JPH06210782A - Porous molded product of fiber-reinforced thermally plastic resin and its production - Google Patents
Porous molded product of fiber-reinforced thermally plastic resin and its productionInfo
- Publication number
- JPH06210782A JPH06210782A JP501693A JP501693A JPH06210782A JP H06210782 A JPH06210782 A JP H06210782A JP 501693 A JP501693 A JP 501693A JP 501693 A JP501693 A JP 501693A JP H06210782 A JPH06210782 A JP H06210782A
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- fiber
- sheet
- molding material
- reinforced thermoplastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Laminated Bodies (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、繊維強化熱可塑性樹脂
多孔質成形品とその成形方法に関するものである。本発
明による多孔質成形品は、木材が従来から使用されてい
た自動車部品、建築、土木等の産業用資材に広く使用す
ることができる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced thermoplastic resin porous molded article and a molding method thereof. The porous molded article according to the present invention can be widely used for industrial materials such as automobile parts, construction, and civil engineering, for which wood has been conventionally used.
【0002】[0002]
【従来の技術】近年、地球環境問題により、南洋材の伐
採が問題視されている。南洋材は、従来から合板に加工
され、バス、トラック等の車両部材、建築、土木等の産
業用資材に大量に使用されており、それに代わる素材の
開発が望まれている。木材代替品として、比較的長い強
化繊維と熱可塑性樹脂から構成されている繊維強化熱可
塑性樹脂成形品は、その特性として軽量かつ、比較的高
い強度、剛性を有していることから注目を集めている。2. Description of the Related Art In recent years, due to global environmental problems, the cutting of South Sea timber has been regarded as a problem. Conventionally, Nanyo wood has been processed into plywood, and has been used in large quantities for vehicle materials such as buses and trucks, industrial materials such as construction and civil engineering, and development of alternative materials is desired. As a substitute for wood, fiber-reinforced thermoplastic resin molded products composed of relatively long reinforcing fibers and thermoplastic resin have attracted attention because of their lightness and relatively high strength and rigidity. ing.
【0003】木材代替品の多くは板状体として使用され
るため、その曲げ強さ、曲げ剛性等の機械的性質と軽量
化が重要になる。材料力学的には、曲げ強さは板厚の2
乗、曲げ剛性は板厚の3乗に比例する。機械的性質の向
上と軽量化メリットを生かす方法として、抄造法(特公
昭52−12283号公報、特公昭55−9119号公
報)によるシート状成形素材を用いた多孔質成形品の製
造方法(特開昭60−179234号公報、特開昭62
−161529号公報)が提案されている。Since most of the wood substitutes are used as a plate, their mechanical properties such as bending strength and bending rigidity and weight reduction are important. In terms of material mechanics, the bending strength is 2 of the plate thickness.
The power and bending rigidity are proportional to the cube of the plate thickness. A method for producing a porous molded article using a sheet-shaped molding material by a papermaking method (Japanese Patent Publication No. 52-12283 and Japanese Patent Publication No. 55-9119) is used as a method of utilizing the merit of improving mechanical properties and weight saving. JP-A-60-179234 and JP-A-62.
No. 161529) has been proposed.
【0004】このシート状成形素材は、抄造技術を応用
して、直径3〜30μm 、長さ3〜50mmの強化繊維と
熱可塑性樹脂粉末を均一に分散して不織材料を製造し、
この不織材料を原料とし加熱、加圧を行いさらに冷却し
て製造される。多孔質成形品は、このシート状成形素材
が、成形前にマトリックスである熱可塑性樹脂の軟化点
または融点以上に加熱される際に生じるシート膨張を利
用して成形される。This sheet-shaped molding material is produced by applying a papermaking technique to uniformly disperse reinforcing fibers having a diameter of 3 to 30 μm and a length of 3 to 50 mm and a thermoplastic resin powder to produce a non-woven material,
It is manufactured by using this non-woven material as a raw material, heating, pressurizing, and further cooling. The porous molded article is molded by utilizing the sheet expansion that occurs when the sheet-shaped molding material is heated to the softening point or the melting point or higher of the matrix thermoplastic resin before molding.
【0005】抄造法で製造される不織材料は、強化繊維
がモノフィラメント(単一の繊維)の状態で分散してい
るため、非常にかさ高いという性質を示す。不織材料の
厚みは、強化繊維の含有量とその形状、抄造条件により
異なるが、シート状成形素材として一般的に用いられる
空隙を除去したシートに比べ10倍程度の厚みを有して
いる。シート状成形素材は、加熱により、熱可塑性樹脂
の強化繊維に対する結合力が弱まるため、強化繊維の残
留応力が解放され、元に戻ろうとするスプリングバック
により膨張する。The non-woven material produced by the paper-making method has the property of being very bulky because the reinforcing fibers are dispersed in the form of monofilaments (single fibers). The thickness of the non-woven material varies depending on the content of reinforcing fibers, its shape, and papermaking conditions, but is about 10 times as thick as that of a sheet from which voids are generally used as a sheet-shaped forming material. The heating of the sheet-shaped molding material weakens the binding force of the thermoplastic resin to the reinforcing fibers, so that the residual stress of the reinforcing fibers is released, and the sheet-shaped molding material expands due to the springback to return to the original state.
【0006】この膨張したシート状成形素材を、成形型
内に挿入し、膨張したシート厚み以下で、かつ内包する
空隙を残す範囲にクリアランスを設定し、目的とする膨
張倍率を得る条件で加圧、冷却成形することにより、多
孔質成形品を製造する。多孔質成形品は、膨張により面
積当りの強度、弾性率は低下するが、板厚の増加により
製品の曲げ強さ、曲げ剛性は改善される。This expanded sheet-shaped forming material is inserted into a forming die, and a clearance is set within the expanded sheet thickness and within a range in which an enclosing void is left, and pressure is applied under the condition that a desired expansion ratio is obtained. Then, a porous molded product is manufactured by cooling and molding. The porous molded article has a reduced strength per unit area and elastic modulus due to expansion, but the bending strength and flexural rigidity of the article are improved due to an increase in plate thickness.
【0007】しかし、この方法では、シート状成形素材
の板厚が厚い場合は、以下に述べるように目的とした機
械的性質の改善が得られなかった。従来の多孔質成形品
の成形方法の一例を図2に示した。シート状成形素材1
は、一般的には遠赤外線加熱炉5内で熱可塑性樹脂の軟
化点または融点以上に加熱される。シート状成形素材の
膨張は、最初に加熱されるシートの表面から始まり次第
に熱が板厚中心部におよぶにつれて全体的に膨張する。
しかし膨張によりシート内部には断熱空気層が形成され
るため、熱伝導率が低下する。シートは、内部に熱が十
分伝わらない状態で加熱されるため、膨張したシート表
面では局部加熱による熱可塑性樹脂の熱劣化が発生す
る。結果として、板厚の厚いシート状成形素材の加熱で
は、表面の局部加熱を避ける必要があるために表面付近
が膨張した層(9)を形成し、内部はほとんど膨張して
いない層(10)を形成する。この加熱されたシート状
成形素材を、冷却プレス盤7内に挿入し、クリアランス
を膨張したシートの厚み以下に設定し、目的とする膨張
倍率を得る条件で加圧、冷却成形することにより、多孔
質成形品11を製造する。このため、多孔質成形品が曲
げられる場合に引張り、圧縮の荷重が加わる表面部が機
械的に弱い構造になり、機械的性質が低下する。However, according to this method, when the thickness of the sheet-shaped molding material is large, the intended improvement in mechanical properties could not be obtained as described below. An example of a conventional method for molding a porous molded article is shown in FIG. Sheet-shaped molding material 1
Is generally heated in the far-infrared heating furnace 5 to a temperature above the softening point or melting point of the thermoplastic resin. The expansion of the sheet-shaped molding material starts from the surface of the sheet that is first heated, and gradually expands as the heat reaches the center of the plate thickness.
However, due to the expansion, a heat insulating air layer is formed inside the sheet, so that the thermal conductivity is reduced. Since the sheet is heated in a state where heat is not sufficiently transmitted to the inside, thermal deterioration of the thermoplastic resin occurs due to local heating on the surface of the expanded sheet. As a result, in the case of heating a sheet-shaped forming material having a large plate thickness, it is necessary to avoid local heating of the surface, so that a layer (9) which is expanded in the vicinity of the surface is formed and a layer (10) which is hardly expanded inside is formed. To form. This heated sheet-shaped forming material is inserted into the cooling press platen 7, the clearance is set to be equal to or less than the thickness of the expanded sheet, and pressurization and cooling-molding are performed under the condition of obtaining a target expansion ratio to obtain a porous sheet. The quality molded product 11 is manufactured. For this reason, when the porous molded article is bent, the surface portion to which a tensile load and a compressive load are applied has a mechanically weak structure, and the mechanical properties deteriorate.
【0008】[0008]
【発明が解決しようとする課題】本発明は、このような
機械的性質の向上を目的とした繊維強化熱可塑性樹脂多
孔質成形品とその成形方法を提供するものである。DISCLOSURE OF THE INVENTION The present invention provides a fiber-reinforced thermoplastic resin porous molded article and a method for molding the same for the purpose of improving such mechanical properties.
【0009】[0009]
【課題を解決するための手段】本発明の要旨とするとこ
ろは次の通りである。 (1)3〜30体積%の無機フィラーを含有した熱可塑
性樹脂が、抄造法によるシート状成形素材から形成され
た、強化繊維含有量が10体積%以上で、見かけ密度
0.2〜1.0g/cm3 の繊維強化熱可塑性樹脂層間に存
在し、前記繊維強化熱可塑性樹脂層の連続気泡に浸入し
て前記繊維強化熱可塑性樹脂層同士を結合していること
を特徴とする繊維強化熱可塑性樹脂多孔質成形品。The gist of the present invention is as follows. (1) A thermoplastic resin containing 3 to 30% by volume of an inorganic filler is formed from a sheet-shaped molding material by a papermaking method, has a reinforcing fiber content of 10% by volume or more, and an apparent density of 0.2 to 1. The fiber-reinforced thermoplastic resin layer is present between 0 g / cm 3 of the fiber-reinforced thermoplastic resin layer and penetrates into the continuous cells of the fiber-reinforced thermoplastic resin layer to bond the fiber-reinforced thermoplastic resin layers to each other. Plastic resin porous molded product.
【0010】(2)抄造法による強化繊維含有量が10
体積%以上の繊維強化熱可塑性樹脂シート状成形素材を
加熱し、強化繊維のスプリングバックを利用して膨張さ
せた後、これらのシート状成形素材の間に加熱された3
〜30体積%の無機フィラーを含有した熱可塑性樹脂層
を介在させた状態で加圧、冷却成形し全体を一体化する
ことを特徴とする上記(1)記載の繊維強化熱可塑性樹
脂多孔質成形品の成形方法。(2) Reinforcing fiber content by the papermaking method is 10
3% or more of the fiber-reinforced thermoplastic resin sheet-shaped forming material was heated and expanded by utilizing the springback of the reinforcing fiber, and then heated between these sheet-like forming materials.
Fiber-reinforced thermoplastic resin porous molding according to the above (1), characterized in that the thermoplastic resin layer containing 30% by volume of an inorganic filler is pressed, cooled and molded to integrate the whole. Molding method.
【0011】(3)抄造法による強化繊維含有量が10
体積%以上の繊維強化熱可塑性樹脂シート状成形素材
と、抄造法による強化繊維含有量が10体積%以上の繊
維強化熱可塑性樹脂層と3〜30体積%の無機フィラー
を含有した熱可塑性樹脂層からなる複合シート状成形素
材を加熱し、強化繊維のスプリングバックを利用して膨
張させた後、これらのシート状成形素材の間に前記熱可
塑性樹脂層を介在させた状態で、加圧、冷却成形し全体
を一体化することを特徴とする上記(1)記載の繊維強
化熱可塑性樹脂多孔質成形品の成形方法。(3) Reinforcing fiber content by the papermaking method is 10
A fiber-reinforced thermoplastic resin sheet-shaped molding material having a volume% or more, a fiber-reinforced thermoplastic resin layer having a reinforcing fiber content of 10 volume% or more by a papermaking method, and a thermoplastic resin layer containing 3 to 30 volume% of an inorganic filler. The composite sheet-shaped molding material consisting of is heated and expanded by utilizing the springback of the reinforcing fiber, and then the sheet-shaped molding material is pressurized and cooled while the thermoplastic resin layer is interposed between them. The method for molding a fiber-reinforced thermoplastic resin porous molded article according to (1) above, which comprises molding and integrating the whole.
【0012】本発明の繊維強化熱可塑性樹脂多孔質成形
品の成形方法の一例を図1に示した。シート状成形素材
として、繊維強化熱可塑性樹脂シート状成形素材1と繊
維強化熱可塑性樹脂層2と無機フィラー含有熱可塑性樹
脂層3からなる複合シート状成形素材4を用いる。シー
ト状成形素材1は、抄造法により製造された強化繊維と
熱可塑性樹脂からなる不織材料を、加熱、加圧、冷却成
形して製造される。複合シート状成形素材4は、抄造法
により製造された強化繊維と熱可塑性樹脂からなる不織
材料の片面に無機フィラー含有熱可塑性樹脂フィルムを
積層し、加熱、加圧、冷却成形して製造される。これら
のシート状成形素材は、遠赤外線加熱炉5内で熱可塑性
樹脂の軟化点または融点以上に加熱される。シート状成
形素材は、加熱により、熱可塑性樹脂の強化繊維に対す
る結合力が弱まるため、強化繊維の残留応力が解放さ
れ、元に戻ろうとするスプリングバックにより膨張す
る。この膨張は、最初に加熱されるシートの表面から始
まり次第に熱が板厚中心部におよぶにつれて全体的に膨
張する。加熱されたシート状成形素材1の表面と複合シ
ート状成形素材4の無機フィラー含有熱可塑性樹脂フィ
ルムが積層されていない表面では、強化繊維がスプリン
グバックにより露出し、熱可塑性樹脂が膨張シート内部
に吸収されるために樹脂量が低下する。複合シート状成
形素材4の予め無機フィラー含有熱可塑性樹脂フィルム
が積層されている表面では、無機フィラー含有熱可塑性
樹脂により強化繊維が覆われた状態の樹脂リッチ層6が
形成される。シート状成形素材1と複合シート状成形素
材4をその樹脂リッチ層が、両者の間に介在するように
積層し、冷却プレス盤7内に挿入し、クリアランスを膨
張したシート状成形素材の厚み以下で、かつ内包する空
隙を残す範囲に設定し、目的とする膨張倍率を得る条件
で加圧、冷却成形して、本発明の多孔質成形品8を成形
する。An example of the method for molding the fiber-reinforced thermoplastic resin porous molded article of the present invention is shown in FIG. As the sheet-shaped molding material, a composite sheet-shaped molding material 4 including a fiber-reinforced thermoplastic resin sheet-shaped molding material 1, a fiber-reinforced thermoplastic resin layer 2 and an inorganic filler-containing thermoplastic resin layer 3 is used. The sheet-shaped molding material 1 is manufactured by heating, pressurizing, and cooling-molding a non-woven material made of a reinforcing fiber and a thermoplastic resin manufactured by a papermaking method. The composite sheet-shaped molding material 4 is manufactured by laminating an inorganic filler-containing thermoplastic resin film on one surface of a non-woven material composed of reinforcing fibers and a thermoplastic resin manufactured by a paper-making method, and heating, pressurizing, and cooling molding. It These sheet-shaped molding materials are heated in the far-infrared heating furnace 5 to the softening point or melting point of the thermoplastic resin or higher. The heating of the sheet-shaped molding material weakens the binding force of the thermoplastic resin to the reinforcing fibers, so that the residual stress of the reinforcing fibers is released, and the sheet-shaped molding material expands due to the springback to return to the original state. This expansion starts from the surface of the sheet to be heated first and gradually expands as the heat reaches the center of the plate thickness. On the surface of the heated sheet-shaped molding material 1 and the surface of the composite sheet-shaped molding material 4 where the inorganic filler-containing thermoplastic resin film is not laminated, the reinforcing fibers are exposed by springback, and the thermoplastic resin is exposed inside the expansion sheet. The amount of resin decreases due to absorption. On the surface of the composite sheet-shaped molding material 4 on which the inorganic filler-containing thermoplastic resin film is laminated in advance, the resin-rich layer 6 in which the reinforcing fibers are covered with the inorganic filler-containing thermoplastic resin is formed. The sheet-shaped molding material 1 and the composite sheet-shaped molding material 4 are laminated so that the resin-rich layer is interposed therebetween, and are inserted into the cooling press board 7 and the clearance is expanded to the thickness of the sheet-shaped molding material or less. Then, the porous molded article 8 of the present invention is molded by setting it in a range where the voids to be included therein are left, and pressurizing and cooling molding under the condition of obtaining a desired expansion ratio.
【0013】本発明で使用するシート状成形素材におい
ても、従来の方法と同様に、加熱膨張によりその熱伝導
率が低下する。この熱伝導率の低下による悪影響に対し
ては、使用するシート状成形素材の初期厚みを薄くする
ことにより解決を図り、加熱されたシート状成形素材の
均一膨張を実現した。本発明で使用するシート状成形素
材の厚みは、3.5mm以下が望ましい。Also in the sheet-shaped molding material used in the present invention, its thermal conductivity is lowered by thermal expansion, as in the conventional method. The adverse effect of this decrease in thermal conductivity was solved by reducing the initial thickness of the sheet-shaped molding material used, and a uniform expansion of the heated sheet-shaped molding material was realized. The thickness of the sheet-shaped molding material used in the present invention is preferably 3.5 mm or less.
【0014】膨張したシート状成形素材は、三次元的に
強化繊維の交差点が熱可塑性樹脂で融着されている構造
で、内部の空隙のほとんどは表面と貫通している連続気
泡である。また、複合シート状成形素材の樹脂リッチ層
は、無機フィラー添加により熱可塑性樹脂の溶融粘度が
増大し、加熱膨張したシート状成形素材内部への吸収が
抑えられるために形成される。本発明では、シート状成
形素材を積層する際に両者の間に複合シート状成形素材
の樹脂リッチ層を介在させ、加圧、冷却成形することに
より、膨張したシート状成形素材の連続気泡中に樹脂を
浸入させ、冷却固化してアンカー効果により層間強度を
向上させる。本発明の多孔質成形品では繊維強化熱可塑
性樹脂層の均一膨張と両者の層間強度の向上により、良
好な機械的性質が発現する。The expanded sheet-shaped molding material has a structure in which the intersections of the reinforcing fibers are three-dimensionally fused with a thermoplastic resin, and most of the internal voids are open cells penetrating the surface. In addition, the resin-rich layer of the composite sheet-shaped molding material is formed because the addition of the inorganic filler increases the melt viscosity of the thermoplastic resin and suppresses the absorption into the inside of the sheet-shaped molding material that has been heated and expanded. In the present invention, when the sheet-shaped molding material is laminated, a resin-rich layer of the composite sheet-shaped molding material is interposed between the two, and by pressurizing and cooling molding, the expanded foam of the sheet-shaped molding material is formed into continuous cells. The resin penetrates and solidifies by cooling to improve the interlayer strength by the anchor effect. The porous molded article of the present invention exhibits good mechanical properties due to the uniform expansion of the fiber-reinforced thermoplastic resin layer and the improvement of the interlaminar strength between the two layers.
【0015】本発明による多孔質成形品の見かけ密度
は、シート状成形素材の膨張に応じた成形時のクリアラ
ンス設定によって決められる。そのため、見かけ密度の
範囲は、強化繊維のスプリングバックによるシート膨張
の範囲の0.2〜1.0g/cm3である。見かけ密度は、
多孔質成形品の重量をその体積で除した値で表される。The apparent density of the porous molded article according to the present invention is determined by the clearance setting during molding according to the expansion of the sheet-shaped molding material. Therefore, the range of apparent density is 0.2 to 1.0 g / cm 3, which is the range of sheet expansion due to the springback of the reinforcing fibers. The apparent density is
It is represented by a value obtained by dividing the weight of the porous molded article by its volume.
【0016】不織材料の原料となる強化繊維としては、
ガラス繊維、炭素繊維、金属繊維のほかに無機繊維、有
機繊維が用いられる。強化繊維の形状は、直径が取り扱
いの容易さと経済的な観点により3μm 以上で、十分な
強度を発現させるために30μm 以下にすることが好ま
しく、繊維長は強度発現の観点から3mm以上で、均一な
分散が可能な50mm以下にすることが望ましい。また強
化繊維は、水中での良好な分散を目的として親水性を向
上するために水溶性高分子、湿潤剤で、強度発現を目的
として熱可塑性樹脂との接着性を向上するためにシラン
カプリング剤等で、表面処理を行うことが望ましい。The reinforcing fibers used as the raw material for the non-woven material include:
In addition to glass fiber, carbon fiber and metal fiber, inorganic fiber and organic fiber are used. The shape of the reinforcing fiber is preferably 3 μm or more in diameter from the viewpoint of easy handling and economical, and 30 μm or less in order to express sufficient strength, and the fiber length is 3 mm or more from the viewpoint of strength development and is uniform. It is desirable to set the thickness to 50 mm or less, which allows various dispersion. The reinforcing fiber is a water-soluble polymer for improving hydrophilicity for the purpose of good dispersion in water, a wetting agent, and a silane coupling agent for improving adhesiveness with the thermoplastic resin for expressing strength. For example, it is desirable to perform surface treatment.
【0017】熱可塑性樹脂は、ポリエチレン、ポリプロ
ピレン、ポリスチレン、スチレン−ブタジエン−アクリ
ロニトリル共重合体、スチレン−アクリロニトリル共重
合体、ホリアミド、ポリカーボネート、ポリアセター
ル、ポリエチレンテレフタレート、ポリブチレンテレフ
タレート、ポリフェニレンオキシド、ポリスルホン、ポ
リフェニレンスルフィド等の樹脂であり、またこれらの
2種類またはそれ以上の混合物をも含み、これらに一般
的に用いられる可塑剤、熱安定剤、光安定剤、充填材、
染顔料、耐衝撃剤、増量材、核剤、加工助剤等を添加す
ることもできる。熱可塑性樹脂の形状は、ペレット、パ
ウダー、フレーク、繊維状のものを適宜選択して使用す
る。The thermoplastic resin includes polyethylene, polypropylene, polystyrene, styrene-butadiene-acrylonitrile copolymer, styrene-acrylonitrile copolymer, holamide, polycarbonate, polyacetal, polyethylene terephthalate, polybutylene terephthalate, polyphenylene oxide, polysulfone, polyphenylene sulfide. Such as a plasticizer, a heat stabilizer, a light stabilizer, a filler, and the like, which also include a mixture of two or more of these resins.
It is also possible to add dyes and pigments, impact resistance agents, extenders, nucleating agents, processing aids and the like. The shape of the thermoplastic resin is appropriately selected from pellets, powders, flakes, and fibrous shapes.
【0018】強化繊維の含有量は、スプリングバックに
よる安定した膨張が生じる10体積%以上で、強化繊維
と熱可塑性樹脂との接着が可能で多孔質成形品としての
機械的性質を十分発現する40体積%以下とすることが
望ましい。The content of the reinforcing fiber is 10% by volume or more at which stable expansion due to springback occurs, and the reinforcing fiber and the thermoplastic resin can be adhered to each other to sufficiently exhibit the mechanical properties as a porous molded article. It is desirable to set the volume% or less.
【0019】不織材料に積層する無機フィラー含有熱可
塑性樹脂フィルムのマトリックス樹脂は、繊維強化熱可
塑性樹脂層を融着して多孔質成形品を形成する必要があ
るため、不織材料の熱可塑性樹脂と同じものを用いるの
が一般的であるが、層間強度の向上を目的として接着強
度を向上させる場合は、目的に応じた熱可塑性樹脂、無
水マレイン酸変性等の変性樹脂、ホットメルトタイプの
接着性樹脂を用いてもよく、さらにそれらの樹脂との混
合物を使用してもよい。Since the matrix resin of the thermoplastic resin film containing an inorganic filler to be laminated on the non-woven material needs to be fused with the fiber-reinforced thermoplastic resin layer to form a porous molded article, the thermoplastic resin of the non-woven material is It is common to use the same as the resin, but in the case of improving the adhesive strength for the purpose of improving the interlayer strength, a thermoplastic resin according to the purpose, a modified resin such as maleic anhydride modified, or a hot melt type resin is used. Adhesive resins may be used as well as mixtures with those resins.
【0020】無機フィラーとしては、炭酸カルシウム、
タルク等の微粒子状フィラー、マイカ等のフレーク状フ
ィラー、チョップドガラス繊維、ロックウール繊維等の
繊維状フィラーを用いる。無機フィラーは、熱可塑性樹
脂との接着性を向上するためにシランカプリング剤等
で、表面処理を行うことが望ましい。無機フィラーの添
加量は、熱可塑性樹脂の溶融粘度を増大させる目的から
3体積%以上に、安定したフィルム成形が可能な30体
積%以下とする。熱可塑性樹脂フィルムの厚みは、繊維
強化熱可塑性樹脂層の膨張倍率により、0.1〜2mmの
範囲から適宜選択する。As the inorganic filler, calcium carbonate,
Fine particle fillers such as talc, flake fillers such as mica, fibrous fillers such as chopped glass fibers and rock wool fibers are used. The inorganic filler is preferably surface-treated with a silane coupling agent or the like in order to improve the adhesiveness with the thermoplastic resin. The amount of the inorganic filler added is 3% by volume or more for the purpose of increasing the melt viscosity of the thermoplastic resin, and 30% by volume or less that allows stable film formation. The thickness of the thermoplastic resin film is appropriately selected from the range of 0.1 to 2 mm depending on the expansion ratio of the fiber reinforced thermoplastic resin layer.
【0021】図1では、2枚のシート状成形素材の間に
樹脂リッチ層が介在するように積層して、多孔質成形品
を成形する方法について述べたが、シート状成形素材の
積層枚数は成形品用途、特に成形品厚みに応じて適宜選
択する。つまり多孔質成形品の厚みが大きい場合は、そ
の機械的性質に影響を与える繊維強化熱可塑性樹脂層の
膨張状態を均一にするために、3枚以上のシート状成形
素材を積層することが望ましい。In FIG. 1, a method for forming a porous molded product by laminating two sheet-shaped molding materials so that a resin-rich layer is interposed between them has been described. It is appropriately selected according to the purpose of the molded product, particularly the thickness of the molded product. That is, when the thickness of the porous molded product is large, it is desirable to stack three or more sheet-shaped molding materials in order to make the expanded state of the fiber-reinforced thermoplastic resin layer that affects the mechanical properties thereof uniform. .
【0022】本発明において、無機フィラーが添加され
ていない熱可塑性樹脂フィルムを使用した場合、複合シ
ート状成形素材の表面に安定した樹脂リッチ層を形成す
るには、フィルム厚みを厚くする必要があるため、製品
の重量増加につながり効果的ではない。In the present invention, when a thermoplastic resin film to which an inorganic filler is not added is used, it is necessary to increase the film thickness in order to form a stable resin rich layer on the surface of the composite sheet-shaped molding material. Therefore, it is not effective because it increases the weight of the product.
【0023】本発明の多孔質成形品では、均一な膨張が
実施されているシート状成形素材を積層し、両者の間を
無機フィラー含有熱可塑性樹脂のアンカー効果で強固に
接着させることにより、良好な機械的性質が得られる。
さらに、従来の方法に比べて厚みの許容範囲も広がり、
軽量化メリットを生かした繊維強化熱可塑性樹脂多孔質
成形品として有益な結果が得られる。In the porous molded article of the present invention, a sheet-shaped molding material that has been uniformly expanded is laminated, and the two are firmly bonded by the anchor effect of the thermoplastic resin containing an inorganic filler. Mechanical properties are obtained.
Furthermore, the allowable range of thickness is expanded compared to the conventional method,
Beneficial results can be obtained as a fiber-reinforced thermoplastic resin porous molded product that takes advantage of the weight saving advantage.
【0024】[0024]
【実施例】以下実施例を挙げて、本発明を詳細に説明す
る。 実施例1 強化繊維として直径10μm 、長さ13mmのガラス繊維
と、熱可塑性樹脂として直径3mmの球状ペレットを機械
粉砕し、その粉砕品をふるい分けにより70mesh(開口
径0.212mm)から10mesh(開口径1.7mm)まで
に分級したポリプロピレン樹脂粉末を用いて、抄造法に
よりガラス繊維含有量45重量%(22.3体積%)と
ポリプロピレン樹脂55重量%(77.7体積%)の組
成で、目付け量が2000 g/m2 の不織材料を製造し
た。The present invention will be described in detail with reference to the following examples. Example 1 A glass fiber having a diameter of 10 μm and a length of 13 mm as a reinforcing fiber and a spherical pellet having a diameter of 3 mm as a thermoplastic resin were mechanically crushed, and the crushed product was sieved to from 70 mesh (opening diameter 0.212 mm) to 10 mesh (opening diameter). Using polypropylene resin powder classified to 1.7 mm), a glass fiber content of 45% by weight (22.3% by volume) and a polypropylene resin 55% by weight (77.7% by volume) were used for the basis weight by a papermaking method. A quantity of 2000 g / m 2 of nonwoven material was produced.
【0025】不織材料を600×600mmに切断して2
枚重ね合わせ、その両面にステンレス鋼製鏡板を重ね合
わせて、210℃に温度設定された加熱プレス盤内に挿
入し、圧力2Kgf/cm2 の加圧下で不織材料の中心部温度
が190℃以上に昇温するまで、約5分間予熱した。つ
づいて、圧力5Kgf/cm2 で、1分間加圧し、さらに冷却
プレス盤に挿入し、圧力5Kgf/cm2 で約5分間、加圧、
冷却成形し、鏡板を取り外すことにより板厚3.2mmの
シート状成形素材を成形した。The non-woven material is cut into 600 × 600 mm and 2
The sheets are stacked, stainless steel end plates are stacked on both sides, and inserted into a heating press platen whose temperature is set to 210 ° C. The temperature of the central part of the non-woven material is 190 ° C under the pressure of 2 Kgf / cm 2. Preheating was performed for about 5 minutes until the temperature was raised to the above. Next, pressurize at a pressure of 5 Kgf / cm 2 for 1 minute, insert into a cooling press machine, pressurize at a pressure of 5 Kgf / cm 2 for about 5 minutes,
After cooling and forming, the end plate was removed to form a sheet-shaped forming material having a plate thickness of 3.2 mm.
【0026】一方、不織材料を600×600mmに切断
して2枚重ね合わせ、さらにその片面に直径2μm の微
粒子状無機フィラーであるタルクが40重量%添加され
たポリプロピレン樹脂フィルム(厚み:0.35mm)を
1枚重ね合わせ、その両面にステンレス鋼製鏡板を重ね
合わせて、シート状成形素材の成形と同様な方法で、板
厚3.6mmの複合シート状成形素材を成形した。On the other hand, a non-woven material was cut into 600 × 600 mm pieces, and two pieces were superposed on each other, and 40% by weight of talc, which is a fine-particle inorganic filler having a diameter of 2 μm, was added to one surface of the polypropylene resin film (thickness: 0. 35 mm), and stainless steel end plates were superposed on both sides thereof, and a composite sheet-shaped molding material having a plate thickness of 3.6 mm was molded by the same method as the molding of the sheet-shaped molding material.
【0027】このシート状成形素材1枚と複合シート状
成形素材1枚を用いて、図1に示した本発明の方法によ
り多孔質成形品を成形した。シート状成形素材および複
合成形素材を、遠赤外線加熱炉により表面温度が220
℃に昇温するまで約7分間加熱した。両者は、ガラス繊
維のスプリングバックにより膨張し、その膨張厚みは各
々約14mmであった。加熱されたシートの表面は、ガラ
ス繊維のスプリングバックによる露出と、ポリプロピレ
ン樹脂が膨張シート内部に吸収されたために、樹脂量が
低下していることが確認された。但し、複合シート状成
形素材のタルク含有ポリプロピレン樹脂フィルムが積層
された表面は、ガラス繊維の露出が抑えられ、樹脂リッ
チ層が形成されていることが確認された。加熱されたシ
ート状成形素材と複合シート状成形素材を、この樹脂リ
ッチ層が両者の間に介在するように積層し、冷却プレス
盤に挿入して、プレス盤のクリアランスをスペーサーに
より設定して、圧力5Kgf/cm2 で5分間、加圧、冷却し
て、板厚12mmの多孔質成形品を成形した。A porous molded article was molded by the method of the present invention shown in FIG. 1 using one sheet-shaped molding material and one composite sheet-shaped molding material. The sheet-shaped molding material and the composite molding material have a surface temperature of 220 by a far infrared heating furnace.
It heated for about 7 minutes until it heated up to ℃. Both of them expanded due to the springback of the glass fiber, and the expanded thickness was about 14 mm each. It was confirmed that the amount of resin on the surface of the heated sheet was reduced because the glass fiber was exposed by spring back and the polypropylene resin was absorbed inside the expanded sheet. However, it was confirmed that, on the surface of the composite sheet-shaped molding material on which the talc-containing polypropylene resin film was laminated, the exposure of the glass fiber was suppressed and a resin-rich layer was formed. Heated sheet-shaped molding material and composite sheet-shaped molding material are laminated so that this resin-rich layer is interposed between them, and inserted into a cooling press machine, and the clearance of the press machine is set by a spacer. A porous molded product having a plate thickness of 12 mm was molded by pressurizing and cooling at a pressure of 5 Kgf / cm 2 for 5 minutes.
【0028】光学顕微鏡、走査電子顕微鏡観察により、
多孔質成形品内部のガラス繊維の交差点がポリプロピレ
ン樹脂で効率よく接着され、均一な膨張が実施され、積
層間では多孔質成形品の連続気泡内部にタルク含有ポリ
プロピレン樹脂が含浸、固化していることが確認され
た。多孔質成形品から幅70mm、長さ200mmの試験片
を採取し、スパン150mmの3点曲げ試験を行った。結
果を、表1に示した。By optical microscope and scanning electron microscope observation,
The intersections of the glass fibers inside the porous molded product are efficiently adhered with polypropylene resin to achieve uniform expansion, and the talc-containing polypropylene resin is impregnated and solidified inside the open cells of the porous molded product between layers. Was confirmed. A test piece having a width of 70 mm and a length of 200 mm was sampled from the porous molded article and subjected to a three-point bending test with a span of 150 mm. The results are shown in Table 1.
【0029】参考例1 実施例1のガラス繊維とポリプロピレン樹脂粉末を用い
て抄造法によりガラス繊維含有量45重量%(22.3
体積%)とポリプロピレン樹脂55重量%(77.7体
積%)の組成で、目付け量が2100 g/m2 の不織材料
を製造した。この不織材料を600×600mmに切断し
て4枚重ね合わせ、その両面にステンレス鋼製鏡板を重
ね合わせて、実施例1と同様に板厚6.8mmのシート状
成形素材を成形した。シート状成形素材の表面は、ガラ
ス繊維の露出がなく、樹脂リッチで良好な外観を呈して
いた。また、光学顕微鏡、走査電子顕微鏡観察により、
シート状成形素材内部のガラス繊維が均一に分散してお
り、その間には熱可塑性樹脂が十分含浸していることが
確認された。このシート状成形素材から幅70mm、長さ
200mmの試験片を採取し、スパン150mmの3点曲げ
試験を行った。結果を、表1に示した。Reference Example 1 A glass fiber content of 45% by weight (22.3) was obtained by a papermaking method using the glass fiber of Example 1 and polypropylene resin powder.
Volume%) and 55% by weight of polypropylene resin (77.7% by volume), and a non-woven material having a basis weight of 2100 g / m 2 was produced. This non-woven material was cut into 600 × 600 mm pieces, four sheets were superposed, and stainless steel end plates were superposed on both sides thereof to form a sheet-shaped forming material having a plate thickness of 6.8 mm in the same manner as in Example 1. On the surface of the sheet-shaped molding material, the glass fibers were not exposed, and the resin-rich surface had a good appearance. In addition, by observation with an optical microscope and a scanning electron microscope,
It was confirmed that the glass fibers inside the sheet-shaped molding material were uniformly dispersed, and the thermoplastic resin was sufficiently impregnated between them. A test piece with a width of 70 mm and a length of 200 mm was sampled from this sheet-shaped molding material, and a three-point bending test with a span of 150 mm was performed. The results are shown in Table 1.
【0030】比較例1 参考例1で成形されたシート状成形素材を用いて、図2
に示した従来の方法により多孔質成形品を成形した。参
考例1のシート状成形素材を、遠赤外線加熱炉により表
面温度が220℃に昇温するまで約7分間加熱した。こ
の際、成形素材は表面付近が大きく膨張し、内部は十分
加熱されていない状態であり、膨張後の厚みは約16mm
であった。また表面は、ガラス繊維の露出とポリプロピ
レン樹脂が膨張シート内部に吸収されたために、樹脂量
が低下していることが確認された。加熱された成形素材
を、冷却プレス盤に挿入し、プレス盤のクリアランスを
スペーサーにより設定して、圧力5Kgf/cm2 で5分間、
加圧、冷却して、板厚12mmの多孔質成形品を成形し
た。Comparative Example 1 The sheet-shaped molding material molded in Reference Example 1 was used as shown in FIG.
A porous molded article was molded by the conventional method shown in. The sheet-shaped molding material of Reference Example 1 was heated in a far infrared heating furnace for about 7 minutes until the surface temperature was raised to 220 ° C. At this time, the molding material is greatly expanded near the surface and the inside is not sufficiently heated, and the thickness after expansion is about 16 mm.
Met. It was also confirmed that the amount of resin on the surface was reduced because the glass fiber was exposed and the polypropylene resin was absorbed inside the expanded sheet. Insert the heated molding material into the cooling press machine, set the clearance of the press machine with the spacer, and press the pressure of 5 Kgf / cm 2 for 5 minutes.
By pressurizing and cooling, a porous molded product having a plate thickness of 12 mm was molded.
【0031】光学顕微鏡、走査電子顕微鏡観察により、
多孔質成形品内部の膨張状態は表面付近が非常に大きく
膨張し、中心部はもとより成形素材同様ほとんど膨張し
ていないことが確認された。この中心層は、成形素材の
初期厚みの約50%で、3.2mmの厚みを有していた。
多孔質成形品から幅70mm、長さ200mmの試験片を採
取し、スパン150mmの3点曲げ試験を行った。結果
を、表1に示した。By observation with an optical microscope and a scanning electron microscope,
It was confirmed that the expanded state of the inside of the porous molded product was extremely expanded near the surface and almost not expanded in the central part as well as in the molding material. This center layer was about 50% of the initial thickness of the molding material and had a thickness of 3.2 mm.
A test piece having a width of 70 mm and a length of 200 mm was sampled from the porous molded article and subjected to a three-point bending test with a span of 150 mm. The results are shown in Table 1.
【0032】実施例1の多孔質成形品は、繊維強化熱可
塑性樹脂層の均一な膨張において、ガラス繊維の交差点
がポリプロピレン樹脂で効率よく接着され、積層間では
連続気泡内部にタルク含有ポリプロピレン樹脂が含浸、
固化しアンカー効果で強固に接着しているため良好な機
械的性質が得られた。面積当りでの強度、弾性率は参考
例1のシート状成形素材に比べて低下しているが、製品
としての曲げ強さ(曲げ荷重)、曲げ剛性(弾性勾配)
は改善されている。曲げ勾配とは、3点曲げ試験におい
て、板状試験片のたわみ量が2.5mmの時の荷重であ
り、板としての剛性の指標となる。実施例1と参考例1
は、単位面積当りの重量は同じであるが、実施例1の板
厚が膨張成形により参考例1に比べて約2倍に厚くなっ
ている。この結果は、曲げ強さが製品板厚の2乗、曲げ
剛性が板厚の3乗に比例することによるもので、特に剛
性の向上が著しいことが確認された。In the porous molded article of Example 1, in the uniform expansion of the fiber-reinforced thermoplastic resin layer, the intersections of the glass fibers were efficiently adhered with the polypropylene resin, and the talc-containing polypropylene resin was provided inside the open cells between the laminated layers. Impregnation,
Good mechanical properties were obtained because it solidified and adhered firmly due to the anchor effect. The strength and elastic modulus per area are lower than those of the sheet-shaped molding material of Reference Example 1, but the bending strength (bending load) and bending rigidity (elastic gradient) of the product
Has been improved. The bending gradient is a load when the amount of deflection of the plate-shaped test piece is 2.5 mm in the three-point bending test and serves as an index of rigidity of the plate. Example 1 and Reference Example 1
Although the weight per unit area is the same, the plate thickness of Example 1 is about twice as thick as that of Reference Example 1 by expansion molding. This result is because the bending strength is proportional to the square of the product plate thickness, and the bending rigidity is proportional to the cube of the plate thickness, and it was confirmed that the rigidity is remarkably improved.
【0033】比較例1は、実施例1、参考例1に比べて
機械的性質が低下していることが確認された。比較例1
の多孔質成形品では、表面付近の膨張が非常に大きく、
中心部はほとんど膨張していない構造を示していた。そ
のため、製品が曲げられる場合に引張り、圧縮の荷重が
加わる表面部が、機械的に弱い構造になり機械的性質が
低下する。It was confirmed that the mechanical properties of Comparative Example 1 were lower than those of Example 1 and Reference Example 1. Comparative Example 1
In the porous molded product of, the expansion near the surface is very large,
The central part showed a structure with almost no expansion. Therefore, when the product is bent, the surface portion to which a tensile or compressive load is applied has a mechanically weak structure and mechanical properties are deteriorated.
【0034】[0034]
【表1】 [Table 1]
【0035】[0035]
【発明の効果】以上のように本発明は、繊維強化熱可塑
性樹脂の機械的性質の向上と軽量化メリットを生かす方
法として、繊維強化熱可塑性樹脂多孔質成形品およびそ
の成形方法を提供するものであるが、本発明により、多
孔質成形品の機械的性質が改良され、成形品厚みの許容
範囲も従来法に比べて広がるため、木材代替品等の用途
に有益な結果がもたらされる。INDUSTRIAL APPLICABILITY As described above, the present invention provides a fiber-reinforced thermoplastic resin porous molded article and a molding method thereof as a method of utilizing the merit of improving the mechanical properties and weight saving of the fiber-reinforced thermoplastic resin. However, according to the present invention, the mechanical properties of the porous molded article are improved, and the allowable range of the thickness of the molded article is widened as compared with the conventional method, so that it has a beneficial result in applications such as wood substitutes.
【図1】本発明の繊維強化熱可塑性樹脂多孔質成形品の
成形方法の一例を示す概略図である。FIG. 1 is a schematic view showing an example of a method for molding a fiber-reinforced thermoplastic resin porous molded article of the present invention.
【図2】従来の繊維強化熱可塑性樹脂多孔質成形品の成
形方法の一例を示す概略図である。FIG. 2 is a schematic view showing an example of a conventional method for molding a fiber-reinforced thermoplastic resin porous molded article.
1 繊維強化熱可塑性樹脂シート状成形素材 2 繊維強化熱可塑性樹脂層 3 無機フィラー含有熱可塑性樹脂層 4 複合シート状成形素材 5 遠赤外線加熱炉 6 樹脂リッチ層 7 冷却プレス盤 8 本発明の多孔質成形品 9 膨張した層 10 ほとんど膨張していない層 11 従来の多孔質成形品。 1 Fiber Reinforced Thermoplastic Resin Sheet Forming Material 2 Fiber Reinforced Thermoplastic Resin Layer 3 Inorganic Filler-Containing Thermoplastic Resin Layer 4 Composite Sheet Forming Material 5 Far Infrared Heating Furnace 6 Resin Rich Layer 7 Cooling Press Board 8 Porous of the Present Invention Molded product 9 Expanded layer 10 Almost unexpanded layer 11 Conventional porous molded product.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B32B 27/12 8413−4F 27/20 I 8413−4F // B29K 105:04 105:08 B29L 9:00 4F (72)発明者 木村 隆夫 三重県四日市市東邦町1番地 三菱油化株 式会社四日市総合研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location B32B 27/12 8413-4F 27/20 I 8413-4F // B29K 105: 04 105: 08 B29L 9 : 00 4F (72) Inventor Takao Kimura 1 Toho-cho, Yokkaichi-shi, Mie Mitsubishi Petrochemical Co., Ltd. Yokkaichi Research Institute
Claims (3)
た熱可塑性樹脂が、抄造法によるシート状成形素材から
形成された、強化繊維含有量が10体積%以上で、見か
け密度0.2〜1.0g/cm3 の繊維強化熱可塑性樹脂層
間に存在し、前記繊維強化熱可塑性樹脂層の連続気泡に
浸入して前記繊維強化熱可塑性樹脂層同士を結合してい
ることを特徴とする繊維強化熱可塑性樹脂多孔質成形
品。1. A thermoplastic resin containing 3 to 30% by volume of an inorganic filler, which is formed from a sheet-shaped molding material by a papermaking method, has a reinforcing fiber content of 10% by volume or more and an apparent density of 0.2 to Fibers present between 1.0 g / cm 3 of the fiber-reinforced thermoplastic resin layer, which penetrate into the continuous cells of the fiber-reinforced thermoplastic resin layer to bond the fiber-reinforced thermoplastic resin layers to each other. Reinforced thermoplastic resin porous molded product.
%以上の繊維強化熱可塑性樹脂シート状成形素材を加熱
し、強化繊維のスプリングバックを利用して膨張させた
後、これらのシート状成形素材の間に加熱された3〜3
0体積%の無機フィラーを含有した熱可塑性樹脂層を介
在させた状態で加圧、冷却成形し全体を一体化すること
を特徴とする請求項1記載の繊維強化熱可塑性樹脂多孔
質成形品の成形方法。2. A fiber-reinforced thermoplastic resin sheet-shaped molding material having a reinforcing fiber content of 10% by volume or more produced by a paper-making method is heated and expanded by utilizing springback of the reinforcing fiber, and then these sheet-shaped moldings are formed. 3 to 3 heated between materials
The fiber-reinforced thermoplastic resin porous molded article according to claim 1, characterized in that the thermoplastic resin layer containing 0% by volume of an inorganic filler is intervened under pressure and cooling to integrate the whole. Molding method.
%以上の繊維強化熱可塑性樹脂シート状成形素材と、抄
造法による強化繊維含有量が10体積%以上の繊維強化
熱可塑性樹脂層と3〜30体積%の無機フィラーを含有
した熱可塑性樹脂層からなる複合シート状成形素材を加
熱し、強化繊維のスプリングバックを利用して膨張させ
た後、これらのシート状成形素材の間に前記熱可塑性樹
脂層を介在させた状態で、加圧、冷却成形し全体を一体
化することを特徴とする請求項1記載の繊維強化熱可塑
性樹脂多孔質成形品の成形方法。3. A fiber-reinforced thermoplastic resin sheet-shaped molding material having a reinforced fiber content of 10% by volume or more by a papermaking method, and a fiber-reinforced thermoplastic resin layer having a reinforced fiber content of 10% by volume or more by a papermaking method. After heating a composite sheet-shaped molding material composed of a thermoplastic resin layer containing 30% by volume of an inorganic filler and expanding it by utilizing the springback of reinforcing fibers, the heat treatment is performed between these sheet-shaped molding materials. The method for molding a fiber-reinforced thermoplastic resin porous molded article according to claim 1, wherein the molding is carried out by pressurizing, cooling and molding with the plastic resin layer interposed therebetween to integrate the whole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP501693A JPH06210782A (en) | 1993-01-14 | 1993-01-14 | Porous molded product of fiber-reinforced thermally plastic resin and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP501693A JPH06210782A (en) | 1993-01-14 | 1993-01-14 | Porous molded product of fiber-reinforced thermally plastic resin and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06210782A true JPH06210782A (en) | 1994-08-02 |
Family
ID=11599736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP501693A Withdrawn JPH06210782A (en) | 1993-01-14 | 1993-01-14 | Porous molded product of fiber-reinforced thermally plastic resin and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06210782A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103410308A (en) * | 2013-06-28 | 2013-11-27 | 句容市百事特复合材料有限公司 | Plastic formwork of LFT material strip fabric reinforcing core layer and producing method thereof |
JP2015221563A (en) * | 2007-10-03 | 2015-12-10 | エイセル インダストリーズ リミテッド | Composite products |
-
1993
- 1993-01-14 JP JP501693A patent/JPH06210782A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015221563A (en) * | 2007-10-03 | 2015-12-10 | エイセル インダストリーズ リミテッド | Composite products |
CN103410308A (en) * | 2013-06-28 | 2013-11-27 | 句容市百事特复合材料有限公司 | Plastic formwork of LFT material strip fabric reinforcing core layer and producing method thereof |
CN103410308B (en) * | 2013-06-28 | 2017-02-08 | 句容市百事特复合材料有限公司 | Plastic formwork of LFT material strip fabric reinforcing core layer and producing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5773121A (en) | Syntactic foam core incorporating honeycomb structure for composites | |
KR950012800B1 (en) | Method of making laminated reinforced thermoplastics sheets and articles made therefrom | |
JPH04163109A (en) | Manufacture of fiber-reinforced thermoplastic resin molding material | |
JP2017128705A (en) | Carbon fiber sheet material, prepreg, laminate, molded body and method for manufacturing them | |
TW201545866A (en) | Preform, sheet material, and integrated sheet material | |
JPH07314565A (en) | Production of molded article | |
JPH06320655A (en) | Porous molded product made of fiber reinforced thermoplastic resin and molding method thereof | |
JPH059301A (en) | Stamping-molding material and stamped-molding | |
JP2797922B2 (en) | Wood-based thermoplastic molding plate | |
JP3032584B2 (en) | Method for improving appearance of fiber-reinforced thermoplastic resin molded product | |
JPH07103244B2 (en) | Stamping molding material | |
JPH06210782A (en) | Porous molded product of fiber-reinforced thermally plastic resin and its production | |
JP3056610B2 (en) | Laminated molded article and molding method | |
JP6231740B2 (en) | Molded product and its manufacturing method | |
JP3110162B2 (en) | Molding method of fiber-reinforced thermoplastic resin porous molded article | |
WO2002064361A1 (en) | Laminated resin material | |
JP3110207B2 (en) | Recycle molding method of fiber-reinforced thermoplastic resin porous molded product | |
JP3032582B2 (en) | Method for improving appearance of fiber-reinforced thermoplastic resin molded product | |
JPH03264314A (en) | Manufacture of fiber reinforced thermoplastic resin molded body | |
JPH08224793A (en) | Manufacture of fiber reinforced resin molding | |
JPH0411577B2 (en) | ||
JPH0516274A (en) | Laminated molding and molding method thereof | |
JP3012416B2 (en) | Plate for concrete formwork | |
JPH06134876A (en) | Molding of fiber reinforced thermoplastic resin porous molded object | |
JPH04331137A (en) | Laminated product and method for forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000404 |