、実施例中の成形品の試験法
は、以下の通りである。
<Examples> Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto. In addition, the test method of the molded article in an Example is as follows.

曲げ試験:JIS K6258に準拠し3点支持法で行った。な
おテストピースは第3図の箱型成形品から切出した2mm
厚10mm巾90mm長のものを用い、23℃の条件下でテストを
実施した。
Bending test: Performed by a three-point support method according to JIS K6258. The test piece is 2mm cut from the box-shaped molded product shown in Fig. 3.
The test was performed at 23 ° C. using a 10 mm thick and 90 mm long.

落錘衝撃試験:JIS K6258に準拠し、アイゾットノッチ
付衝撃試験を実施した。
Drop weight impact test: An Izod notch impact test was performed according to JIS K6258.

テストピース形状は、テストピースは第3図の箱型成
形品から切出した2mm厚×12.7mm巾×63.5mm長で23℃の
条件で実施した成形品の変形:第3図の箱型成形品の底
面を下にして平板上に置き4つの角部をおのおの別々に
平板上に押さえつけた時、残りの角部で最も平板より離
れた高さをもって成形品の変形量とした。
The shape of the test piece was 2 mm thick x 12.7 mm wide x 63.5 mm long and the test piece was cut from the box-shaped molded product shown in Fig. 3 and deformed at 23 ° C. The box-shaped molded product shown in Fig. 3 Was placed on a flat plate with its bottom face down, and four corners were individually pressed on the flat plate. The height of the remaining corners farthest from the flat plate was defined as the deformation of the molded article.

(実施例1) 横供給の射出部を持つ200トンの型締力を有する竪型
プレス成形機を使用し、成形テストを実施した。金型は
上型および下型の2つの部分から成り、下型の中央部に
直径2mmの溶融樹脂の金型内供給口をもつ、製品肉厚2.0
mm、製品寸法200mm長さ×200mm巾×40mm高さの箱型製品
(第3図)の型を用いた。
(Example 1) A molding test was performed using a vertical press molding machine having a clamping force of 200 tons and having a horizontally supplied injection section. The mold consists of two parts, an upper mold and a lower mold, and has a 2 mm diameter molten resin supply port inside the mold at the center of the lower mold.
mm, a box-shaped product (Fig. 3) having a product size of 200mm length x 200mm width x 40mm height was used.

多孔性繊維質シートとしては、ガラス繊維を抄紙法に
より不織布とした日本バイリーン社製のキュムラスシー
トVHM5075を用いた。又、熱可塑性材料としてポリプロ
ピレン樹脂にガラス繊維(繊維長1mm以下)を30%充填
した材料(住友ノーブレンGHH43、メルトフローインデ
ックス4.3g/10分)を用いた。未閉鎖の金型内に多孔繊
維質シートを2枚重ねて載置した後、金型内供給口から
溶融樹脂を供給し、金型を閉じ100kg/cm2の圧力で加
圧、冷却を行なった。第1表に示すごとく、機械的強度
の優れた変形の少ない繊維強化熱可塑性樹脂製品を得る
ことができた。
As the porous fibrous sheet, a Cumulus sheet VHM5075 manufactured by Nippon Vilene Co., Ltd. made of glass fiber and made into a nonwoven fabric by a papermaking method was used. As the thermoplastic material, a material (Sumitomo Noblen GHH43, melt flow index 4.3 g / 10 minutes) in which 30% of glass fiber (fiber length 1 mm or less) was filled in polypropylene resin was used. After stacking two porous fibrous sheets in an unclosed mold, the molten resin is supplied from the supply port in the mold, and the mold is closed and pressurized and cooled at a pressure of 100 kg / cm 2. Was. As shown in Table 1, a fiber-reinforced thermoplastic resin product having excellent mechanical strength and low deformation was obtained.

(実施例2〜3) マトリックス樹脂として第1表に示したものを使用し
た以外は、実施例1と同一条件で成形し、成形品物性、
外観、変形性等を評価した。第1表に示すごとく、機械
的強度の優れた変形の少ない繊維強化熱可塑性樹脂製品
を得ることができた。
(Examples 2 to 3) Molding was performed under the same conditions as in Example 1 except that the matrix resin shown in Table 1 was used.
The appearance, deformability, etc. were evaluated. As shown in Table 1, a fiber-reinforced thermoplastic resin product having excellent mechanical strength and low deformation was obtained.

(比較例1〜2) マトリックス樹脂として第1表に示したものを使用し
た以外は、実施例1と同一条件で成形し、成形品物性、
外観、変形性等を実施例で得られた繊維強化熱可塑性樹
脂製成形品と比較評価した。第1表に示す如く、強度が
劣っているか又は変形が大きいものであった。
(Comparative Examples 1 and 2) Molding was performed under the same conditions as in Example 1 except that the matrix resin shown in Table 1 was used.
The appearance, deformability, and the like were evaluated in comparison with the fiber-reinforced thermoplastic resin molded product obtained in the examples. As shown in Table 1, the strength was poor or the deformation was large.

〈発明の効果〉 上述の如く、本発明による繊維強化成形技術を用いる
と成形と同時に強化できるため、従来法に比較しきわめ
て低コストで、特に機械的強度の優れた繊維強化熱可塑
性樹脂製品を容易に得ることができ、また製品の要求性
能に応じて各種の繊維の組合せが可能で自動車部品、家
電部品、建築用材料等の広範囲な用途分野の繊維強化製
品を提供することが可能となった。
<Effect of the Invention> As described above, since the fiber-reinforced molding technology according to the present invention can be reinforced at the same time as molding, the fiber-reinforced thermoplastic resin product is extremely low in cost as compared with the conventional method, and particularly has excellent mechanical strength. It can be easily obtained, and various kinds of fibers can be combined according to the required performance of the product, and it is possible to provide fiber reinforced products in a wide range of application fields such as automobile parts, home electric parts, and building materials. Was.

【図面の簡単な説明】[Brief description of the drawings]

第1〜2図は、本発明の成形方法を示す装置の縦の断面
図である。 1……上金型、2……下金型 3……多孔性繊維質シート 4……溶融樹脂、5……溶融樹脂供給口 6……ポータブル押出機 第3図は、本発明の実施例の方法でつくった繊維強化熱
可塑性樹脂製品の斜視図である。
1 and 2 are vertical sectional views of an apparatus showing a molding method of the present invention. DESCRIPTION OF SYMBOLS 1 ... Upper mold, 2 ... Lower mold 3 ... Porous fibrous sheet 4 ... Molten resin, 5 ... Molten resin supply port 6 ... Portable extruder Fig. 3 shows an embodiment of the present invention. FIG. 4 is a perspective view of a fiber-reinforced thermoplastic resin product produced by the method of FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松原 重義 大阪府高槻市塚原2丁目10番1号 住友 化学工業株式会社内 (56)参考文献 特開 昭62−259819(JP,A) 特開 昭60−36136(JP,A) 特公 昭60−16899(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B29C 70/40 - 70/48──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shigeyoshi Matsubara 2-10-1 Tsukahara, Takatsuki-shi, Osaka Sumitomo Chemical Co., Ltd. (56) References JP-A-62-259819 (JP, A) JP-A Sho 60-36136 (JP, A) JP-B-60-16899 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) B29C 70/40-70/48

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】成形収縮率10/1000以下で曲げ弾性率が250
00kg/cm2以上の値を有する成形品を与える熱可塑性樹脂
をマトリックス樹脂とし、これを可塑化溶融した後、未
閉鎖の金型内に載置した多孔性繊維質シートの一方の側
より型内に供給し、プレス圧力により、多孔性繊維質シ
ートの空隙を通し、溶融した熱可塑性樹脂を多孔性繊維
質シートの反対側表面まで浸透させることを特徴とする
繊維強化熱可塑性樹脂製品の製造方法。
1. A molding shrinkage of not more than 10/1000 and a flexural modulus of 250
A thermoplastic resin that gives a molded product having a value of 00 kg / cm 2 or more is used as a matrix resin, and after plasticizing and melting this, a mold is formed from one side of a porous fibrous sheet placed in an unclosed mold. Manufacturing of a fiber-reinforced thermoplastic resin product characterized in that the molten thermoplastic resin is permeated to the opposite surface of the porous fibrous sheet through the voids of the porous fibrous sheet by the pressing pressure Method.
JP1190065A 1989-07-20 1989-07-20 Method for producing fiber reinforced thermoplastic resin product Expired - Fee Related JP2822465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1190065A JP2822465B2 (en) 1989-07-20 1989-07-20 Method for producing fiber reinforced thermoplastic resin product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1190065A JP2822465B2 (en) 1989-07-20 1989-07-20 Method for producing fiber reinforced thermoplastic resin product

Publications (2)

Publication Number Publication Date
JPH0353928A JPH0353928A (en) 1991-03-07
JP2822465B2 true JP2822465B2 (en) 1998-11-11

Family

ID=16251765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1190065A Expired - Fee Related JP2822465B2 (en) 1989-07-20 1989-07-20 Method for producing fiber reinforced thermoplastic resin product

Country Status (1)

Country Link
JP (1) JP2822465B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7418184B2 (en) * 2019-11-14 2024-01-19 株式会社ディスコ How to install a protective member, how to process a workpiece, and how to manufacture a protective member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016899A (en) * 1983-07-07 1985-01-28 Nec Corp Ii-v compound crystal and its pulling method
JPS6036136A (en) * 1983-08-10 1985-02-25 Toray Ind Inc Manufacture of long-sized product of thermoplastic resin reinforced with fiber
JPS62259819A (en) * 1986-05-07 1987-11-12 Mitsubishi Electric Corp Manufacture of fiber reinforced plastic material

Also Published As

Publication number Publication date
JPH0353928A (en) 1991-03-07

Similar Documents

Publication Publication Date Title
US5672309A (en) Method for producing molded article of fiber reinforced thermoplastic resin
US5275776A (en) Method for producing molded article of fiber-reinforced thermoplastic resin
JP2751768B2 (en) Fiber-reinforced thermoplastic resin molded article and molding method thereof
JPH0440373B2 (en)
JP7023963B2 (en) Combined primary and carbon fiber components in the production of reinforced polymer articles
EP0423676A2 (en) Method for producing molded article of fiber-reinforced thermoplastic resin
CA1157605A (en) Manufactured articles based on thermoplastic polymers reinforced with glass fibers
JPH0376614A (en) Manufacture of molded object of fiber reinforced thermoplastic resin
JP2822465B2 (en) Method for producing fiber reinforced thermoplastic resin product
KR101054954B1 (en) Formwork plates made of thermoplastic composites
JP2917372B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JPH07103244B2 (en) Stamping molding material
JP3032584B2 (en) Method for improving appearance of fiber-reinforced thermoplastic resin molded product
JP2748604B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JP2697142B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JP2697077B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JP2697107B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JP3019527B2 (en) Fiber-reinforced thermoplastic resin molded article and molding method thereof
JP3032582B2 (en) Method for improving appearance of fiber-reinforced thermoplastic resin molded product
EP0646684A1 (en) Water-permeable concrete formwork
JP3012416B2 (en) Plate for concrete formwork
JP3006609B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JPH0332836A (en) Composite molding sheet
JPH05318470A (en) Sheet-shaped glass fiber-reinforced thermoplastic resin for molding
JPH06210782A (en) Porous molded product of fiber-reinforced thermally plastic resin and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees