JPH0376614A - Manufacture of molded object of fiber reinforced thermoplastic resin - Google Patents
Manufacture of molded object of fiber reinforced thermoplastic resinInfo
- Publication number
- JPH0376614A JPH0376614A JP1215434A JP21543489A JPH0376614A JP H0376614 A JPH0376614 A JP H0376614A JP 1215434 A JP1215434 A JP 1215434A JP 21543489 A JP21543489 A JP 21543489A JP H0376614 A JPH0376614 A JP H0376614A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- thermoplastic resin
- mold
- resin
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 76
- 229920005992 thermoplastic resin Polymers 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000012779 reinforcing material Substances 0.000 claims abstract description 4
- 239000004014 plasticizer Substances 0.000 claims 1
- 229920005989 resin Polymers 0.000 abstract description 38
- 239000011347 resin Substances 0.000 abstract description 38
- 238000000034 method Methods 0.000 abstract description 20
- 239000003365 glass fiber Substances 0.000 abstract description 12
- 239000002657 fibrous material Substances 0.000 abstract description 10
- 239000012784 inorganic fiber Substances 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 230000002787 reinforcement Effects 0.000 abstract description 4
- 229920000049 Carbon (fiber) Polymers 0.000 abstract description 2
- 229920006231 aramid fiber Polymers 0.000 abstract description 2
- 239000004917 carbon fiber Substances 0.000 abstract description 2
- 229920000728 polyester Polymers 0.000 abstract description 2
- 239000004952 Polyamide Substances 0.000 abstract 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract 1
- 229920002647 polyamide Polymers 0.000 abstract 1
- -1 battery trays Substances 0.000 description 11
- 238000000465 moulding Methods 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 9
- 239000004743 Polypropylene Substances 0.000 description 7
- 238000001746 injection moulding Methods 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- 239000008188 pellet Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/90—Fillers or reinforcements, e.g. fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/40—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
- B29B7/42—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/60—Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
- B29B7/603—Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/74—Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
- B29B7/7471—Mixers in which the mixing takes place at the inlet of a mould, e.g. mixing chambers situated in the mould opening
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は自動車外板パネル、自動車用構造材、バッテリ
ートレイ等の自動車部品、土木建築用資材等の工業材料
に供する繊維強化熱可塑性樹脂成形品の製造方法に関す
る。詳しくは繊維配向等による変形が少なく、表面外観
の良好な、かつ機械的強度の優れた繊維強化熱可塑性樹
脂成形品の製造方法に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to fiber-reinforced thermoplastic resin molding for use in automobile parts such as automobile exterior panels, automobile structural materials, battery trays, and industrial materials such as civil engineering and construction materials. Concerning the manufacturing method of the product. Specifically, the present invention relates to a method for producing a fiber-reinforced thermoplastic resin molded product that is less deformed due to fiber orientation, has a good surface appearance, and has excellent mechanical strength.
〈従来の技術〉
従来、繊維強化熱可塑性樹脂成形品の製造方法としては
、短繊維強化樹脂ペレットを射出成形等の一般的成形法
を用いて成形するのが代表的な方法である。また樹脂ペ
レット製造時のペレット切断長さとほぼ同じ長さの中繊
維長(繊維長10ma以下)の繊維で強化された熱可塑
性樹脂ペレットを用い、射出成形等で繊維強化成形品を
製造する方法もある。<Prior Art> Conventionally, a typical method for manufacturing fiber-reinforced thermoplastic resin molded articles is to mold short fiber-reinforced resin pellets using a general molding method such as injection molding. There is also a method of manufacturing fiber-reinforced molded products by injection molding, etc. using thermoplastic resin pellets reinforced with fibers of medium fiber length (fiber length 10 ma or less), which is approximately the same length as the pellet cutting length during resin pellet production. be.
〈従来技術の!!朋〉
従来の技術はそれぞれ固有の技術的問題点を有している
。繊維強化成形品の製造法として最も一般的な短繊維強
化樹脂ペレット法は、繊維強化の最大の目的である機械
的強度、特に耐衝撃強度についての向上効果が小さいと
いう欠点を有している、この理由は、繊維と樹脂の混合
、分散過程、すなわち造粒時、及び射出成形時の2回の
可塑化、混練工程で繊維は著しく短く切断されるためで
ある。さらに射出成形過程で、繊維は溶融樹脂とともに
金型内の狭いキャビティクリアランス内を著しい剪断を
うけ流動するために、さらに繊維の切断が発生する0次
に、生繊維強化ペレットの場合、ペレット中の繊維は長
くても射出成形時の可塑化工程及び金型内の流動過程で
、著しい剪断を受は繊維は短く切断され、成形品中の繊
維長は短繊維強化樹脂と同程度となり耐衝撃強度の向上
効果は小さい。<Conventional technology! ! > Each of the conventional technologies has its own technical problems. The short fiber-reinforced resin pellet method, which is the most common method for manufacturing fiber-reinforced molded products, has the disadvantage that the improvement effect on mechanical strength, especially impact strength, which is the most important purpose of fiber reinforcement, is small. The reason for this is that the fibers are cut into extremely short lengths during the mixing and dispersion process of the fibers and resin, that is, during the granulation process and the plasticization and kneading process twice during injection molding. Furthermore, during the injection molding process, the fibers flow together with the molten resin within the narrow cavity clearance in the mold, undergoing significant shearing, resulting in further fiber breakage. Even if the fibers are long, they are subjected to significant shearing during the plasticization process during injection molding and the flow process in the mold, and the fibers are cut into short lengths, resulting in the fiber length in the molded product being about the same as that of short fiber-reinforced resin, which reduces impact resistance. The improvement effect is small.
〈課題を解決するための手段〉
この様に従来の技術は繊維を充填したにもかかわらず、
目的とした機械的物性の向上が不十分で、工業的技術と
しては十分なものとは言えない0本願発明者らはこれら
の問題点を克服する成形加工技術を開発すべく鋭意研究
を進めてきたが、ついに以下に述べる工業的に優れた繊
維強化熱可塑性樹脂成形品の新しい製造方法を発明する
に2至った。<Means for solving the problem> In this way, although the conventional technology is filled with fibers,
The desired mechanical properties have not been improved sufficiently, and it cannot be said to be a sufficient industrial technology. However, we finally came to the invention of a new manufacturing method for industrially excellent fiber-reinforced thermoplastic resin molded articles, which will be described below.
すなわち本発明は、平均繊維長が1 mm以上で、かつ
50価以下の繊維を強化材として分散させた溶融熱可塑
性樹脂を未閉鎖の金型内に供給し、金型を閉し、加圧冷
却して成形品を得ることを特徴とする繊維強化成形品の
製造方法に関する。That is, in the present invention, a molten thermoplastic resin in which fibers with an average fiber length of 1 mm or more and a valence of 50 or less are dispersed as a reinforcing material is supplied into an unclosed mold, the mold is closed, and pressure is applied. The present invention relates to a method for manufacturing a fiber-reinforced molded product, which is characterized in that the molded product is obtained by cooling.
さらに詳しく本願発明について説明すると、本願発明に
おいては長さ1〜50mmの繊維が分散した溶融樹脂を
開いた状態の金型内に供給し、型締圧力により賦形を行
う。このため可塑化装置からの供給圧力は射出成形の場
合に500〜1600kg / ctであるのと比較し
、100〜300kg/c+aと著しく低く、又賦形に
要する型締圧力も30〜150 kg/ciと極端に小
さく、溶融したマトリックス樹脂中に分散した繊維の切
断は射出成形と比べて著しく少ない。To explain the present invention in more detail, in the present invention, a molten resin in which fibers having a length of 1 to 50 mm are dispersed is supplied into an open mold, and shaped by mold clamping pressure. For this reason, the supply pressure from the plasticizing device is significantly lower at 100-300 kg/c+a compared to 500-1600 kg/ct for injection molding, and the mold clamping pressure required for shaping is also 30-150 kg/ct. ci is extremely small, and the amount of cutting of fibers dispersed in the molten matrix resin is significantly less than in injection molding.
また、この成形方法により得られる成形品は耐衝撃強度
が大巾に向上し、成形品のすべての部分が長い繊維で強
化された製品を得ることができる。In addition, the molded product obtained by this molding method has greatly improved impact resistance strength, and it is possible to obtain a product in which all parts of the molded product are reinforced with long fibers.
次に本願発明においては可塑化工程における繊維の切断
を防ぐために、できるだけ剪断が小さいことが必要であ
り、例えば第1図に示すような可塑化装置が好ましく使
用できる。(1)は熱可塑性樹脂原料を供給するための
供給口、(2)は繊維材料を供給するための供給口、(
3)は樹脂中に含まれるガス分を除去するためのベント
ロを示す。Next, in the present invention, in order to prevent the fibers from being cut during the plasticizing step, it is necessary that the shear is as small as possible, and for example, a plasticizing device as shown in FIG. 1 can be preferably used. (1) is a supply port for supplying thermoplastic resin raw material, (2) is a supply port for supplying fiber material, (
3) shows a vent hole for removing gas contained in the resin.
繊維強化樹脂の可塑化工程における繊維の切断は、主に
可塑化装置の前半、すなわち樹脂ペレットの供給部及び
圧縮部で発生するため、本発明で使用する可塑化装置に
おいては繊維材料供給口を圧縮部以降、すなわち熱可塑
性樹脂が十分溶融した後の部分にもうける。さらに供給
された繊維と共に空気が熔融樹脂中に巻き込まれるため
、繊維供給口とシリンダーノズルの間にベントロをもう
けることにより効果的に脱気することができる。Cutting of fibers in the plasticizing process of fiber-reinforced resin mainly occurs in the first half of the plasticizing device, that is, in the resin pellet supply section and the compression section. It is applied after the compression section, that is, after the thermoplastic resin has sufficiently melted. Furthermore, since air is drawn into the molten resin together with the supplied fibers, air can be effectively degassed by providing a vent between the fiber supply port and the cylinder nozzle.
又、供給された繊維は溶融樹脂中に均一に分散すること
が必要であるため、繊維を樹脂中へ添加後できるだけ長
い混練過程をもうけることが必要で、本願発明において
はスクリュー長さ/スクリュー径の比を少なくとも15
以上とすることが必要である8本装置を用いることによ
り繊維切断の極めて少なく長い繊維が均一に分散した樹
脂を得ることが可能となり、さらに前述の金型を開いて
成形する方法を用いることで型内での繊維切断もきわめ
て少なくなり、得られる成形品は長い繊維で均一に強化
されたものとなる。In addition, since the supplied fibers need to be uniformly dispersed in the molten resin, it is necessary to have a kneading process as long as possible after adding the fibers into the resin. ratio of at least 15
By using this device, it is possible to obtain a resin in which long fibers are uniformly dispersed with very little fiber breakage, and by using the method of molding by opening the mold described above. Fiber breakage within the mold is also extremely reduced, and the resulting molded product is uniformly reinforced with long fibers.
本発明に用いられる強化用繊維材料としては、ガラス繊
維、カーボン繊維、ステンレス繊維等の無機繊維、又ボ
リアごド繊維、ポリエステル繊維、アラミド繊維等の有
機繊維及び無機繊維、有機繊維の混合物を使用すること
ができる。ガラス繊維の場合、アもフシラン、ビニルシ
ラン等の一般的な有機珪素化合物で表面処理をしたもの
を使用してもよい、又繊維の径は1μm〜50μmの一
般的に得られる繊維を使用できる。The reinforcing fiber materials used in the present invention include inorganic fibers such as glass fibers, carbon fibers, and stainless steel fibers, organic fibers such as boria fibers, polyester fibers, and aramid fibers, and mixtures of inorganic fibers and organic fibers. can do. In the case of glass fibers, those whose surface has been treated with general organic silicon compounds such as amofusilane and vinylsilane may be used, and commonly available fibers having a fiber diameter of 1 μm to 50 μm can be used.
本願発明で、可塑化装置のシリンダー中央部の繊維供給
口へ供給する繊維としては、繊維長が1mm〜50mm
の単繊維または数十水から数百本の単繊維を集束剤で集
束した集束繊維を使用することができる。繊維長が1m
mより小さい場合は成形品の機械的強度、特に衝撃強度
向上効果が小さく、又、50mmより大きい場合は繊維
材料供給口において繊維がブリッジ現象を起こすため、
繊維の供給がスムーズに行かない。In the present invention, the fibers supplied to the fiber supply port in the center of the cylinder of the plasticizing device have a fiber length of 1 mm to 50 mm.
Single fibers or bundled fibers obtained by binding tens to hundreds of single fibers with a binding agent can be used. Fiber length is 1m
If it is smaller than m, the effect of improving the mechanical strength, especially impact strength, of the molded product will be small, and if it is larger than 50 mm, the fibers will cause a bridging phenomenon at the fiber material supply port.
Fiber supply is not going smoothly.
本願発明に用いられる熱可塑性樹脂はポリエチレン、ポ
リプロピレン、ポリスチレン、ポリ塩化ビニル、ABS
樹脂、ボリア5ド、ポリカーボネート、ポリエチレンテ
レフタレート等の一般的熱可塑性樹脂、これらの変性物
、及びこれらの混合物、ポリマーアロイ等が用いられる
。さらにこれらの熱可塑性樹脂には熱安定剤、紫外線防
止剤、などの添加剤、また着色剤、無機充填剤などを含
んでいてもよい。Thermoplastic resins used in the present invention include polyethylene, polypropylene, polystyrene, polyvinyl chloride, and ABS.
Common thermoplastic resins such as resin, boria 5, polycarbonate, polyethylene terephthalate, modified products thereof, mixtures thereof, polymer alloys, etc. are used. Furthermore, these thermoplastic resins may contain additives such as heat stabilizers and ultraviolet inhibitors, as well as colorants, inorganic fillers, and the like.
〈実施例〉
以下、本発明の実施例を示すが、本発明はこれに限定さ
れるものではない、なお実施例中の成形品の試験法は以
下のとおりである。<Examples> Examples of the present invention will be shown below, but the present invention is not limited thereto. The test methods for the molded products in the examples are as follows.
・曲げ試験
JIS K675Bに準拠し、三点支持法で行なった
。テストピースは第4図に示す箱型成形品の底面部分か
ら切り出した、形状が2mm厚X10mm巾X90mm
長のものを用い、23°Cの雰囲気で試験を実施した。- Bending test The test was conducted using the three-point support method in accordance with JIS K675B. The test piece was cut out from the bottom of the box-shaped molded product shown in Figure 4, and had a shape of 2 mm thick x 10 mm wide x 90 mm.
The test was conducted in an atmosphere of 23°C using a long one.
・衝B試験
JIS K6758に準拠し、アイゾツト・ノツチ法
のテストを実施した。テストピースは第4図に示す箱型
成形品の底面部分から切り出した、2m厚Xl0M巾×
90ffIIB長のものを用い、23°Cの雰囲気で試
験を実施した。- Impact B test In accordance with JIS K6758, the Izot-Notch method was tested. The test piece was cut out from the bottom part of the box-shaped molded product shown in Figure 4, and was 2m thick x 10m wide x
The test was conducted in an atmosphere of 23°C using a 90ffIIB length.
・平均繊維長
得られた成形品を鉄板上に置き、バーナーで約1時間加
熱後500℃の電気炉内に2hr放置し、熱可塑性樹脂
等の可燃成分を取り除く。冷却後任意の部分から抜き出
したサンプルのうち200本につき長さを測定。全平均
繊維長を計算し、平均繊維長とした。- Place the molded product obtained with the average fiber length on an iron plate, heat it with a burner for about 1 hour, and then leave it in an electric furnace at 500°C for 2 hours to remove combustible components such as thermoplastic resin. After cooling, the length was measured for 200 samples extracted from any part. The total average fiber length was calculated and taken as the average fiber length.
・繊維充填量
成形品から2’OmX20mの大きさのサンプルを切り
取り加熱燃焼前の重量を測定した後、平均繊維長の測定
の場合と同じ方法で可燃成分を除き繊維のみを取り出す
。加熱燃焼後の重量を測定し、次式を用いて繊維充填量
をパーセントで算出する。・Fiber filling amount Cut a sample of size 2'Om x 20m from the molded product and measure its weight before heating and combustion, then remove combustible components and take out only the fibers using the same method as for measuring the average fiber length. The weight after heating and combustion is measured, and the fiber filling amount is calculated in percent using the following formula.
実施例1
100トンの型締力を有する竪型プレス内に、溶融樹脂
の供給口を内部にもつ金型を取り付け、この金型のマニ
ホールド部に第2図に示すアキュームレーターを接続し
、さらに第1図に示す可塑化装置をアキュームレーター
に接続した。ここで用いた可塑化装置は直径50mmの
フルフラクト・タイプのスクリューをもち、スクリ゛ニ
ー長さ/スクリュー直径の比は29、シリンダー後方に
マトリックス樹脂供給口(1)、中央部には繊維材料供
給口(2)、又、繊維材料供給口(2)とノズルの中間
部に脱気口(3)を有する構造から戒っている。さらに
脱気口(3)へは真空ポンプを接続し強制脱気を行なっ
た。第3図に全体の接続図を示した。金型は上、下2つ
の部分から成り、下型中央部に直径3IIIIlの溶融
樹脂の型内供給口をもつ、製品肉厚2m+a、製品寸法
200鴫長×200mm巾×40m高の箱型形状を有す
る型を用いた。Example 1 A mold having an internal supply port for molten resin was installed in a vertical press having a mold clamping force of 100 tons, an accumulator shown in Fig. 2 was connected to the manifold of this mold, and The plasticizing device shown in FIG. 1 was connected to an accumulator. The plasticizing device used here has a full-fract type screw with a diameter of 50 mm, the ratio of screenie length/screw diameter is 29, a matrix resin supply port (1) at the rear of the cylinder, and a fiber material supply port in the center. The structure is such that it has a deaeration port (3) located between the fiber material supply port (2) and the nozzle. Furthermore, a vacuum pump was connected to the deaeration port (3) to perform forced deaeration. Figure 3 shows the overall connection diagram. The mold consists of two parts, an upper and a lower part.The mold has a box-shaped shape with a diameter of 3IIIl and an in-mold supply port for molten resin in the center of the lower mold, a product wall thickness of 2m + a, and product dimensions of 200mm length x 200mm width x 40m height. A mold with
(第4図)
熱可塑性樹脂としては住友化学工業■製ポリプロピレン
樹脂、住友ノープレンAX568(メルトフローインデ
ックス 65g/10分)を用い、これをマトリックス
樹脂供給口(1)より投入し、又、繊維材料として日本
硝子繊維@製ガラスファイバー・ロービング RER2
31−SMI 4をロービングカッターを用いて13m
m長さに切断し、繊維材料供給口(2)より、ポリプロ
ピレン樹脂に対し15重量パーセントの充填量となる量
を定量的に投入した。得られた成形品についてアキュー
ムレーター出口部及び成形品端部における繊維の平均繊
維長及び繊維充填量を測定した。第1表に示す通り、繊
維切断が少なく繊維が均一に分布した成形品を得た。又
、得られた成形品の曲げ試験、衝撃試験を実施し、繊維
強化による機械的物性の向上を確認した。(Fig. 4) As the thermoplastic resin, Sumitomo Chemical Co., Ltd.'s polypropylene resin, Sumitomo Noprene AX568 (melt flow index 65 g/10 minutes) was used, and this was introduced from the matrix resin supply port (1), and the fiber material Glass fiber roving made by Nippon Glass Fiber@ RER2
31-SMI 4 to 13m using a roving cutter
The fiber material was cut into lengths of m, and an amount to give a filling amount of 15% by weight to the polypropylene resin was quantitatively added through the fiber material supply port (2). The average fiber length and fiber filling amount of the obtained molded product were measured at the accumulator outlet and the end of the molded product. As shown in Table 1, a molded article with less fiber breakage and uniform fiber distribution was obtained. In addition, bending tests and impact tests were conducted on the obtained molded products, and it was confirmed that the mechanical properties were improved by fiber reinforcement.
実施例2
マトリックス樹脂としてポリプロピレン樹脂(住友ノー
プレン AX56B)にマレイン酸変性ポリプロピレン
樹脂を10重景%混合した・ものを使用、又、ガラス繊
維として表面にビニルシラン処理をほどこしたものを使
用した以外は実施例1と同じ条件で成形テストを実施し
た。第1表に示す通り得られた成形品の機械的性質は優
れたものであった。Example 2 Except that a mixture of polypropylene resin (Sumitomo Noprene AX56B) and maleic acid-modified polypropylene resin at 10% was used as the matrix resin, and a glass fiber whose surface had been treated with vinyl silane was used as the matrix resin. A molding test was conducted under the same conditions as in Example 1. As shown in Table 1, the mechanical properties of the molded article obtained were excellent.
実施例3
ガラス繊維の供給時の切断長さを25鴫とした以外は実
施例2に同じ条件で成形テストを実施した。第1表に示
す通り得られた成形品の機械的性質は優れたものであっ
た。Example 3 A molding test was carried out under the same conditions as in Example 2 except that the cutting length when supplying the glass fiber was 25 mm. As shown in Table 1, the mechanical properties of the molded article obtained were excellent.
比較例1
マトリックス樹脂として、住友化学工業@製ガラス繊維
30重景%充填ポリプロピレン樹脂(住友ノープレン
GHH43ニガラス繊維の平均繊維長0. 7mm)と
住友化学工業■製ガラス繊維未充填ポリプロピレン樹脂
(住友ノーブレンYIO1)を1:1でブレンドしたも
のを用い、繊維材料供給口からのガラス繊維の供給をし
ない以外は実施例1と同じ条件で成形テストを実施した
。第1表に示す通り得られた成形品の衝撃強度は不十分
なものであった。Comparative Example 1 As a matrix resin, a polypropylene resin filled with 30% glass fiber manufactured by Sumitomo Chemical @ (Sumitomo Noprene) was used.
Average fiber length of GHH43 glass fiber is 0. 7 mm) and glass fiber unfilled polypropylene resin (Sumitomo Noblen YIO1) manufactured by Sumitomo Chemical Co., Ltd. in a 1:1 ratio, the conditions were the same as in Example 1 except that glass fiber was not supplied from the fiber material supply port. A molding test was conducted. As shown in Table 1, the impact strength of the molded product obtained was insufficient.
比較例2
ガラス繊維をマトリックス樹脂供給口(1)より投入し
た以外は、実施例1と同し条件で成形テストを行なった
。第1表に示す通り得られた成形品の衝撃強度は不十分
なものであった。Comparative Example 2 A molding test was conducted under the same conditions as in Example 1, except that glass fiber was introduced through the matrix resin supply port (1). As shown in Table 1, the impact strength of the molded product obtained was insufficient.
比較例3
直径50mmのフルフラクト・タイプのスクリュウをも
ち、スクリュウ長さ/スクリュウ直径の比が10の可塑
化装置を用いた以外は実施例1と同じ条件で成形テスト
を行なった。成形品には気泡が含まれ、ガラス繊維の解
繊も不十分で偏在したものであった。Comparative Example 3 A molding test was conducted under the same conditions as in Example 1, except that a plasticizing device having a full-fract type screw with a diameter of 50 mm and a screw length/screw diameter ratio of 10 was used. The molded product contained air bubbles, and the glass fibers were insufficiently defibrated and unevenly distributed.
〈発明の効果〉
上述の如く、本発明による繊維強化成形技術を用いると
成形と同時に長い繊維による強化が可能で、かつ製品の
端部まで均一に強化された製品を低コストで得ることが
でき、さらに外観等も従来法の長繊維強化法と比較し格
段に改善されるため自動車部品、家電部品、建築用材料
等の広範囲な用途分野への繊維強化製品を提供すること
が可能となった。<Effects of the Invention> As described above, by using the fiber-reinforced molding technology of the present invention, it is possible to reinforce with long fibers at the same time as molding, and it is possible to obtain a product that is uniformly reinforced to the edges of the product at a low cost. In addition, the appearance is significantly improved compared to the conventional long fiber reinforcement method, making it possible to provide fiber reinforced products for a wide range of applications such as automobile parts, home appliance parts, and building materials. .
第1図は本発明におけるマトリックス樹脂と繊維の混線
用可塑化装置の縦の断面図を示す。
(1)マトリックス樹脂供給口
(2)繊維材料供給口
(3)脱気口
(4)スクリュー
(5)シリンダー
(6)ノズル
第2図は本発明の実施例で用いたアキュームレーターの
縦の断面図である。
(7)油圧シリンダー
(8)溶融樹脂シリンダー
(9)油圧用ピストン
(10)溶融樹脂用ピストン
(11)シリンダー固定具
(12)オイル出入口
(13)オイル出入口
(14)溶融樹脂供給口
(15)溶融樹脂シリンダーノズル
第3図は本発明の実施例に用いられた可塑化装置−アキ
ュームレ−ター−金型の縦の断面図である。
(16)可塑化混練装置
(17)アキュームレーター
(18)上金型
(19)下金型
(20)マニホールド部
第4図は本発明の実施例の方法でつくった成形品の斜視
図である。
第 2FIG. 1 shows a longitudinal sectional view of a plasticizing device for mixing matrix resin and fiber according to the present invention. (1) Matrix resin supply port (2) Fiber material supply port (3) Deaeration port (4) Screw (5) Cylinder (6) Nozzle Figure 2 shows a vertical cross section of the accumulator used in the embodiment of the present invention. It is a diagram. (7) Hydraulic cylinder (8) Molten resin cylinder (9) Hydraulic piston (10) Molten resin piston (11) Cylinder fixture (12) Oil inlet/outlet (13) Oil inlet/outlet (14) Molten resin supply port (15) Molten Resin Cylinder Nozzle FIG. 3 is a vertical sectional view of the plasticizing device-accumulator-mold used in the embodiment of the present invention. (16) Plasticizing and kneading device (17) Accumulator (18) Upper mold (19) Lower mold (20) Manifold part FIG. 4 is a perspective view of a molded product made by the method of the embodiment of the present invention. . 2nd
Claims (2)
繊維を強化材として分散させた溶融熱可塑性樹脂を未閉
鎖の金型内に供給し、金型を閉じ加圧冷却して成形品を
得ることを特徴とする、変形が少なく、機械的物性の優
れた繊維強化熱可塑性樹脂成形品の製造方法。(1) A molten thermoplastic resin in which fibers with an average fiber length of 1 mm or more and 50 mm or less are dispersed as a reinforcing material is supplied into an unclosed mold, and the mold is closed and cooled under pressure to form a molded product. A method for producing a fiber-reinforced thermoplastic resin molded article with little deformation and excellent mechanical properties.
可塑化装置のシリンダー中央部に繊維供給口、及び該繊
維供給口よりノズル側に脱気口をもうけた可塑化装置に
より溶融熱可塑性樹脂を供給することを特徴とする特許
請求の範囲第1項記載の繊維強化熱可塑性樹脂成形品の
製造方法。(2) Molten thermoplastic resin is produced by a plasticizer with a screw length/screw diameter ratio of 15 or more, which has a fiber supply port in the center of the cylinder and a deaeration port on the nozzle side of the fiber supply port. A method for producing a fiber-reinforced thermoplastic resin molded article according to claim 1, which comprises supplying a fiber-reinforced thermoplastic resin molded article.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1215434A JP2850392B2 (en) | 1989-08-21 | 1989-08-21 | Method for producing fiber-reinforced thermoplastic resin molded article |
PCT/JP1990/001060 WO1991002639A1 (en) | 1989-08-21 | 1990-08-21 | Method of manufacturing fiber-reinforced thermoplastic resin molded product |
EP90912373A EP0439625B1 (en) | 1989-08-21 | 1990-08-21 | Method of manufacturing fiber-reinforced thermoplastic resin molded product |
ES90912373T ES2077684T3 (en) | 1989-08-21 | 1990-08-21 | METHOD TO PRODUCE A MOLDED ARTICLE OF THERMOPLASTIC RESIN REINFORCED WITH FIBER. |
US07/684,912 US5275776A (en) | 1989-08-21 | 1990-08-21 | Method for producing molded article of fiber-reinforced thermoplastic resin |
DE69021361T DE69021361T2 (en) | 1989-08-21 | 1990-08-21 | METHOD FOR PRODUCING A FIBER REINFORCED THERMOPLASTIC PLASTIC MOLDED PRODUCT. |
KR1019910700396A KR0181510B1 (en) | 1989-08-21 | 1990-08-21 | Method for producing molded article of fiber-reinforced thermoplastic resin |
CA002039160A CA2039160C (en) | 1989-08-21 | 1990-08-21 | Method for producing molded article of fiber-reinforced thermoplastic resin |
US08/080,119 US5424020A (en) | 1989-08-21 | 1993-06-23 | Method for producing molded article of fiber-reinforced thermoplastic resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1215434A JP2850392B2 (en) | 1989-08-21 | 1989-08-21 | Method for producing fiber-reinforced thermoplastic resin molded article |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0376614A true JPH0376614A (en) | 1991-04-02 |
JP2850392B2 JP2850392B2 (en) | 1999-01-27 |
Family
ID=16672280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1215434A Expired - Lifetime JP2850392B2 (en) | 1989-08-21 | 1989-08-21 | Method for producing fiber-reinforced thermoplastic resin molded article |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2850392B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08103921A (en) * | 1994-10-05 | 1996-04-23 | Nissei Plastics Ind Co | Molding of molded article containing brittle material |
JPH09220730A (en) * | 1996-02-16 | 1997-08-26 | Idemitsu Petrochem Co Ltd | Manufacture of lightweight molding of glass fiber reinforced thermoplastic resin and lightweight molding |
WO1998052736A1 (en) * | 1997-05-22 | 1998-11-26 | Kawasaki Steel Corporation | Screw and apparatus for plasticizing fiber-reinforced thermoplastic resins, and method and product of molding the resins |
JPH10315262A (en) * | 1997-05-21 | 1998-12-02 | Idemitsu Petrochem Co Ltd | Method for molding fiber-reinforced resin and molding |
JPWO2001062468A1 (en) * | 2000-02-24 | 2004-04-08 | 東レ株式会社 | FRP molded article and method for producing the same |
JP2006502888A (en) * | 2002-10-15 | 2006-01-26 | ダウ グローバル テクノロジーズ インコーポレイティド | Article comprising a fiber reinforced thermoplastic polymer composition |
JP2006510505A (en) * | 2002-12-20 | 2006-03-30 | メカニケ・モデルネ・ソチエタ・ペル・アチオニ | Method for producing a composite material such as a mineral and / or vegetable filled thermoplastic resin |
JP2007015382A (en) * | 2005-07-05 | 2007-01-25 | Johns Manville Internatl Inc | Method and system for producing long fibers reinforcing product and product obtained by the same |
JP2008529827A (en) * | 2005-02-09 | 2008-08-07 | マグナ インターナショナル インコーポレイテッド | Method for manufacturing a semi-structural panel |
WO2012117975A1 (en) * | 2011-02-28 | 2012-09-07 | 東レ株式会社 | Injection formed body and fabrication method for same |
JP5095025B1 (en) * | 2012-04-27 | 2012-12-12 | 株式会社名機製作所 | Plasticizing apparatus and plasticizing method |
JP5158732B1 (en) * | 2012-04-24 | 2013-03-06 | 株式会社名機製作所 | Plasticizing apparatus and plasticizing method |
JP2014117811A (en) * | 2012-12-13 | 2014-06-30 | Mitsubishi Heavy Industries Plastic Technology Co Ltd | Screw, plasticization apparatus, injection molding apparatus and plasticization method |
WO2014155409A1 (en) | 2013-03-25 | 2014-10-02 | 三菱重工プラスチックテクノロジー株式会社 | Injection molding method and injection molding device |
WO2014170932A1 (en) | 2013-04-15 | 2014-10-23 | 三菱重工プラスチックテクノロジー株式会社 | Injection molding apparatus and injection molding method |
JP2015016639A (en) * | 2013-07-11 | 2015-01-29 | アイシン精機株式会社 | Injection molding apparatus and method of producing glass fiber-reinforced resin |
JP2017132239A (en) * | 2016-01-26 | 2017-08-03 | エフテックス有限会社 | Injection molding method of carbon fiber reinforced and modified polypropylene resin |
JP2019030991A (en) * | 2017-08-07 | 2019-02-28 | セイコーエプソン株式会社 | Manufacturing method of molded article, molded article, liquid ejection head and liquid ejection apparatus |
WO2019189300A1 (en) | 2018-03-28 | 2019-10-03 | 三井化学株式会社 | Production method for injection molded body comprising densely filled fiber-reinforced resin composition |
JP6741832B1 (en) * | 2019-08-09 | 2020-08-19 | 住友化学株式会社 | Injection-molded article and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS634920A (en) * | 1986-06-26 | 1988-01-09 | Hosokawa Seisakusho:Kk | Molding of fiber reinforced plastic |
-
1989
- 1989-08-21 JP JP1215434A patent/JP2850392B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS634920A (en) * | 1986-06-26 | 1988-01-09 | Hosokawa Seisakusho:Kk | Molding of fiber reinforced plastic |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08103921A (en) * | 1994-10-05 | 1996-04-23 | Nissei Plastics Ind Co | Molding of molded article containing brittle material |
JPH09220730A (en) * | 1996-02-16 | 1997-08-26 | Idemitsu Petrochem Co Ltd | Manufacture of lightweight molding of glass fiber reinforced thermoplastic resin and lightweight molding |
JPH10315262A (en) * | 1997-05-21 | 1998-12-02 | Idemitsu Petrochem Co Ltd | Method for molding fiber-reinforced resin and molding |
WO1998052736A1 (en) * | 1997-05-22 | 1998-11-26 | Kawasaki Steel Corporation | Screw and apparatus for plasticizing fiber-reinforced thermoplastic resins, and method and product of molding the resins |
US6228308B1 (en) | 1997-05-22 | 2001-05-08 | Kawasaki Steel Corporation | Screw and apparatus for plasticizing fiber-reinforced thermoplastic resins, and method and product of molding the resins |
JPWO2001062468A1 (en) * | 2000-02-24 | 2004-04-08 | 東レ株式会社 | FRP molded article and method for producing the same |
JP2006502888A (en) * | 2002-10-15 | 2006-01-26 | ダウ グローバル テクノロジーズ インコーポレイティド | Article comprising a fiber reinforced thermoplastic polymer composition |
JP2006510505A (en) * | 2002-12-20 | 2006-03-30 | メカニケ・モデルネ・ソチエタ・ペル・アチオニ | Method for producing a composite material such as a mineral and / or vegetable filled thermoplastic resin |
JP2008529827A (en) * | 2005-02-09 | 2008-08-07 | マグナ インターナショナル インコーポレイテッド | Method for manufacturing a semi-structural panel |
JP2007015382A (en) * | 2005-07-05 | 2007-01-25 | Johns Manville Internatl Inc | Method and system for producing long fibers reinforcing product and product obtained by the same |
US9296175B2 (en) | 2011-02-28 | 2016-03-29 | Toray Industries, Inc. | Injection molded body and method for producing same |
JPWO2012117975A1 (en) * | 2011-02-28 | 2014-07-07 | 東レ株式会社 | Injection molded body and method for producing the same |
JP5768811B2 (en) * | 2011-02-28 | 2015-08-26 | 東レ株式会社 | Manufacturing method of injection molded body |
WO2012117975A1 (en) * | 2011-02-28 | 2012-09-07 | 東レ株式会社 | Injection formed body and fabrication method for same |
JP5158732B1 (en) * | 2012-04-24 | 2013-03-06 | 株式会社名機製作所 | Plasticizing apparatus and plasticizing method |
JP2013226672A (en) * | 2012-04-24 | 2013-11-07 | Meiki Co Ltd | Plasticizing equipment and plasticizing method |
JP2013230582A (en) * | 2012-04-27 | 2013-11-14 | Meiki Co Ltd | Plasticization device and plasticization method |
JP5095025B1 (en) * | 2012-04-27 | 2012-12-12 | 株式会社名機製作所 | Plasticizing apparatus and plasticizing method |
JP2014117811A (en) * | 2012-12-13 | 2014-06-30 | Mitsubishi Heavy Industries Plastic Technology Co Ltd | Screw, plasticization apparatus, injection molding apparatus and plasticization method |
US9821498B2 (en) | 2013-03-25 | 2017-11-21 | U-Mhi Platech Co., Ltd. | Injection molding method and injection molding device |
WO2014155409A1 (en) | 2013-03-25 | 2014-10-02 | 三菱重工プラスチックテクノロジー株式会社 | Injection molding method and injection molding device |
WO2014170932A1 (en) | 2013-04-15 | 2014-10-23 | 三菱重工プラスチックテクノロジー株式会社 | Injection molding apparatus and injection molding method |
US9669573B2 (en) | 2013-04-15 | 2017-06-06 | Mitsubishi Heavy Industries Plastic Technology Co., Ltd. | Injection molding apparatus and injection molding method |
JP2015016639A (en) * | 2013-07-11 | 2015-01-29 | アイシン精機株式会社 | Injection molding apparatus and method of producing glass fiber-reinforced resin |
JP2017132239A (en) * | 2016-01-26 | 2017-08-03 | エフテックス有限会社 | Injection molding method of carbon fiber reinforced and modified polypropylene resin |
JP2019030991A (en) * | 2017-08-07 | 2019-02-28 | セイコーエプソン株式会社 | Manufacturing method of molded article, molded article, liquid ejection head and liquid ejection apparatus |
WO2019189300A1 (en) | 2018-03-28 | 2019-10-03 | 三井化学株式会社 | Production method for injection molded body comprising densely filled fiber-reinforced resin composition |
JP6741832B1 (en) * | 2019-08-09 | 2020-08-19 | 住友化学株式会社 | Injection-molded article and manufacturing method thereof |
WO2021029263A1 (en) * | 2019-08-09 | 2021-02-18 | 住友化学株式会社 | Injection molded article and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP2850392B2 (en) | 1999-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0376614A (en) | Manufacture of molded object of fiber reinforced thermoplastic resin | |
US5275776A (en) | Method for producing molded article of fiber-reinforced thermoplastic resin | |
CN101935420B (en) | Automobile bottom deflector made of LFT-D (Fiber Reinforce Thermoplastic-Direct) material and manufacture method thereof | |
EP0382238B1 (en) | Method for producing molded article of fiber-reinforced thermoplastic resin | |
DE1629316A1 (en) | Process for the production of foam moldings from olefin polymers | |
EP0423676A2 (en) | Method for producing molded article of fiber-reinforced thermoplastic resin | |
JPS646227B2 (en) | ||
KR20190029351A (en) | Method for manufacturing plastic panel reinforced with glass fibers | |
US4524043A (en) | Process for the manufacture of products from reinforced polyester resins | |
HU216514B (en) | Method for producing of reinforced thermoplastic products | |
US4647418A (en) | Process for the manufacture of products from reinforced polyester | |
US5084494A (en) | Polyester resin and reinforcement composite materials | |
EP0124604B1 (en) | Process for the manufacture of products from reinforced polyester resins | |
JP2748604B2 (en) | Method for producing fiber-reinforced thermoplastic resin molded article | |
US4624814A (en) | Process for the manufacture of products from reinforced polyester resins | |
Anifantis et al. | Elastomer macrocomposites | |
JPH0762246A (en) | Production of filament-reinforced thermoplastic resin composition and its apparatus | |
KR960015619B1 (en) | Method for molding waste resin composition | |
JP2822465B2 (en) | Method for producing fiber reinforced thermoplastic resin product | |
JP3439820B2 (en) | Concrete formwork made of thermoplastic resin | |
KR100533929B1 (en) | Advanced processing technology of Grating in Composite materials | |
JP3429349B2 (en) | Manufacturing method of concrete form made of thermoplastic resin | |
JP2697107B2 (en) | Method for producing fiber-reinforced thermoplastic resin molded article | |
JP2697077B2 (en) | Method for producing fiber-reinforced thermoplastic resin molded article | |
JP2727889B2 (en) | Concrete formwork made of thermoplastic resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071113 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081113 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081113 Year of fee payment: 10 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D05 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081113 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091113 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |