JP2697107B2 - Method for producing fiber-reinforced thermoplastic resin molded article - Google Patents

Method for producing fiber-reinforced thermoplastic resin molded article

Info

Publication number
JP2697107B2
JP2697107B2 JP1082674A JP8267489A JP2697107B2 JP 2697107 B2 JP2697107 B2 JP 2697107B2 JP 1082674 A JP1082674 A JP 1082674A JP 8267489 A JP8267489 A JP 8267489A JP 2697107 B2 JP2697107 B2 JP 2697107B2
Authority
JP
Japan
Prior art keywords
fiber
molten resin
molding
molded article
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1082674A
Other languages
Japanese (ja)
Other versions
JPH02261610A (en
Inventor
孚尚 原
正人 松本
信裕 臼井
重義 松原
Original Assignee
住友化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学工業株式会社 filed Critical 住友化学工業株式会社
Priority to JP1082674A priority Critical patent/JP2697107B2/en
Priority to CA002009530A priority patent/CA2009530A1/en
Priority to KR1019900001603A priority patent/KR0159510B1/en
Priority to EP90102573A priority patent/EP0382238B1/en
Priority to DE69020374T priority patent/DE69020374T2/en
Priority to ES90102573T priority patent/ES2076236T3/en
Publication of JPH02261610A publication Critical patent/JPH02261610A/en
Priority to US08/453,517 priority patent/US5672309A/en
Application granted granted Critical
Publication of JP2697107B2 publication Critical patent/JP2697107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は自動車外板パネル、自動車用構造材、バッテ
リートレイ等の自動車部品、アクセス・ブロア等の建築
用材料などの工業材料に供する繊維強化熱可塑性樹脂成
形品の製造方法に関する。詳しくは、繊維配向等による
変形が著しく少なく、表面外観の良好な繊維強化成形品
を成形と同時に強化する方法で得る成形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to fiber reinforcement for industrial materials such as automobile exterior panels, automobile structural materials, automobile parts such as battery trays, and building materials such as access blowers. The present invention relates to a method for producing a thermoplastic resin molded product. More specifically, the present invention relates to a molding method for obtaining a fiber-reinforced molded article having a very small surface deformation due to fiber orientation and the like and having a good surface appearance by simultaneously strengthening and molding.

<従来の技術> 従来、繊維強化熱可塑性樹脂成形品を得るにいくつか
の技術が知られ工業的技術として実際に使われている。
代表的な方法は、短繊維強化ペレットを用いて射出成形
等の一般的成形法で繊維強化成形品を製造する方法であ
る。また、ペレット製造時のペレット切断長さとほぼ同
じ長さの中繊維長の繊維で強化された熱可塑性樹脂ペレ
ットを用い、射出成形等で繊維強化成形品を製造する方
法もある。
<Prior Art> Conventionally, several techniques have been known for obtaining a fiber-reinforced thermoplastic resin molded product, and are actually used as industrial techniques.
A typical method is a method of producing a fiber-reinforced molded product by a general molding method such as injection molding using short fiber-reinforced pellets. There is also a method of manufacturing a fiber-reinforced molded product by injection molding or the like using a thermoplastic resin pellet reinforced with fibers having a medium fiber length substantially equal to the cut length of the pellet at the time of pellet production.

一方、近年、繊維強化熱可塑性樹脂シートを再加熱
し、プレス成形により製品を得る、いわゆるスタンパブ
ルシートの技術が注目されている。スタンパブルシート
の技術は、強化に用いられる繊維により、2つに大別さ
れる。1つは、数ミリ〜100ミリ長さの単繊維と熱可塑
性樹脂粉末を湿式、または乾式で混合し、加熱、ロール
プレスを経てスタンパブルシートを製造し、このシート
を予備加熱後、プレスして繊維強化成形品を得る方法で
ある。(例えば特開昭57−28135号公報)。もう一方の
スタンパブルシート技術は、長繊維強化スタンパブルシ
ートである。この方法では、編んだ長繊維マットに溶融
した熱可塑性樹脂を押出ラミネーションし、ロール・プ
レスを経てスタンパブルシートを製造、このシートを予
備加熱し、プレス成形で繊維強化成形品を製造する。
On the other hand, in recent years, a so-called stampable sheet technique of reheating a fiber-reinforced thermoplastic resin sheet to obtain a product by press molding has attracted attention. Stampable sheet technology is roughly classified into two types according to the fibers used for reinforcement. First, a single fiber of several millimeters to 100 millimeters in length and a thermoplastic resin powder are mixed in a wet or dry method, heated, roll-pressed to produce a stampable sheet, and the sheet is preheated and then pressed. This is a method of obtaining a fiber-reinforced molded product by heating. (For example, JP-A-57-28135). The other stampable sheet technology is a long fiber reinforced stampable sheet. In this method, a thermoplastic resin melted on a knitted long fiber mat is extrusion-laminated, a stampable sheet is produced through a roll press, the sheet is preheated, and a fiber-reinforced molded article is produced by press molding.

<従来技術の課題> 従来の技術はそれぞれ固有の技術、経済性の問題点を
有している。繊維強化成形品の製造法として最も一般的
に普及している短繊維強化ペレット法は、成形性、デザ
イン対応性、コスト等は他の技術に比較し優位であるが
繊維強化の最大の目的である機械的強度の向上、特に、
耐衝撃強度の点で効果が低いという欠点を有している。
この理由は、繊維と樹脂の混合、分散過程、すなわち造
粒時、および成形時の2回の可塑化、混練工程で繊維は
著しく切断されるためである。さらに成形過程で繊維は
溶融樹脂とともに金型内を流動するために、成形品中に
繊維配向が残り成形品が大きく変形しやすい欠点も有し
ている。又、繊維、特に無機繊維の場合、造粒、成形等
で使用される押出機、射出成形機のスクリュー、シリン
ダー部を著しく摩耗させることもコストの点から大きな
問題となる。
<Problems of the prior art> Each of the conventional technologies has its own technical and economical problems. The short fiber reinforced pellet method, which is most commonly used as a method for producing fiber reinforced molded products, is superior in formability, design compatibility, cost, etc. compared to other technologies, but it is the largest purpose of fiber reinforcement. Certain mechanical strength improvements, especially
There is a disadvantage that the effect is low in terms of impact strength.
The reason for this is that the fibers are severely cut during the mixing and dispersing processes of the fibers and the resin, that is, two plasticizing and kneading steps during granulation and molding. Furthermore, since the fibers flow in the mold together with the molten resin during the molding process, the fiber orientation remains in the molded product, and the molded product also has a disadvantage of being easily deformed. Further, in the case of fibers, particularly inorganic fibers, a significant problem from the viewpoint of cost is that the screws and cylinders of an extruder and an injection molding machine used for granulation, molding and the like are significantly worn.

一方、中繊維長強化ペレットを使用した成形品の製造
工程は特殊な押出機ヘッドを必要とし、又、生産性も短
繊維強化ペレット比較し低下するため、コストの高い製
品となる。さらに成形品中の繊維配向による変形、スク
リュー、シリンダー等の摩耗は短繊維ペレットの場合と
同様である。
On the other hand, the manufacturing process of a molded article using medium fiber length reinforced pellets requires a special extruder head, and the productivity is lower than that of short fiber reinforced pellets, resulting in a high cost product. Further, the deformation due to the fiber orientation in the molded product and the abrasion of the screw, cylinder and the like are the same as in the case of the short fiber pellet.

中および長繊維長の繊維強化スタンパブルシートで
は、成形品中に残留する繊維が、原料として用いられた
繊維の長さをそのまま保つためきわめて高い機械的強度
が得られる。しかしながら中繊維長の単繊維強化スタン
パブルシートの技術においては、熱可塑性樹脂原料は粉
末でなければならず、製品は粉砕コストのため割高とな
る。さらに抄紙機、ロール・プレス、予熱器など高価で
特殊な設備を要する。成形品内の繊維配向は、成形時に
溶融樹脂と共に一部の繊維が流れるため、繊維強化ペレ
ットの場合より少ないが、発生し、成形品を変形させる
ことがある。
In the medium and long fiber-reinforced stampable sheets, the fibers remaining in the molded article maintain the length of the fibers used as the raw material, so that extremely high mechanical strength can be obtained. However, in the technology of a single-fiber reinforced stampable sheet having a medium fiber length, the thermoplastic resin raw material must be a powder, and the product is expensive due to the pulverization cost. Furthermore, expensive and special equipment such as a paper machine, a roll press, and a preheater are required. The fiber orientation in the molded article is smaller than that in the case of fiber-reinforced pellets because some fibers flow together with the molten resin at the time of molding, but may occur and may deform the molded article.

長繊維スタンパブルシートの場合、成形時に溶融した
樹脂のみ流動し、繊維が流れないために成形品外周部が
樹脂のみの部分が発生し、強度的に安定しない。又、集
束した繊維を用いるため表面外観の粗いものとなりやす
い。さらに中繊維のスタンパブルシートと同様に繊維織
機、押出機、ロール・プレス、予熱機などの高価で特殊
な設備を要する。
In the case of a long fiber stampable sheet, only the resin melted at the time of molding flows, and the fiber does not flow. Further, since the bundled fibers are used, the surface appearance tends to be rough. In addition, expensive and special equipment such as a fiber loom, an extruder, a roll press, and a preheater is required as in the case of the medium fiber stampable sheet.

<課題を解決するための手段> このように、従来の技術は機械的物性、変形、外観、
コストなどにそれぞれ問題点を持ち、工業的技術として
は十分なものと言えない。本願発明者らはこれらの問題
点を克服する成形加工技術を開発すべく鋭意研究を進め
てきたがついに以下に述べる工業的にすぐれた、かつ低
コストの繊維強化熱可塑性樹脂成形品の新しい製造方法
を開発するに至った。すなわち本発明は、上または下金
型内に溶融樹脂通路を有する上・下金型間に複数の多孔
性繊維質シートを重ねて載置し、上・下金型を閉じ、溶
融樹脂供給口側の多孔性繊維質シートに設けられた穴部
の周辺を溶融樹脂供給口の周辺に接触させた後、溶融樹
脂を該穴部を通して多孔性繊維質シート層間に供給する
際に、溶融樹脂の供給開始と共に金型を開き、溶融樹脂
の供給完了前または供給完了と同時に上・下金型を閉
じ、加圧して成形することを特徴とする繊維強化熱可塑
性成形品の製造方法である。
<Means for Solving the Problems> As described above, the conventional technology is based on mechanical properties, deformation, appearance,
Each has its own problems, such as cost, and is not sufficient for industrial technology. The inventors of the present invention have intensively studied to develop a molding technique for overcoming these problems, but finally, a new production of an industrially excellent and low-cost fiber-reinforced thermoplastic resin molded article described below. A method has been developed. That is, the present invention relates to a method of stacking a plurality of porous fibrous sheets between upper and lower molds having a molten resin passageway in an upper or lower mold, closing the upper and lower molds, and supplying a molten resin supply port. After contacting the periphery of the hole provided in the porous fiber sheet on the side with the periphery of the molten resin supply port, when supplying the molten resin between the porous fiber sheet layers through the hole, the molten resin A method for producing a fiber-reinforced thermoplastic molded product, comprising opening a mold at the start of supply, closing the upper and lower molds before or simultaneously with the completion of the supply of the molten resin, and molding by pressing.

本発明においては、複数枚の多孔性繊維質シートを置
き、供給口側の多孔性繊維質シートに設けられた穴を通
して溶融樹脂を繊維質シート層間に供給し、加圧成形す
ると成形品全面が均一に繊維により強化され、繊維が切
断されることがなく、又、溶融樹脂がシート層間からシ
ート層内に浸透し、最外シート表面に向かって流れるた
め、成形品内に気泡が残らず、きわめて補強効果の高い
成形品が得られる。また成形過程で繊維が溶融樹脂と共
に流動することがないため繊維配向も見られず、そのた
めに成形品のそり、変形等がなく、さらに複数枚重ね合
わされた多孔性繊維質シートの最外層に不連続の単繊維
シートを用いることにより、工業製品としての要求の高
い外観がなめらかで美しい樹脂表面を有する製品を得る
ことができる。特に、溶融樹脂の供給開始と共に金型を
開き、溶融樹脂の供給完了前または供給完了と同時に上
・下金型を閉じ、加圧成形することにより、複雑形状の
成形品金型においても容易に繊維質シート層間に溶融樹
脂の供給ができることになり各種の形状の成形品を均一
に強化できる。本発明はこのように従来技術にない、成
形時に繊維強化のできる画期的な成形技術である。
In the present invention, a plurality of porous fibrous sheets are placed, the molten resin is supplied between the fibrous sheet layers through the holes provided in the porous fibrous sheet on the supply port side, and the entire molded article is formed by pressure molding. Uniformly reinforced by fibers, fibers are not cut, and the molten resin penetrates into the sheet layer from between the sheet layers and flows toward the outermost sheet surface, so that no bubbles remain in the molded product, A molded article having a very high reinforcing effect can be obtained. Further, since the fibers do not flow together with the molten resin during the molding process, no fiber orientation is observed, and therefore, there is no warping or deformation of the molded product, and furthermore, the outermost layer of the porous fibrous sheet laminated on a plurality of sheets does not have a defect. By using a continuous single fiber sheet, it is possible to obtain a product having a smooth and beautiful resin surface with a high appearance required as an industrial product. In particular, by opening the mold at the start of the molten resin supply, closing the upper and lower molds before or at the same time as the completion of the supply of the molten resin, and press-molding, it is easy to mold even in complicated shaped molds. Molten resin can be supplied between the fibrous sheet layers, and molded articles of various shapes can be uniformly reinforced. The present invention is an epoch-making molding technique which can not be reinforced by fiber at the time of molding, which is not in the prior art.

以下、本発明における成形方法の例を図面を用いて説
明する。
Hereinafter, examples of the molding method in the present invention will be described with reference to the drawings.

下金型(2)内に溶融樹脂通路(7)を有する上・下
金型間に複数の多孔性繊維質シートを重ねて載置し(第
1図(A))、上・下金型を閉じ、溶融樹脂供給口
(6)側の多孔性繊維質シート(4)に設けられた穴部
の周辺を溶融樹脂供給口(6)の周辺に接触させ(第1
図(B))、溶融樹脂(5)を該穴部を通して多孔性繊
維質シート層間に供給する際に、溶融樹脂(5)の供給
開始と共に金型を開き(第1図(C))、溶融樹脂
(5)の供給完了前または供給完了と同時に上・下金型
を閉じ、加圧して成形する(第1図(D))方法であ
る。
A plurality of porous fibrous sheets are stacked and placed between the upper and lower molds having the molten resin passageway (7) in the lower mold (2) (FIG. 1 (A)). Is closed, and the periphery of the hole provided in the porous fibrous sheet (4) on the side of the molten resin supply port (6) is brought into contact with the periphery of the molten resin supply port (6) (first).
(B), when the molten resin (5) is supplied between the porous fibrous sheet layers through the holes, the mold is opened together with the supply of the molten resin (5) (FIG. 1 (C)), This is a method in which the upper and lower molds are closed and molded by applying pressure before or simultaneously with the completion of the supply of the molten resin (5) (FIG. 1 (D)).

本発明に用いられる多孔性繊維質シートの材質はガラ
ス繊維、カーボン繊維、ステンレス繊維等の無機繊維、
又、ポリアミド繊維、ポリエステル繊維、アラミド繊維
等の有機繊維及び無機・有機繊維の混合物を使用するこ
とができる。特にガラス繊維の場合は低コストで高い補
強効果が得られる。繊維の直径は1μm〜50μmの一般
的に得られる繊維を使用することができる。一方、最外
層に好ましく用いられる不連続の単繊維シートの繊維の
長さは100mm以下であり、単繊維シートの製造上、また
得られる機械的強度から、さらに好ましくは1〜50mmで
ある。
The material of the porous fibrous sheet used in the present invention is glass fiber, carbon fiber, inorganic fiber such as stainless steel fiber,
Also, a mixture of organic fibers such as polyamide fibers, polyester fibers, and aramid fibers and inorganic / organic fibers can be used. Particularly in the case of glass fiber, a high reinforcing effect can be obtained at low cost. Generally available fibers having a fiber diameter of 1 μm to 50 μm can be used. On the other hand, the fiber length of the discontinuous single fiber sheet preferably used for the outermost layer is 100 mm or less, and more preferably 1 to 50 mm from the viewpoint of the production of the single fiber sheet and the obtained mechanical strength.

本願発明に用いられる繊維は単繊維および数十本から
数百本の単繊維を集束剤で集束した集束繊維のいずれも
使用することができる。又、本願発明における多孔性繊
維質シートはシート形状を保持するために3〜50wt%の
ポリビニルアルコール、エポキシ樹脂等の凝結剤を用い
たものを使用してもよい。
As the fiber used in the present invention, any of a single fiber and a bundled fiber obtained by bundling dozens to hundreds of single fibers with a bundling agent can be used. Further, the porous fibrous sheet in the present invention may be a sheet using a coagulant such as polyvinyl alcohol or epoxy resin in an amount of 3 to 50 wt% in order to maintain the sheet shape.

本願発明に用いられる熱可塑性樹脂はポリエチレン、
ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ABS
樹脂、ポリアクリロニトリル、ポリアミド、ポリカーボ
ネート、ポリエチレンテレフタレート等の一般的な熱可
塑性樹脂およびこれらの混合物、ポリマーアロイ等が用
いられる。さらに、これらの熱可塑性樹脂には熱安定
剤、紫外線防止剤などの添加剤、又、着色剤、無機充填
剤などを含んでいてもよい。
The thermoplastic resin used in the present invention is polyethylene,
Polypropylene, polystyrene, polyvinyl chloride, ABS
General thermoplastic resins such as resin, polyacrylonitrile, polyamide, polycarbonate, and polyethylene terephthalate, and mixtures thereof, and polymer alloys are used. Further, these thermoplastic resins may contain additives such as a heat stabilizer and an ultraviolet ray inhibitor, a coloring agent and an inorganic filler.

本願発明で成形に用いる複数の繊維質シートは同質の
ものの組合せでも、又異質のものの組合せでも良く、用
途、要求性能に応じて組合せ方を選択することができ
る。
The plurality of fibrous sheets used for molding in the present invention may be a combination of the same type or a combination of different types, and the combination may be selected according to the application and required performance.

又、本願発明において、その成形過程において溶融樹
脂は多孔性繊維質シートの間隙を圧力により流動してい
くが流動抵抗が大きくかつ特に無機繊維の場合は繊維に
より熱を奪われ樹脂温度の低下が大きいため流動性が低
下し、成形品表面までの樹脂の浸透性が不十分となるこ
とがある。これを防ぐために用いる繊維質シートを金型
間に載置する前に例えば60℃以上に予備加熱しておくこ
とも効果的である。
Further, in the present invention, in the molding process, the molten resin flows through the gaps of the porous fibrous sheet by pressure, but has a large flow resistance, and particularly in the case of inorganic fibers, the heat is taken away by the fibers and the resin temperature decreases. Due to the large size, the fluidity is reduced, and the permeability of the resin to the surface of the molded product may be insufficient. It is also effective to preheat the fibrous sheet used to prevent this, for example, to 60 ° C. or higher before placing it between the molds.

<実施例> 以下、本発明の実施例を示すが、本発明はこれに限定
されるものではない。なお、実施例中の成形品の試験法
は、以下の通りである。
<Examples> Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto. In addition, the test method of the molded article in an Example is as follows.

曲げ試験:JIS K7203に準拠し3点支持法で行った。Bending test: Performed by a three-point support method according to JIS K7203.

落錘衝撃試験:第3図に示す装置を用いて実施した。Drop weight impact test: It was carried out using the apparatus shown in FIG.

ガラス繊維強化成形品から切り出した50mmx50mm×2mm
厚のテストピース(14)上に撃芯(12)を置き、荷重
(11)を上方から撃芯(12)上に落下させ、テストピー
スが破壊される時の荷重(11)の最低高さをもって破壊
高さとし、得られた破壊エネルギーをもって衝撃強度と
した。
50mmx50mm × 2mm cut out of glass fiber reinforced molded product
Place the barrel (12) on the thick test piece (14), drop the load (11) from above onto the barrel (12), and the minimum height of the load (11) when the test piece is broken Was used as the breaking height, and the obtained breaking energy was used as the impact strength.

破壊エネルギー(kg・cm) =荷重(kg)x破壊高さ(cm) 成形品の変形:第2図の箱型成形品の底面を下にして平
板上に置き4つの角部をおのおの別々に平板上に押さえ
つけた時、残りの角部で最も平板より離れた高さをもっ
て成形品の変形量とした。
Destruction energy (kg · cm) = Load (kg) x Destruction height (cm) Deformation of molded product: Place the box-shaped molded product shown in Fig. 2 on a flat plate with the bottom face down, and make four corners separately. When pressed down on the flat plate, the height of the remaining corner portion farthest from the flat plate was defined as the deformation of the molded product.

成形品の表面外観:表面粗さ計(東洋精密(株)製、超
粗さ計SURFCOM)を用いて成形品の表面粗さを測定し
た。
Surface appearance of molded article: The surface roughness of the molded article was measured using a surface roughness meter (manufactured by Toyo Seimitsu Co., Ltd., SURFCOM).

(実施例1) 横供給の射出部を持つ、200トンの型締力を有する竪
型プレス成形機を使用し、成形テストを実施した。金型
は凸型状の上型および凹型状の下型の2つの部分から成
り、下型の中央部に直径2mmの溶融樹脂の直接金型内供
給口をもつ、製品肉厚2.0mm、製品寸法200mm長さX200mm
巾X40mm高さの箱型製品(図2)の型を用いた。
(Example 1) A molding test was performed using a vertical press molding machine having a 200-ton clamping force and having a horizontally supplied injection unit. The mold consists of two parts: a convex upper mold and a concave lower mold. The lower mold has a 2mm diameter direct supply port for molten resin in the mold. Dimension 200mm length X200mm
A box-shaped product (FIG. 2) having a width of 40 mm and a height was used.

多孔性繊維質シートとしては、ガラス長繊維を集束し
たロービングを方向性がないように重ねあわせてシート
としたヴェトロテックスインターナショナル(Vetrotex
International)社製のユニフィロシート(Unifilo U
605−450)を用いた。この繊維質シートを2枚重ね、下
側の繊維質シートの金型の溶融樹脂供給口の位置に直径
10mmの穴を作成し、60℃に予熱後下金型上に載置した
(第1図(A))。次いで、上・下金型を閉じ、該穴を
金型の溶融樹脂供給口に接触させ(第1図(B))、該
穴を通して繊維質シートの層間に溶融した熱可塑性樹脂
(住友化学工業(株)製、住友ノーブレンAX568:ポリプ
ロピレン樹脂、メルトフローインデックス65g/10分)を
供給し、供給開始と同時に金型を15mm/secの速度で開
き、上・下金型間隙が10mmとなった位置で金型の動きを
停止した(第1図(C))。溶融樹脂供給完了と同時に
型締めを開始し、成形時にかかる圧力を100kg/cm2とし
て成形を行った(第1図(D))。第1表に示す如く、
機械的強度のきわめて高い成形品が得られた。
 As a porous fibrous sheet, glass long fibers are bundled.
Sheets with overlapping rovings with no orientation
Vetrotex International (Vetrotex
 International) Unifilo sheet U
605-450). Two layers of this fibrous sheet
Diameter at the position of the molten resin supply port of the mold of the fibrous sheet on the side
A 10mm hole was created and placed on the lower mold after preheating to 60 ° C
(FIG. 1 (A)). Next, the upper and lower molds are closed, and the holes are
It is brought into contact with the molten resin supply port of the mold (FIG. 1 (B)),
Thermoplastic resin melted between layers of fibrous sheet through holes
(Sumitomo Chemical Industries, Ltd., Sumitomo Noblen AX568: Polyp
Propylene resin, melt flow index 65g / 10min)
The mold is opened at the speed of 15 mm / sec.
And move the mold at the position where the upper and lower mold gap is 10mm.
It stopped (FIG. 1 (C)). Simultaneously with the completion of molten resin supply
Start clamping and reduce the pressure applied during molding to 100 kg / cmTwoage
Molding (FIG. 1 (D)). As shown in Table 1,
A molded article with extremely high mechanical strength was obtained.

(実施例2〜3) 多孔性繊維質シートとして、第1表に示すように、同
種または異種のシートを二枚積層させた積層シートを上
側層および下側層それぞれに使用した以外は、実施例1
と同様にして箱型成形品を得た。機械的強度および表面
外観の優れた成形品が得られた。
(Examples 2 to 3) As shown in Table 1, as a porous fibrous sheet, a laminated sheet obtained by laminating two sheets of the same or different kinds was used for the upper layer and the lower layer, respectively. Example 1
A box-shaped molded product was obtained in the same manner as described above. A molded article excellent in mechanical strength and surface appearance was obtained.

(比較例1〜2) 熱可塑性樹脂として、住友ノーブレンAX568およびガ
ラス繊維充填ポリプロピレンペレット、住友ノーブレン
GHH43(住友化学工業(株)製、ガラス繊維含有量30wt
%)を使用し、多孔性繊維質シートは使用しなかった以
外は、実施例1と同一条件で成形し、成形品物性、外
観、変形性等を実施例で得られた成形品と比較評価し
た。
(Comparative Examples 1-2) As thermoplastic resins, Sumitomo Noblen AX568 and glass fiber-filled polypropylene pellets, Sumitomo Noblen
GHH43 (Sumitomo Chemical Co., Ltd., glass fiber content 30wt
%) And no porous fibrous sheet was used, except that the molded article was molded under the same conditions as in Example 1 and the physical properties, appearance, deformability, etc. of the molded article were compared with the molded article obtained in the Example. did.

<発明の効果> 上述の如く、本発明による繊維強化成形技術を用いる
と成形と同時に強化できるため、従来法に比較しきわめ
て低コストで長繊維強化成形品を容易に得ることがで
き、また製品の要求性能に応じて各種の繊維の組合せが
可能で自動車部品、家電部品、建築用材料等の広範囲な
用途分野の繊維強化製品を提供することが可能となっ
た。
<Effect of the Invention> As described above, since the fiber-reinforced molding technique according to the present invention can be reinforced simultaneously with molding, a long-fiber-reinforced molded article can be easily obtained at a very low cost as compared with the conventional method, and Various types of fibers can be combined according to the required performance, and it has become possible to provide fiber-reinforced products for a wide range of application fields such as automotive parts, home electric parts, and building materials.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の成形方法を示す装置の縦の断面図で
ある。 1……上金型、2……下金型 3……多孔性繊維質シート 4……多孔性繊維質シート 5……溶融樹脂、6……溶融樹脂供給口 7……溶融樹脂通路 第2図は、本発明の実施例の方法でつくった成形品の斜
視図である。 第3図は、本発明の実施例にて使用した衝撃試験装置の
縦の断面図である。 11……荷重、12……撃芯 13……撃芯先端R1/2インチ 14……テストピース 15……テストピース支持具
FIG. 1 is a vertical sectional view of an apparatus showing a molding method of the present invention. Reference Signs List 1 upper mold 2 lower mold 3 porous fibrous sheet 4 porous fibrous sheet 5 molten resin 6, molten resin supply port 7 molten resin passage 2 FIG. 1 is a perspective view of a molded article produced by the method of the embodiment of the present invention. FIG. 3 is a vertical sectional view of the impact test apparatus used in the embodiment of the present invention. 11… Load, 12… Bank 13… Bank end R1 / 2 inch 14… Test piece 15… Test piece support

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松原 重義 大阪府高槻市塚原2丁目10番1号 住友 化学工業株式会社内 (56)参考文献 特開 平1−178417(JP,A) 特開 昭62−275724(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Shigeyoshi Matsubara 2-10-1 Tsukahara, Takatsuki-shi, Osaka Sumitomo Chemical Co., Ltd. (56) References JP-A-1-178417 (JP, A) JP-A Sho 62-275724 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】上または下金型内に溶融樹脂通路を有する
上・下金型間に複数の多孔性繊維質シートを重ねて載置
し、上・下金型を閉じ、溶融樹脂供給口側の多孔性繊維
質シートに設けられた穴部の周辺を溶融樹脂供給口の周
辺に接触させた後、溶融樹脂を該穴部を通して多孔性繊
維質シート層間に供給する際に、溶融樹脂の供給開始と
共に金型を開き、溶融樹脂の供給完了前または供給完了
と同時に上・下金型を閉じ、加圧して成形することを特
徴とする繊維強化熱可塑性成形品の製造方法。
A plurality of porous fibrous sheets are stacked and placed between upper and lower molds having a molten resin passageway in an upper or lower mold, and the upper and lower molds are closed, and a molten resin supply port is provided. After contacting the periphery of the hole provided in the porous fiber sheet on the side with the periphery of the molten resin supply port, when supplying the molten resin between the porous fiber sheet layers through the hole, the molten resin A method for manufacturing a fiber-reinforced thermoplastic molded product, comprising opening a mold at the start of supply, closing the upper and lower molds before or simultaneously with the completion of supply of the molten resin, and pressing and molding.
JP1082674A 1989-02-10 1989-03-31 Method for producing fiber-reinforced thermoplastic resin molded article Expired - Fee Related JP2697107B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1082674A JP2697107B2 (en) 1989-03-31 1989-03-31 Method for producing fiber-reinforced thermoplastic resin molded article
CA002009530A CA2009530A1 (en) 1989-02-10 1990-02-07 Method for producing molded article of fiber-reinforced thermoplastic resin
EP90102573A EP0382238B1 (en) 1989-02-10 1990-02-09 Method for producing molded article of fiber-reinforced thermoplastic resin
DE69020374T DE69020374T2 (en) 1989-02-10 1990-02-09 Process for making molded articles from fiber reinforced thermoplastic.
KR1019900001603A KR0159510B1 (en) 1989-02-10 1990-02-09 Method of preparing thermoplastic resin product reinforced with fibers
ES90102573T ES2076236T3 (en) 1989-02-10 1990-02-09 METHOD TO PRODUCE A MOLDED ARTICLE OF THERMOPLASTIC RESIN REINFORCED WITH FIBERS.
US08/453,517 US5672309A (en) 1989-02-10 1995-05-30 Method for producing molded article of fiber reinforced thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1082674A JP2697107B2 (en) 1989-03-31 1989-03-31 Method for producing fiber-reinforced thermoplastic resin molded article

Publications (2)

Publication Number Publication Date
JPH02261610A JPH02261610A (en) 1990-10-24
JP2697107B2 true JP2697107B2 (en) 1998-01-14

Family

ID=13780968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1082674A Expired - Fee Related JP2697107B2 (en) 1989-02-10 1989-03-31 Method for producing fiber-reinforced thermoplastic resin molded article

Country Status (1)

Country Link
JP (1) JP2697107B2 (en)

Also Published As

Publication number Publication date
JPH02261610A (en) 1990-10-24

Similar Documents

Publication Publication Date Title
US5672309A (en) Method for producing molded article of fiber reinforced thermoplastic resin
US5424020A (en) Method for producing molded article of fiber-reinforced thermoplastic resin
JP2751768B2 (en) Fiber-reinforced thermoplastic resin molded article and molding method thereof
JPH0440373B2 (en)
JP7023963B2 (en) Combined primary and carbon fiber components in the production of reinforced polymer articles
US8070471B2 (en) Gravity injection of molding material for compression molding and related methods
CN109808204A (en) Thermoplasticity is continuous-manufacturing method of discontinuous fiber composite plate
US10596778B2 (en) Fiber-reinforced composite material
EP0423676A2 (en) Method for producing molded article of fiber-reinforced thermoplastic resin
KR20150110699A (en) Manufacturing method for fibre-reinforced resin substrate or resin molded article, and plasticizing exhauster used in manufacturing method
JPH0376614A (en) Manufacture of molded object of fiber reinforced thermoplastic resin
JP2697107B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JP2697142B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JPS62257839A (en) Fiber-reinforced plastic composite thin-board and molding method thereof
JP2697077B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JP2917372B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JPH08150629A (en) Molding of thermoplastic resin composite board and molding device
JP2822465B2 (en) Method for producing fiber reinforced thermoplastic resin product
JP2748604B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JPH0577273A (en) Fiber-reinforced thermoplastic resin molded form and molding method thereof
JPH04259515A (en) Structure
JP2579568B2 (en) Method for producing glass fiber reinforced sheet
JP3006609B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JP3032582B2 (en) Method for improving appearance of fiber-reinforced thermoplastic resin molded product
CN219563853U (en) Composite material plate forming die

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees