JP3056610B2 - Laminated molded article and molding method - Google Patents

Laminated molded article and molding method

Info

Publication number
JP3056610B2
JP3056610B2 JP5109605A JP10960593A JP3056610B2 JP 3056610 B2 JP3056610 B2 JP 3056610B2 JP 5109605 A JP5109605 A JP 5109605A JP 10960593 A JP10960593 A JP 10960593A JP 3056610 B2 JP3056610 B2 JP 3056610B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
laminated
fiber
nonwoven material
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5109605A
Other languages
Japanese (ja)
Other versions
JPH06320670A (en
Inventor
忠道 野沢
哲 的場
隆夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP5109605A priority Critical patent/JP3056610B2/en
Publication of JPH06320670A publication Critical patent/JPH06320670A/en
Application granted granted Critical
Publication of JP3056610B2 publication Critical patent/JP3056610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、繊維強化熱可塑性樹脂
多孔質成形品を用いた積層成形品に関するものである。
本発明の積層成形品は、従来から木材が使用されていた
車両部材、建築・土木用資材等に広く使用することがで
きる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated molded product using a fiber-reinforced thermoplastic resin porous molded product.
INDUSTRIAL APPLICABILITY The laminated molded product of the present invention can be widely used for vehicle members, materials for construction and civil engineering, etc., in which wood is conventionally used.

【0002】[0002]

【従来の技術】近年、地球環境問題により、南洋材の伐
採が問題視されている。南洋材は、合板に加工され、車
両部材、建築・土木用資材等に大量に使用されており、
それに代わる素材の開発が望まれている。
2. Description of the Related Art In recent years, logging of southern timber has been regarded as a problem due to global environmental problems. Nanyang lumber is processed into plywood and is used in large quantities for vehicle components, construction and civil engineering materials, etc.
The development of alternative materials is desired.

【0003】木材代替品として、比較的長い強化繊維と
熱可塑性樹脂から構成されている繊維強化熱可塑性樹脂
成形品は、その特性として比較的軽量かつ、高い強度、
剛性を有していることから注目を集めている。しかし、
繊維強化熱可塑性樹脂成形品の密度は1〜1.3g/cm
3 で、木材合板の0.5〜0.7g/cm3 に比べて軽量
とはいえず、木材合板と同レベルの強度、剛性を発見さ
せるためには、製品の重量増加につながり、製品のコス
ト・アップに結び付くことになる。
As a wood substitute, a fiber-reinforced thermoplastic resin molded product composed of a relatively long reinforcing fiber and a thermoplastic resin is characterized by a relatively lightweight, high strength,
Attention has been paid to its rigidity. But,
The density of the fiber-reinforced thermoplastic resin molded product is 1 to 1.3 g / cm.
3 , it is not lighter than 0.5 to 0.7 g / cm 3 of wood plywood, and to discover the same level of strength and rigidity as wood plywood, it leads to an increase in the weight of the product. This leads to increased costs.

【0004】繊維強化熱可塑性樹脂成形品の機械的性質
の向上と、軽量化を図る方法として、抄造法(特公昭5
2−12283号公報、特公昭55−9119号公報)
によるシート状成形素材を用いた多孔質成形品の製造方
法(特開昭60−179234号公報、特開昭62−1
61529号公報)が提案されている。この多孔質成形
品は、シート状成形素材が成形前にマトリックスである
熱可塑性樹脂の軟化点または融点以上に加熱される際に
生じるシート膨張を利用して成形される。
As a method for improving the mechanical properties and reducing the weight of a fiber-reinforced thermoplastic resin molded product, a papermaking method (Japanese Patent Publication No.
JP-A-2-12283, JP-B-55-9119)
For producing a porous molded product using a sheet-shaped molding material by the method described in Japanese Patent Application Laid-Open Nos. 60-179234 and 62-1
No. 61529) has been proposed. This porous molded article is molded by utilizing sheet expansion that occurs when the sheet-shaped molding material is heated to a temperature higher than the softening point or melting point of the thermoplastic resin as the matrix before molding.

【0005】シート状成形素材は、抄造技術を応用し
て、直径3〜30μm、長さ3〜50mmの強化繊維と熱
可塑性樹脂粉末を均一に分散して不織材料を製造し、こ
の不織材料を原料とし加熱、加圧を行いさらに冷却して
製造される。抄造法で製造される不織材料は、強化繊維
がモノフィラメント(単一の繊維)の状態で分散してい
るため、非常にかさ高いという性質を示す。不織材料の
厚みは、強化繊維の含有量とその形状、抄造条件により
異なるが、シート状成形素材として一般的に用いられる
空隙を除去したシートに比べ10倍程度の厚みを有して
いる。シート状成形素材は、加熱により、熱可塑性樹脂
の強化繊維に対する結合力が弱まるため、強化繊維の残
留応力が解放され、元に戻ろうとするスプリングバック
により膨張する。この膨張したシート状成形素材を、成
形型内に挿入し、膨張したシートの厚み以下で、かつ内
包する空隙を残す範囲にクリアランスを設定し、目的と
する膨張倍率を得る条件で加圧、冷却成形することによ
り、多孔質成形品を製造することができる。
[0005] The sheet-shaped molding material is produced by applying a papermaking technique to uniformly disperse a reinforcing fiber having a diameter of 3 to 30 µm and a length of 3 to 50 mm and a thermoplastic resin powder to produce a nonwoven material. The material is used as a raw material, heated and pressurized, and then cooled to produce the product. The nonwoven material produced by the papermaking method exhibits a very bulky property because the reinforcing fibers are dispersed in a monofilament (single fiber) state. The thickness of the nonwoven material varies depending on the content of the reinforcing fiber, its shape, and papermaking conditions, but it is about 10 times as thick as a sheet from which voids are generally used as a sheet-shaped molding material. Since the bonding strength of the thermoplastic resin to the reinforcing fibers is weakened by heating, the sheet-shaped molding material is released from the residual stress of the reinforcing fibers, and expands due to a springback that tends to return to the original state. This expanded sheet-shaped molding material is inserted into a molding die, and a clearance is set within a range not more than the thickness of the expanded sheet and a gap to be included therein, and pressurized and cooled under a condition to obtain a target expansion ratio. By molding, a porous molded article can be manufactured.

【0006】多孔質成形品は、膨張により面積当りの強
度、弾性率は低下するが、重量一定で成形品の厚肉化を
図ることができ、材料力学的に曲げ強さが成形品板厚の
2乗に、曲げ剛性が成形品板厚の3乗に比例することか
ら、通常の繊維強化熱可塑性樹脂成形品に比べて、機械
的性質の向上と軽量化を図ることが可能となる。
Although the strength and elastic modulus per area of a porous molded product are reduced by expansion, the thickness of the molded product can be increased with a constant weight. Since the bending stiffness is proportional to the cube of the thickness of the molded product, the mechanical properties can be improved and the weight can be reduced as compared with a normal fiber-reinforced thermoplastic resin molded product.

【0007】しかし、上記の方法で成形された多孔質成
形品では、以下に述べるように機械的性質と成形品外観
が十分とはいえない。従来の多孔質成形品の成形方法の
一例を図2に示した。シート状成形素材14は、一般的
には遠赤外線加熱炉15内で熱可塑性樹脂の軟化点また
は融点以上に加熱される。シート状成形素材の膨張は、
最初に加熱されるシートの表面から始まり次第に熱が板
厚中心部におよぶにつれて全体的に膨張する。しかし膨
張によりシート内部には断熱空気層が形成されるため、
熱伝導率が低下する。この熱伝導率の低下は、不均一な
シート膨張の原因となる。シート状成形素材は、表面付
近が大きく膨張する(16)が、遠赤外線による熱がシ
ート内部に十分伝わらない状態で加熱されるために、内
部はほとんど膨張していない層(17)が形成される。
However, a porous molded article molded by the above method has insufficient mechanical properties and molded article appearance as described below. FIG. 2 shows an example of a conventional method for forming a porous molded product. The sheet-shaped molding material 14 is generally heated in a far infrared heating furnace 15 to a temperature higher than the softening point or melting point of the thermoplastic resin. The expansion of the sheet-shaped molding material
Starting from the surface of the sheet to be heated first, the heat gradually expands as the heat reaches the center of the sheet thickness. However, since an insulated air layer is formed inside the sheet due to expansion,
Thermal conductivity decreases. This decrease in thermal conductivity causes uneven sheet expansion. The sheet-shaped molding material expands greatly near the surface (16), but is heated in a state where far-infrared heat is not sufficiently transmitted to the inside of the sheet, so that a layer (17) that has hardly expanded inside is formed. You.

【0008】シート状成形素材は、無負荷の状態で膨張
するため表面部に凹凸18が生じる。表面部の凹凸は、
シート状成形素材中の強化繊維がランダム配向してお
り、スプリングバックがシート内で不均一に発生するた
めに生じる。また、シート表面では、強化繊維がスプリ
ングバックにより露出し(19)、外観が著しく悪化す
る。
Since the sheet-shaped molding material expands under no load, irregularities 18 occur on the surface. The irregularities on the surface are
This occurs because the reinforcing fibers in the sheet-shaped molding material are randomly oriented, and springback occurs unevenly in the sheet. Further, on the sheet surface, the reinforcing fibers are exposed by springback (19), and the appearance is significantly deteriorated.

【0009】この膨張したシート状成形素材を、冷却プ
レス盤13内に挿入し、クリアランスを膨張したシート
の厚み以下で、かつ内包する空隙を残す範囲を設定し、
目的とする膨張倍率を得る条件で加圧、冷却成形して、
多孔質成形品20を製造する。
The expanded sheet-shaped molding material is inserted into the cooling press platen 13, and the clearance is set to be equal to or less than the thickness of the expanded sheet and to leave a gap to be included therein,
Pressurizing and cooling under conditions to obtain the desired expansion ratio,
The porous molded product 20 is manufactured.

【0010】多孔質成形品の膨張状態は、シート状成形
素材と同様に表面付近が大きくなり内部がほとんど膨張
していないため、製品が曲げられる場合に引張り、圧縮
の荷重が加わる表面部が、機械的に弱い構造になり機械
的性質が低下する。さらに、成形品の外観が加熱シート
の外観を受け継ぐために、シート表面の凹凸によるしわ
21の発生、強化繊維の露出19による外観低下が生じ
る。
[0010] The expanded state of the porous molded product is similar to that of the sheet-shaped molded material, because the vicinity of the surface is large and the inside is hardly expanded. Therefore, when the product is bent, the surface portion to which the load of tension and compression is applied, It becomes a mechanically weak structure and its mechanical properties deteriorate. Furthermore, since the appearance of the molded article inherits the appearance of the heating sheet, wrinkles 21 are generated due to unevenness of the sheet surface, and the appearance is reduced due to exposure 19 of the reinforcing fibers.

【0011】[0011]

【発明が解決しようとする課題】本発明は、木材代替品
等として有用な機械的性質、外観を改良した繊維強化熱
可塑性樹脂の積層成形品とその成形方法を提供する。
SUMMARY OF THE INVENTION The present invention provides a laminated molded article of a fiber-reinforced thermoplastic resin having improved mechanical properties and appearance, which is useful as a wood substitute or the like, and a method of molding the same.

【0012】[0012]

【課題を解決するための手段】本発明の要旨とするとこ
ろは次の通りである。 (1)強化繊維と熱可塑性樹脂の抄造法による不織材料
からなる多孔質の繊維強化熱可塑性樹脂層の表面に、ホ
ットメルトタイプ接着性樹脂層を介して金属薄板が積層
されてなることを特徴とする積層成形品。 (2)多孔質の繊維強化熱可塑性樹脂の見かけ密度が、
0.3〜1g/cm3 である上記(1)記載の積層成形
品。
The gist of the present invention is as follows. (1) A metal thin plate laminated on a surface of a porous fiber reinforced thermoplastic resin layer made of a nonwoven material by a papermaking method of reinforcing fibers and thermoplastic resin via a hot melt type adhesive resin layer. Characteristic laminated molded product. (2) The apparent density of the porous fiber-reinforced thermoplastic resin is
The laminated molded product according to the above (1), wherein the thickness is 0.3 to 1 g / cm 3 .

【0013】(3)抄造法による強化繊維と熱可塑性樹
脂からなる不織材料の表面にホットメルトタイプ接着性
樹脂のフィルムを介して金属薄板を重ね合わせ、熱可塑
性樹脂の融点または軟化点以上に加熱して、熱可塑性樹
脂が溶融した状態で加圧し、続いて熱可塑性樹脂が溶融
した状態のままで加圧を除去し、不織材料を強化繊維の
スプリングバックにより膨張させ、しかる後、形成され
た積層体を膨張厚み以下に加圧、冷却成形することを特
徴とする積層成形品の成形方法。
(3) A thin metal plate is superimposed on the surface of a non-woven material made of a reinforcing fiber and a thermoplastic resin by a papermaking method via a hot-melt type adhesive resin film and is heated to a temperature higher than the melting point or softening point of the thermoplastic resin. Heat and pressurize the thermoplastic in a molten state, then remove the pressurization while the thermoplastic is in a molten state, expand the nonwoven material by springback of reinforced fibers, and then form A method of forming a laminated molded product, comprising pressurizing and cooling the laminated body to an expanded thickness or less.

【0014】本発明の積層成形品およびその成形方法の
一例を図1に示した。本発明の積層成形品1は、多孔質
の繊維強化熱可塑性樹脂層2と金属薄板3が、ホットメ
ルトタイプ接着性樹脂層(以下接着性樹脂層と称する)
4により接着されており、繊維強化熱可塑性樹脂層の見
かけ密度としては0.3〜1g/cm3 が好ましい。
FIG. 1 shows an example of the laminated molded article and the molding method of the present invention. In the laminated molded product 1 of the present invention, the porous fiber-reinforced thermoplastic resin layer 2 and the metal sheet 3 are formed by a hot-melt type adhesive resin layer (hereinafter referred to as an adhesive resin layer).
4, and the apparent density of the fiber reinforced thermoplastic resin layer is preferably 0.3 to 1 g / cm 3 .

【0015】繊維強化熱可塑性樹脂層は、均一な膨張が
なされ、強化繊維5の交差部分が熱可塑性樹脂6で効率
よく接着されているために、優れた機械的性質が得られ
る。さらに、繊維強化熱可塑性樹脂層の表面部は、接着
性樹脂層で強固に接着された金属薄板が積層・強化され
ているために、より優れた機械的性質が発現する。金属
薄板は、用途や希望される特性に応じて、片面または両
面に積層する。
The fiber-reinforced thermoplastic resin layer is uniformly expanded, and the intersection of the reinforcing fibers 5 is efficiently bonded with the thermoplastic resin 6, so that excellent mechanical properties can be obtained. Further, the surface portion of the fiber-reinforced thermoplastic resin layer has more excellent mechanical properties because the metal sheet firmly bonded with the adhesive resin layer is laminated and reinforced. The metal sheet is laminated on one side or both sides depending on the application and the desired properties.

【0016】抄造法により製造された強化繊維5と熱可
塑性樹脂6からなる不織材料7の表面に接着性樹脂のフ
ィルム8と金属薄板3を重ね合わせ、この両面に平滑面
を有する板状体9を重ね合わせて加熱プレス盤10内に
挿入し、熱可塑性樹脂が溶融するまで加熱する。熱可塑
性樹脂が溶融するまで加熱された後、強化繊維の間に熱
可塑性樹脂を含浸させるため、繊維破損が生じない程度
の圧力で加圧を行う(11)。続いて、熱可塑性樹脂が
溶融している状態のままで加圧を除去し、不織材料を強
化繊維のスプリングバックにより膨張させ(12)、板
状体を重ね合わせた状態のままで、冷却プレス盤13内
に挿入し、クリアランスをこれらの膨張した積層体の厚
み以下で、かつ繊維強化熱可塑性樹脂層に内包する空隙
を残す範囲に設定して、目的とする膨張倍率を得る条件
で加圧、冷却成形し、板状体を取り外すことにより、本
発明の積層成形品1を製造する。
A film 8 of an adhesive resin and a thin metal plate 3 are superimposed on the surface of a nonwoven material 7 made of a reinforcing fiber 5 and a thermoplastic resin 6 produced by a papermaking method, and a plate-like body having smooth surfaces on both surfaces thereof 9 are superimposed and inserted into the heating press board 10 and heated until the thermoplastic resin is melted. After the thermoplastic resin is heated until it melts, pressure is applied at such a pressure that fiber breakage does not occur in order to impregnate the thermoplastic resin between the reinforcing fibers (11). Subsequently, the pressure is removed while the thermoplastic resin is in a molten state, the nonwoven material is expanded by a spring back of the reinforcing fiber (12), and the cooling is performed while the plate-like bodies are overlapped. It is inserted into the press platen 13 and the clearance is set to a value not larger than the thickness of the expanded laminate and to leave a void included in the fiber-reinforced thermoplastic resin layer, and the clearance is adjusted under the conditions to obtain the desired expansion ratio. The laminated molded article 1 of the present invention is manufactured by performing pressure, cooling molding, and removing the plate-like body.

【0017】図1の成形方法では、加熱、加圧工程と加
圧、冷却工程を別々の専用プレス機で実施したが、一台
のプレス機により加熱、加圧、解圧、冷却成形を実施す
ることもできる。また、加熱プレス盤での不織材料の加
熱時間を短縮することを目的として、不織材料を予熱す
ることは成形サイクルの短縮につながり好ましい。不織
材料の予熱には、不織材料の通気性を利用して熱風を通
過させ短時間に加熱する方法やオーブンによる加熱が行
われる。
In the molding method shown in FIG. 1, the heating, pressurizing step and the pressurizing and cooling steps are performed by separate dedicated press machines. However, the heating, pressurizing, decompressing, and cooling forming are performed by one press machine. You can also. Preheating the nonwoven material for the purpose of shortening the heating time of the nonwoven material on the heating press board is preferable because it shortens the molding cycle. For the preheating of the nonwoven material, a method of passing hot air to heat the nonwoven material in a short time by utilizing the air permeability of the nonwoven material, or heating by an oven is performed.

【0018】不織材料の代わりに、不織材料を加熱、加
圧、冷却成形したシート状成形素材を使用した場合も、
同様に強化繊維のスプリングバックによる膨張が発生
し、本発明の積層成形品を得ることができる。但し、こ
の場合はシート状成形素材の成形工程により、全工程が
長くなるため効率的ではない。この方法で成形された積
層成形品は、周囲の形状が不安定なため、実際には成形
品の周囲をトリミングすることにより製品とすることが
できる。
In the case where a sheet-shaped material obtained by heating, pressing and cooling the nonwoven material is used instead of the nonwoven material,
Similarly, expansion of the reinforcing fibers due to springback occurs, and the laminated molded product of the present invention can be obtained. However, in this case, the molding process of the sheet-like molding material is not efficient because the entire process becomes longer. Since the peripheral shape of the laminated molded article molded by this method is unstable, it can be actually obtained as a product by trimming the periphery of the molded article.

【0019】不織材料の膨張倍率は、強化繊維のスプリ
ングバックによって生じるため、強化繊維の種類(剛
性)、その含有量によって変化するが最大5倍程度であ
る。そのため繊維強化熱可塑性樹脂層の多孔質の度合
は、見かけ密度を0.3〜1g/cm3 の範囲の中から、
用途によって決定する。
Since the expansion ratio of the nonwoven material is caused by the springback of the reinforcing fibers, it varies depending on the type (rigidity) and the content of the reinforcing fibers, but is at most about 5 times. Degree of porous Therefore the fiber-reinforced thermoplastic resin layer, the apparent density from the range of 0.3 to 1 g / cm 3,
Determined by the application.

【0020】不織材料の原料となる強化繊維としては、
ガラス繊維、炭素繊維、金属繊維のほかに無機繊維、有
機繊維、用途によってはこれらの混合物が用いられる。
強化繊維の形状は、直径が取り扱いの容易さと経済的な
観点により3μm以上で、十分な強度を発現させるため
に30μm以下にすることが好ましく、繊維長は強度発
現の観点から3mm以上で、均一な分散が可能な50mm以
下にすることが望ましい。また強化繊維は、水中での良
好な分散を目的として親水性を向上するために水溶性高
分子、湿潤剤で、強度発現を目的として熱可塑性樹脂と
の接着性を向上するためにシランカップリング剤等で、
表面処理を行うことが望ましい。
The reinforcing fibers used as the raw material of the nonwoven material include:
In addition to glass fibers, carbon fibers, and metal fibers, inorganic fibers, organic fibers, and mixtures thereof depending on the application are used.
The shape of the reinforcing fiber is preferably 3 μm or more from the viewpoint of ease of handling and economics, and is preferably 30 μm or less in order to develop sufficient strength. The fiber length is 3 mm or more from the viewpoint of strength development and uniform. It is desirable that the thickness be 50 mm or less, which allows for excellent dispersion. In addition, the reinforcing fiber is a water-soluble polymer and a wetting agent for improving hydrophilicity for the purpose of good dispersion in water, and silane coupling for improving adhesion with a thermoplastic resin for the purpose of developing strength. Agent, etc.
It is desirable to perform a surface treatment.

【0021】熱可塑性樹脂は、ポリエチレン、ポリプロ
ピレン、ポリスチレン、スチレン−ブタジエン−アクリ
ロニトリル共重合体、スチレン−アクリロニトリル共重
合体、ポリアミド、ポリカーボネート、ポリアセター
ル、ポリエチレンテレフタレート、ポリブチレンテレフ
タレート、ポリフェニレンオキシド、ポリスルホン、ポ
リフェニレンスルフィド等の樹脂であり、またこれらの
2種類またはそれ以上の混合物をも含み、これらに一般
的に用いられる可塑剤、熱安定剤、光安定剤、充填材、
染顔料、耐衝撃剤、増量材、核剤、加工助剤等を添加す
ることもできる。熱可塑性樹脂の形状は、ペレット、パ
ウダー、フレーク、繊維状のものを適宜選択して使用す
る。
Thermoplastic resins include polyethylene, polypropylene, polystyrene, styrene-butadiene-acrylonitrile copolymer, styrene-acrylonitrile copolymer, polyamide, polycarbonate, polyacetal, polyethylene terephthalate, polybutylene terephthalate, polyphenylene oxide, polysulfone, and polyphenylene sulfide. And the like, and also includes a mixture of two or more of these, and generally used plasticizers, heat stabilizers, light stabilizers, fillers,
Dyes and pigments, impact modifiers, extenders, nucleating agents, processing aids and the like can also be added. As the shape of the thermoplastic resin, pellets, powders, flakes, and fibrous shapes are appropriately selected and used.

【0022】強化繊維の含有量は、スプリングバックに
よる安定した膨張が生じる10体積%以上で、強化繊維
と熱可塑性樹脂との接着が可能で機械的性質を十分発現
する40体積%以下とすることが望ましい。
The content of the reinforcing fiber should be 10% by volume or more at which stable expansion by springback occurs, and 40% by volume or less at which bonding between the reinforcing fiber and the thermoplastic resin is possible and sufficient mechanical properties are exhibited. Is desirable.

【0023】接着性樹脂は取扱い性の面からフィルム状
で用い、不織材料の加熱時に溶融し、冷却成形により繊
維強化熱可塑性樹脂層と金属薄板を固着する。接着性樹
脂としては、不飽和カルボン酸またはその誘導体(酸無
水物、エステル、アミド、イミド、金属塩等)でグラフ
ト変性したポリオレフィン、例えば、ポリエチレン、エ
チレン−プロピレン共重合体、エチレン−酢酸ビニル共
重合体、エチレン−アクリル酸エステル共重合体、エチ
レン−アクリル酸共重合体等のエチレン系樹脂、ポリプ
ロピレン、プロピレン−エチレン共重合体等のプロピレ
ン系樹脂、およびこれらに炭化水素エラストマー(ブチ
ルゴム等)を添加したものを挙げることができる。接着
性樹脂のフィルムは、これらの中から繊維強化熱可塑性
樹脂に用いた熱可塑性樹脂の相溶性、融点を考慮して適
宜選択する。
The adhesive resin is used in the form of a film from the viewpoint of handleability, is melted when the nonwoven material is heated, and is fixed to the fiber reinforced thermoplastic resin layer and the metal sheet by cooling. Examples of the adhesive resin include polyolefins graft-modified with unsaturated carboxylic acids or derivatives thereof (acid anhydrides, esters, amides, imides, metal salts, etc.), for example, polyethylene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers. Polymers, ethylene resins such as ethylene-acrylate copolymers, ethylene-acrylic acid copolymers, and propylene resins such as polypropylene and propylene-ethylene copolymers, and hydrocarbon elastomers (such as butyl rubber). Additions can be given. The film of the adhesive resin is appropriately selected from these in consideration of the compatibility and melting point of the thermoplastic resin used for the fiber-reinforced thermoplastic resin.

【0024】金属薄板としては、鋼板、ステンレス鋼
板、アルミニウム板、銅板、真ちゅう板等を用いること
ができ、その厚みは特に限定する必要はないが好ましい
範囲は0.01〜10mmで用途に応じて適宜選択する。
また、これらの金属薄板の表面に化粧模様等の凹凸加工
を施したものを使用することもできる。
As the metal thin plate, a steel plate, a stainless steel plate, an aluminum plate, a copper plate, a brass plate, or the like can be used, and the thickness thereof is not particularly limited, but the preferred range is 0.01 to 10 mm depending on the use. Select as appropriate.
In addition, those obtained by subjecting the surfaces of these metal sheets to irregularities such as decorative patterns can be used.

【0025】板状体としては、シート状成形素材の製造
工程と同様のものを使用する。シート状成形素材は、不
織材料の両面に平滑面を有する板状体を重ね合わせ、熱
可塑性樹脂の融点または軟化点以上に加熱した後、加圧
することにより強化繊維の間に熱可塑性樹脂を含浸さ
せ、さらに冷却して製造される。板状体の材質は、加熱
温度に耐え得るものであればよく金属、無機物、樹脂製
のものが挙げられる。これらの板状体は、熱可塑性樹脂
が溶融状態では密着するが、非溶融状態では接着しない
性質を有する必要があり、シート状成形素材の離型性を
考慮してテフロン樹脂等のコーティングを施したり、シ
リコン等の離型剤処理が行われる場合もある。
As the plate-like body, the same one as in the production process of the sheet-like molding material is used. The sheet-shaped molding material is obtained by superposing a plate-like body having a smooth surface on both sides of a nonwoven material, heating the thermoplastic resin to a temperature higher than the melting point or softening point, and then pressing the thermoplastic resin between the reinforcing fibers. It is produced by impregnation and further cooling. The material of the plate-shaped member may be any material that can withstand the heating temperature, and examples thereof include metals, inorganic materials, and resins. These plate-like bodies need to have a property that the thermoplastic resin adheres in the molten state but does not adhere in the non-molten state, and is coated with a Teflon resin or the like in consideration of the release property of the sheet-shaped molding material. In some cases, a release agent treatment such as silicon is performed.

【0026】不織材料の加熱は、熱可塑性樹脂が固化し
ている状態でも強化繊維が破損しない非常に小さな加圧
下で、温度調節された加熱プレス盤の接触加熱で行われ
る。不織材料の熱可塑性樹脂は外側から徐々に溶融する
が、それに従って板状体間の距離(不織材料の厚み)は
低下し、均一加熱が実施される。続いて、不織材料の熱
可塑性樹脂が溶融した状態で、強化繊維の間に熱可塑性
樹脂を含浸するため、繊維破損が生じない圧力で加圧を
行う。さらに、熱可塑性樹脂が溶融している状態で、加
圧を除去する。不織材料は、強化繊維がモノフィラメン
ト(単一の繊維)の状態で分散しているため、スプリン
グバックにより大きく膨張する。また、不織材料は均一
加熱されているため、均一な膨張が得られる。この膨張
した積層体に板状体が重ね合わされた状態のままで冷却
プレス盤内に挿入し、目的とする膨張倍率を得るクリア
ランス設定を行い、加圧、冷却成形し、繊維強化熱可塑
性樹脂層の膨張状態を凍結した後、板状体を取り外すこ
とによって本発明の積層成形品を成形する。
The heating of the nonwoven material is performed by contact heating of a temperature-controlled heating press plate under a very small pressure under which the reinforcing fibers are not damaged even in a state where the thermoplastic resin is solidified. Although the thermoplastic resin of the nonwoven material gradually melts from the outside, the distance between the plate-like bodies (thickness of the nonwoven material) decreases accordingly, and uniform heating is performed. Subsequently, in a state where the thermoplastic resin of the nonwoven material is melted, the thermoplastic resin is impregnated between the reinforcing fibers, so that the pressure is applied at a pressure that does not cause fiber breakage. Further, the pressure is removed while the thermoplastic resin is molten. The nonwoven material greatly expands due to springback because the reinforcing fibers are dispersed in a monofilament (single fiber) state. Further, since the nonwoven material is uniformly heated, uniform expansion can be obtained. With the plate-like body superimposed on the expanded laminate, insert it into the cooling press board, set the clearance to obtain the desired expansion ratio, pressurize, cool, and form the fiber-reinforced thermoplastic resin layer. After freezing the expanded state of the above, the laminated article of the present invention is formed by removing the plate-like body.

【0027】不織材料の加圧含浸により、強化繊維と熱
可塑性樹脂の濡れ性が向上するため、繊維強化熱可塑性
樹脂層の均一な膨張において、強化繊維の交差部分が熱
可塑性樹脂で効率よく接着され、繊維強化熱可塑性樹脂
層の機械的性質が改善される。
Since the wettability between the reinforcing fiber and the thermoplastic resin is improved by the pressure impregnation of the nonwoven material, the intersection of the reinforcing fibers is efficiently made of the thermoplastic resin in the uniform expansion of the fiber-reinforced thermoplastic resin layer. The mechanical properties of the fiber reinforced thermoplastic resin layer are improved.

【0028】不織材料の金属薄板および接着性樹脂のフ
ィルムが積層された側では、加圧時に不織材料中の熱可
塑性樹脂が金属薄板との界面に浸み出し、接着性樹脂と
相まって安定した樹脂リッチ層を形成し、両者を強固に
密着する。同様に、金属薄板および接着性樹脂のフィル
ムが積層されていない側においても、加圧時に熱可塑性
樹脂が板状体との界面に浸み出し、樹脂リッチ層を形成
し両者を強固に密着する。このため、不織材料は金属薄
板および板状体の表面に拘束された状態で膨張し、金属
薄板とは良好な接着強度が得られ、金属薄板が積層され
ていない成形品表面においても、板状体が取り外された
後に板状体表面が転写され、良好な樹脂リッチ平滑表面
が得られる。
On the side where the thin metal sheet of the nonwoven material and the film of the adhesive resin are laminated, the thermoplastic resin in the nonwoven material leaches into the interface with the thin metal sheet when pressurized, and is stable together with the adhesive resin. A resin-rich layer is formed, and both are firmly adhered to each other. Similarly, on the side where the thin metal sheet and the film of the adhesive resin are not laminated, the thermoplastic resin oozes out at the interface with the plate-like body at the time of pressurization, forms a resin-rich layer, and firmly adheres both. . For this reason, the nonwoven material expands in a state where it is constrained by the surfaces of the sheet metal and the plate-like body, and a good adhesive strength is obtained with the sheet metal. After the shape is removed, the surface of the plate is transferred, and a good resin-rich smooth surface is obtained.

【0029】図1の成形方法では、積層体の両面に板状
体を重ね合わせているが、金属薄板が積層される表面で
は、金属薄板が板状体の役割を果たすためハンドリング
性等の工程上の問題がなければ、板状体を重ね合わせる
必要はない。また、前述したように一台のプレス機によ
り加熱、加圧、解圧、冷却成形を実施する場合には、
状体の役割をプレス盤が果たすため、金属薄板が積層さ
れていない積層体表面においても板状体の使用を省略す
ることもできる。
In the forming method shown in FIG. 1, the plate is superimposed on both sides of the laminate. On the surface on which the metal sheet is laminated, the metal sheet plays the role of the plate and the process such as handling is performed. If there is no problem, there is no need to overlap the plates. The heating by single pressing machine as described above, pressure, Kai圧, when carrying out the cooling molding, plate
Since the press plate plays the role of a sheet, the metal sheets are stacked
It is also possible to omit the use of the plate-like body even on the surface of the laminate that is not provided.

【0030】本発明の積層成形品は、良好な機械的性質
と外観を有しているため、従来から木材が使用されてい
る産業用資材に、優れた木材代替品として広く適用する
ことができる。
Since the laminated molded article of the present invention has good mechanical properties and appearance, it can be widely applied as an excellent wood substitute to industrial materials in which wood is conventionally used. .

【0031】[0031]

【実施例】以下実施例を挙げて、本発明を詳細に説明す
る。 実施例1 強化繊維として直径10μm、長さ13mmのガラス繊維
と、熱可塑性樹脂として、直径3mmの球状ペレットを機
械粉砕し、その粉砕品をふるい分けにより70mesh(開
口径0.212mm)から10mesh(開口径1.7mm)ま
でに分級したポリプロピレン樹脂粉末を用いて、抄造法
によりガラス繊維含有量45重量%(22.3体積%)
とポリプロピレン樹脂55重量%(77.7体積%)の
組成で、坪量(面積当りの重量)が1200g/m2
不織材料を製造した。
The present invention will be described in detail with reference to the following examples. Example 1 A glass fiber having a diameter of 10 μm and a length of 13 mm as a reinforcing fiber and a spherical pellet having a diameter of 3 mm as a thermoplastic resin were mechanically pulverized, and the pulverized product was sieved to 70 mesh (opening 0.212 mm) to 10 mesh (opening). Glass fiber content of 45% by weight (22.3% by volume) using a polypropylene resin powder classified to a diameter of 1.7 mm) by a papermaking method.
A non-woven material having a basis weight (weight per area) of 1200 g / m 2 was produced with a composition of propylene and 55% by weight (77.7% by volume) of a polypropylene resin.

【0032】不織材料を600×600mmに切断して5
枚積層し、その片面に接着性樹脂のフィルムとして無水
マレイン酸をグラフトさせた変性ポリプロピレン樹脂フ
ィルム(厚み35μm)1枚と鋼板(厚み0.2mm)1
枚を積層した。さらに、この積層体の両面に板状体とし
て平滑表面を有するステンレス鋼製鏡板を重ね合わせ
て、本発明の積層成形品を成形した。積層体を、210
℃に温度設定された加熱プレス盤内に挿入し、圧力2kg
f/cm2 の加圧下で不織材料の中心部温度が190℃以上
に昇温するまで、約7分間予熱した。この温度で、ポリ
プロピレン樹脂は十分溶融していた。続いて、圧力5kg
f/cm2 で、1分間加圧し、さらに積層体を冷却プレス盤
に挿入し、プレス盤のクリアランスをスペーサーにより
設定して、圧力5kgf/cm2 で約5分間、加圧、冷却成形
し、成形後鏡板を取り外して、板厚10mm、繊維強化熱
可塑性樹脂層の見かけ密度が0.62g/cm3 の積層成
形品を得た。
The non-woven material was cut into 600 × 600 mm
A modified polypropylene resin film (thickness: 35 μm) and a steel plate (thickness: 0.2 mm) in which maleic anhydride was grafted as an adhesive resin film on one side
The sheets were stacked. Further, a stainless steel end plate having a smooth surface as a plate-like body was superimposed on both surfaces of the laminate to form a laminate molded product of the present invention. Laminate 210
Inserted into a heating press set at a temperature of ℃, pressure 2kg
It was preheated for about 7 minutes under a pressure of f / cm 2 until the central temperature of the nonwoven material rose to 190 ° C. or higher. At this temperature, the polypropylene resin was sufficiently molten. Then, pressure 5kg
Pressing for 1 minute at f / cm 2 , further inserting the laminate into a cooling press board, setting the clearance of the press board with a spacer, and pressing and cooling at a pressure of 5 kgf / cm 2 for about 5 minutes, After molding, the end plate was removed to obtain a laminated molded product having a thickness of 10 mm and an apparent density of the fiber-reinforced thermoplastic resin layer of 0.62 g / cm 3 .

【0033】加熱加圧後の積層体は、加熱盤から冷却盤
に移動される短時間で、強化繊維のスプリングバックに
より直ちに膨張した。また、加熱加圧後の不織材料と鋼
板および鏡板は非常に強固に密着しており、不織材料の
表面が両者の表面に拘束された状態で膨張していること
が確認された。
The laminate after the heating and pressurization was immediately expanded by the springback of the reinforcing fibers in a short time when the laminate was moved from the heating plate to the cooling plate. In addition, it was confirmed that the nonwoven material, the steel plate and the end plate after the heating and pressurization were in very close contact with each other, and that the surface of the nonwoven material was expanded while being constrained by both surfaces.

【0034】積層成形品の鋼板は、膨張した繊維強化熱
可塑性樹脂層と強固に接着されていた。また、接着性樹
脂フィルムと鋼板が積層されていない表面は、安定した
樹脂リッチ層が形成され、ガラス繊維の露出がなく、鏡
板の平滑面が転写された良好な外観を呈していた。
The steel sheet of the laminated molded product was firmly bonded to the expanded fiber-reinforced thermoplastic resin layer. In addition, the surface where the adhesive resin film and the steel sheet were not laminated had a good appearance in which a stable resin-rich layer was formed, the glass fiber was not exposed, and the smooth surface of the mirror plate was transferred.

【0035】光学顕微鏡、走査電子顕微鏡観察により、
繊維強化熱可塑性樹脂層中のガラス繊維の交差部分がポ
リプロピレン樹脂で効率よく接着され、均一な膨張が実
施されていることが確認された。この積層成形品から幅
70mm、長さ200mmの試験片を採取し、スパン150
mmの3点曲げ試験を行った。結果を表1に示した。
By observation with an optical microscope and a scanning electron microscope,
It was confirmed that the intersection of the glass fibers in the fiber reinforced thermoplastic resin layer was efficiently bonded with the polypropylene resin, and uniform expansion was performed. A test piece having a width of 70 mm and a length of 200 mm was sampled from the laminated molded product, and a span 150
mm three-point bending test was performed. The results are shown in Table 1.

【0036】実施例2 実施例1の不織材料を600×600mmに切断して5枚
積層し、その両面に実施例1で用いた接着性樹脂のフィ
ルムおよび鋼板を各1枚積層して、実施例1と同様に本
発明の積層成形品(繊維強化熱可塑性樹脂層の見かけ密
度が0.66g/cm3 )を成形した。
Example 2 Five pieces of the nonwoven material of Example 1 were cut into 600 × 600 mm, and five sheets were laminated. On each of the two surfaces, a film of the adhesive resin used in Example 1 and a steel sheet were laminated. In the same manner as in Example 1, a laminated molded product of the present invention (the apparent density of the fiber-reinforced thermoplastic resin layer was 0.66 g / cm 3 ) was molded.

【0037】実施例3 実施例1の不織材料を600×600mmに切断して4枚
積層し、その両面に実施例1で用いた接着性樹脂のフィ
ルムおよび鋼板を各1枚積層して、実施例1と同様に本
発明の積層成形品(繊維強化熱可塑性樹脂層の見かけ密
度が0.51g/cm3 )を成形した。
Example 3 The nonwoven material of Example 1 was cut into a piece of 600 × 600 mm and four sheets were laminated. On each of both surfaces, a film of the adhesive resin used in Example 1 and a steel sheet were laminated. In the same manner as in Example 1, a laminated molded product of the present invention (the apparent density of the fiber-reinforced thermoplastic resin layer was 0.51 g / cm 3 ) was molded.

【0038】実施例4 実施例1の不織材料を600×600mmに切断して3枚
積層し、その両面に実施例1で用いた接着性樹脂のフィ
ルムおよび鋼板を各1枚積層して、実施例1と同様に本
発明の積層成形品(繊維強化熱可塑性樹脂層の見かけ密
度が0.39g/cm3 )を成形した。
Example 4 Three pieces of the nonwoven material of Example 1 were cut into 600 × 600 mm, and three sheets were laminated. On each of the two faces, one film of the adhesive resin used in Example 1 and one steel sheet were laminated. In the same manner as in Example 1, a laminated molded product of the present invention (the apparent density of the fiber-reinforced thermoplastic resin layer was 0.39 g / cm 3 ) was molded.

【0039】実施例5 実施例1の不織材料を600×600mmに切断して5枚
積層し、その両面に実施例1で用いた接着性樹脂のフィ
ルムおよびアルミニウム板(厚み0.2mm)を各1枚積
層して、実施例1と同様に本発明の積層成形品(繊維強
化熱可塑性樹脂層の見かけ密度が0.66g/cm3 )を
成形した。
Example 5 Five pieces of the nonwoven material of Example 1 were cut into 600 × 600 mm and laminated, and the film of the adhesive resin and the aluminum plate (thickness 0.2 mm) used in Example 1 were laminated on both sides thereof. One sheet was laminated, and a laminated molded article of the present invention (the apparent density of the fiber-reinforced thermoplastic resin layer was 0.66 g / cm 3 ) was molded in the same manner as in Example 1.

【0040】実施例2,3,4,5の積層成形品は、鋼
板およびアルミニウム板が膨張した繊維強化熱可塑性樹
脂層と強固に接着し、繊維強化熱可塑性樹脂層中のガラ
ス繊維の交差部分がポリプロピレン樹脂で効率よく接着
され、均一な膨張が実施されていることが確認された。
これらの積層成形品から幅70mm、長さ200mmの試験
片を採取し、スパン150mmの3点曲げ試験を行った。
結果を表1に示した。
The laminated molded articles of Examples 2, 3, 4 and 5 were bonded firmly to the expanded fiber-reinforced thermoplastic resin layer of the steel plate and the aluminum plate, and the intersections of the glass fibers in the fiber-reinforced thermoplastic resin layer. Was efficiently adhered with a polypropylene resin, and uniform expansion was confirmed.
A test piece having a width of 70 mm and a length of 200 mm was sampled from these laminated molded products and subjected to a three-point bending test with a span of 150 mm.
The results are shown in Table 1.

【0041】比較例1 実施例1の不織材料を600×600mmに切断して7枚
積層し、その両面に板状体としてステンレス鋼製鏡板を
重ね合わせて、空隙を除去した板状成形品を成形した。
積層体を、210℃に温度設定された加熱プレス盤内に
挿入し、圧力2kgf/cm2 の加圧下で不織材料の中心部温
度が190℃以上に昇温するまで、約7分間予熱した。
続いて、圧力5kgf/cm2 で、1分間加圧し、さらにこの
積層体を冷却プレス盤に挿入し、圧力5kgf/cm2 で約5
分間、加圧、冷却することにより板状成形品を成形し
た。この場合は、プレス盤のクリアランス設定は行わ
ず、加熱加圧と同様に、不織材料が直接加圧された状態
で冷却成形した。冷却後、鏡板を取り外し板厚6.8mm
の板状成形品を得た。
Comparative Example 1 The nonwoven material of Example 1 was cut into 600 × 600 mm, and seven sheets were laminated. A stainless steel mirror plate was superimposed on both sides of the nonwoven material as a plate-like body, and a plate-like molded product from which voids were removed was prepared. Was molded.
The laminate was inserted into a heating press set at a temperature of 210 ° C. and preheated under a pressure of 2 kgf / cm 2 for about 7 minutes until the central temperature of the nonwoven material rose to 190 ° C. or more. .
Subsequently, pressure was applied for 1 minute at a pressure of 5 kgf / cm 2 , and the laminated body was inserted into a cooling press board, and the pressure was 5 kgf / cm 2 for about 5 minutes.
A plate-like molded product was formed by pressurizing and cooling for minutes. In this case, no clearance was set for the press board, and the non-woven material was cooled and formed in a state where the non-woven material was directly pressed, as in the case of heating and pressing. After cooling, remove the end plate and plate thickness 6.8mm
Was obtained.

【0042】板状成形品は、表面が樹脂リッチでガラス
繊維の露出がなく、良好な外観を呈していた。また、成
形品内部の強化繊維が均一に分散しており、その間には
熱可塑性樹脂が十分含浸していることが確認された。こ
の成形品から幅70mm、長さ200mmの試験片を採取
し、スパン150mmの3点曲げ試験を行った。結果を、
表1に示した。
The plate-like molded article had a good appearance with no resin exposed on the surface and no glass fiber exposed. In addition, it was confirmed that the reinforcing fibers inside the molded product were uniformly dispersed, and the thermoplastic resin was sufficiently impregnated between them. A test piece having a width of 70 mm and a length of 200 mm was sampled from this molded product and subjected to a three-point bending test with a span of 150 mm. The result
The results are shown in Table 1.

【0043】比較例2 比較例1で成形された板状成形品を成形素材として、従
来の方法により膨張成形品を成形した。成形素材を、遠
赤外線加熱炉により表面温度が210℃に昇温するまで
約7分間加熱した。この際、成形素材は表面付近が大き
く膨張し、内部は十分加熱されていない状態であった。
また、表面部には凹凸が発生し、ガラス繊維がスプリン
グバックにより露出していることが確認された。加熱さ
れた成形素材を冷却プレス盤に挿入し、プレス盤のクリ
アランスをスペーサーにより設定して、圧力5kgf/cm2
で約5分間、加圧、冷却成形し、板厚10mmの膨張成形
品を得た。
Comparative Example 2 An expansion molded product was molded by a conventional method using the plate-like molded product molded in Comparative Example 1 as a molding material. The molding material was heated by a far-infrared heating furnace for about 7 minutes until the surface temperature increased to 210 ° C. At this time, the molding material was greatly expanded near the surface, and the inside was not sufficiently heated.
Further, it was confirmed that irregularities were generated on the surface portion, and that the glass fibers were exposed by springback. The heated molding material is inserted into a cooling press board, the clearance of the press board is set by a spacer, and the pressure is 5 kgf / cm 2
For about 5 minutes to form an expanded molded product having a thickness of 10 mm.

【0044】この膨張成形品の外観は、加熱された成形
素材の外観を受け継ぐため、表面凹凸によるしわ、強化
繊維の露出による外観低下が生じていた。また、膨張成
形品内部の膨張状態は表面付近が非常に大きく膨張し、
中心部はもとの成形素材同様ほとんど膨張していないこ
とが確認された。この中心層は、成形素材の初期厚みの
約50%で、3.3mmの厚みを有していた。この膨張成
形品から幅70mm、長さ200mmの試験片を採取し、ス
パン150mmの3点曲げ試験を行った。結果を、表1に
示した。
Since the appearance of the expanded molded article inherits the appearance of the heated molding material, wrinkles due to surface irregularities and deterioration in appearance due to exposure of the reinforcing fibers have occurred. In addition, the expansion state inside the expansion molded product is very large near the surface,
It was confirmed that the center part was hardly expanded like the original molding material. This center layer had a thickness of 3.3 mm at about 50% of the initial thickness of the molding material. A test piece having a width of 70 mm and a length of 200 mm was sampled from the expanded molded product and subjected to a three-point bending test with a span of 150 mm. The results are shown in Table 1.

【0045】[0045]

【表1】 [Table 1]

【0046】実施例の積層成形品では、ガラス繊維がポ
リプロピレン樹脂で効率よく接着されている繊維強化熱
可塑性樹脂層の均一な膨張と、さらに表面部が金属薄板
により積層・強化されているために、優れた機械的性質
が得られた。面積当りでの強度、弾性率は比較例1の膨
張していない成形品に比べて低下しているが、製品とし
ての曲げ強さ(曲げ荷重)、曲げ剛性(弾性勾配)は改
善されている。曲げ勾配とは、3点曲げ試験において、
試験片のたわみ量が1mmの時の荷重であり、成形品の剛
性の指標となる。この結果は、曲げ強さが成形品板厚の
2乗、曲げ剛性が板厚の3乗に比例することによるもの
で、特に剛性の向上が著しいことが確認された。
In the laminated molded article of the embodiment, since the fiber-reinforced thermoplastic resin layer in which the glass fibers are efficiently bonded with the polypropylene resin is uniformly expanded, and furthermore, the surface portion is laminated and reinforced by a thin metal plate. Excellent mechanical properties were obtained. Although the strength per unit area and the elastic modulus are lower than those of the non-expanded molded product of Comparative Example 1, the bending strength (bending load) and bending stiffness (elastic gradient) of the product are improved. . The bending gradient is a three-point bending test.
This is the load when the amount of deflection of the test piece is 1 mm, and is an index of the rigidity of the molded product. This result is due to the fact that the bending strength is proportional to the square of the thickness of the molded product and the bending stiffness is proportional to the cube of the thickness of the molded product.

【0047】比較例2の膨張成形品は、表面付近の膨張
が非常に大きく、中心部はほとんど膨張していない構造
を示していた。そのため、製品が曲げられる場合に引張
り、圧縮の荷重が加わる表面部が、機械的に弱い構造に
なり十分な機械的性質が得られなかった。実施例3、比
較例1,2の成形品の坪量はほぼ同じであるが、本発明
の積層成形品は従来の成形品に比べて、曲げ強さ・剛性
が非常に優れている。
The expansion molded product of Comparative Example 2 showed a structure in which the expansion near the surface was very large, and the center part was hardly expanded. For this reason, when the product is bent, the surface to which tension and compression loads are applied has a mechanically weak structure, and sufficient mechanical properties cannot be obtained. Although the basis weights of the molded products of Example 3 and Comparative Examples 1 and 2 are almost the same, the laminated molded product of the present invention is much superior in bending strength and rigidity as compared with conventional molded products.

【0048】[0048]

【発明の効果】本発明の積層成形品では、強化繊維が熱
可塑性樹脂で効率よく接着されている繊維強化熱可塑性
樹脂層の均一な膨張と、表面部が金属薄板により積層・
強化されているために、良好な機械的性質が発現する。
また、不織材料が板状体との樹脂リッチ界面で拘束され
て膨張するために、板状体表面が転写された樹脂リッチ
の良好な成形品外観が得られる。本発明の積層成形品
は、軽量性を損なうことなく優れた木材代替品となり、
産業用資材に広く適用することができる。
According to the laminated molded article of the present invention, the fiber-reinforced thermoplastic resin layer in which the reinforcing fibers are efficiently bonded with the thermoplastic resin is uniformly expanded, and the surface portion is laminated with a thin metal plate.
Because of the reinforcement, good mechanical properties are developed.
In addition, since the nonwoven material is constrained and expanded at the resin-rich interface with the plate-like body, a good resin-rich appearance of the molded article with the plate-like body surface transferred thereto can be obtained. The laminated molded product of the present invention is an excellent wood substitute without impairing the lightness,
It can be widely applied to industrial materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層成形品およびその成形方法を示す
概略図。
FIG. 1 is a schematic view showing a laminated molded product of the present invention and a molding method thereof.

【図2】従来の膨張成形品の成形方法の一例を示す概略
図。
FIG. 2 is a schematic view showing an example of a conventional method for forming an expansion molded product.

【符号の説明】[Explanation of symbols]

1 本発明の積層成形品 2 多孔質の繊維強化熱可塑性樹脂層 3 金属薄板 4 ホットメルトタイプ接着性樹脂層 5 強化繊維 6 熱可塑性樹脂 7 不織材料 8 ホットメルトタイプ接着性樹脂フィルム 9 板状体 10 加熱プレス盤 11 熱可塑性樹脂が溶融した状態で加圧された不織材
料 12 強化繊維のスプリングバックにより均一に膨張し
た不織材料 13 冷却プレス盤 14 シート状成形素材 15 遠赤外線加熱炉 16 膨張した層 17 ほとんど膨張していない層 18 シート表面部の凹凸 19 強化繊維のスプリングバックによる露出 20 多孔質成形品 21 成形品表面のしわ
DESCRIPTION OF SYMBOLS 1 The laminated molded article of this invention 2 Porous fiber reinforced thermoplastic resin layer 3 Metal thin plate 4 Hot melt type adhesive resin layer 5 Reinforcement fiber 6 Thermoplastic resin 7 Nonwoven material 8 Hot melt type adhesive resin film 9 Plate shape Body 10 Heat press board 11 Non-woven material pressed in a state in which thermoplastic resin is melted 12 Non-woven material uniformly expanded by spring back of reinforcing fiber 13 Cooling press board 14 Sheet-shaped forming material 15 Far infrared heating furnace 16 Expanded layer 17 Layer that is hardly expanded 18 Irregularities of sheet surface portion 19 Exposure of spring fiber by springback 20 Porous molded product 21 Wrinkles on molded product surface

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−221634(JP,A) (58)調査した分野(Int.Cl.7,DB名) B32B 15/08 105 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-221634 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B32B 15/08 105

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 強化繊維と熱可塑性樹脂の抄造法による
不織材料からなる多孔質の繊維強化熱可塑性樹脂層の表
面に、ホットメルトタイプ接着性樹脂層を介して金属薄
板が積層されてなることを特徴とする積層成形品。
1. A metal sheet is laminated on a surface of a porous fiber-reinforced thermoplastic resin layer made of a nonwoven material by a papermaking method of reinforcing fibers and a thermoplastic resin via a hot-melt type adhesive resin layer. A laminated molded article characterized by the above-mentioned.
【請求項2】 多孔質の繊維強化熱可塑性樹脂の見かけ
密度が、0.3〜1g/cm3 である請求項1記載の積層
成形品。
2. The laminated molded article according to claim 1, wherein the apparent density of the porous fiber-reinforced thermoplastic resin is 0.3 to 1 g / cm 3 .
【請求項3】 抄造法による強化繊維と熱可塑性樹脂か
らなる不織材料の表面にホットメルトタイプ接着性樹脂
のフィルムを介して金属薄板を重ね合わせ、熱可塑性樹
脂の融点または軟化点以上に加熱して、熱可塑性樹脂が
溶融した状態で加圧し、続いて熱可塑性樹脂が溶融した
状態のままで加圧を除去し、不織材料を強化繊維のスプ
リングバックにより膨張させ、しかる後、形成された積
層体を膨張厚み以下に加圧、冷却成形することを特徴と
する積層成形品の成形方法。
3. A thin metal plate is superimposed on a nonwoven material made of a reinforcing resin and a thermoplastic resin by a papermaking method via a hot-melt type adhesive resin film and heated to a temperature higher than the melting point or softening point of the thermoplastic resin. Then, pressurizing the thermoplastic resin in the molten state, then removing the pressure while the thermoplastic resin is in the molten state, expanding the nonwoven material by the springback of the reinforcing fibers, and then forming A method for forming a laminated molded product, comprising pressurizing and cooling the laminated body to an expanded thickness or less.
JP5109605A 1993-05-11 1993-05-11 Laminated molded article and molding method Expired - Lifetime JP3056610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5109605A JP3056610B2 (en) 1993-05-11 1993-05-11 Laminated molded article and molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5109605A JP3056610B2 (en) 1993-05-11 1993-05-11 Laminated molded article and molding method

Publications (2)

Publication Number Publication Date
JPH06320670A JPH06320670A (en) 1994-11-22
JP3056610B2 true JP3056610B2 (en) 2000-06-26

Family

ID=14514527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5109605A Expired - Lifetime JP3056610B2 (en) 1993-05-11 1993-05-11 Laminated molded article and molding method

Country Status (1)

Country Link
JP (1) JP3056610B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354090C (en) * 2004-07-15 2007-12-12 赵仁杰 Two step 'cold-hot-cold' agglutination process
CN103586956B (en) * 2013-04-20 2016-05-11 湖北宝源木业有限公司 OSB high-strength compound decoration panel and production technology
CN107234766B (en) * 2017-06-27 2019-12-13 重庆大学 Powder laminating process method for rapidly preparing magnesium-based fiber metal laminate
EP3778218A4 (en) * 2018-04-03 2021-12-22 Nippon Steel Corporation Metal-carbon fiber reinforced resin material composite and production method for metal-carbon fiber reinforced resin material composite
TWI685119B (en) * 2018-10-02 2020-02-11 臺灣塑膠工業股份有限公司 Method of laminating film for dye-sensitized cell

Also Published As

Publication number Publication date
JPH06320670A (en) 1994-11-22

Similar Documents

Publication Publication Date Title
US5725940A (en) Composite molded article and method for making same
JP2539228B2 (en) Method for producing laminated board of reinforced thermoplastic sheet and product thereof
JPH0250131B2 (en)
US20040231790A1 (en) Welding techniques for polymer or polymer composite components
JPS60132753A (en) Thermoformable laminated structure
GB2024710A (en) Bonding a thermoplastic resin and a polyolefin foam
JP3056610B2 (en) Laminated molded article and molding method
JPH06320655A (en) Porous molded product made of fiber reinforced thermoplastic resin and molding method thereof
JP3272519B2 (en) Laminated body and method for producing the same
GB2092063A (en) Coated board for concrete form and method of making the same
Breuer et al. Manufacturing of all‐thermoplastic sandwich systems by a one‐step forming technique
JP3032584B2 (en) Method for improving appearance of fiber-reinforced thermoplastic resin molded product
JP3110162B2 (en) Molding method of fiber-reinforced thermoplastic resin porous molded article
JP3110207B2 (en) Recycle molding method of fiber-reinforced thermoplastic resin porous molded product
JP2009214371A (en) Method for manufacturing fiber-reinforced composite material and fiber-reinforced composite material, method for manufacturing integrated structural member and integrated structural member
JPH10128896A (en) Fiber reinforced resin laminated molded body
JPH07214680A (en) Production of fiber reinforced resin composite material
JP3012416B2 (en) Plate for concrete formwork
JP3824376B2 (en) Papermaking stampable sheet, lightweight stampable sheet and manufacturing method thereof
JPH08224793A (en) Manufacture of fiber reinforced resin molding
JPH06210782A (en) Porous molded product of fiber-reinforced thermally plastic resin and its production
JPH09277415A (en) Interior material for car and production thereof
JP3032582B2 (en) Method for improving appearance of fiber-reinforced thermoplastic resin molded product
JPH06134876A (en) Molding of fiber reinforced thermoplastic resin porous molded object
JPS59212249A (en) Vibration-damping sound-insulating method of metallic plate