JP2822034B2 - Magnetic shielding material - Google Patents

Magnetic shielding material

Info

Publication number
JP2822034B2
JP2822034B2 JP62207715A JP20771587A JP2822034B2 JP 2822034 B2 JP2822034 B2 JP 2822034B2 JP 62207715 A JP62207715 A JP 62207715A JP 20771587 A JP20771587 A JP 20771587A JP 2822034 B2 JP2822034 B2 JP 2822034B2
Authority
JP
Japan
Prior art keywords
alloy
powder
magnetic
superconductor
shielding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62207715A
Other languages
Japanese (ja)
Other versions
JPS6450600A (en
Inventor
栄治 名取
健一 遠藤
毅 瀬戸
通雄 柳澤
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62207715A priority Critical patent/JP2822034B2/en
Publication of JPS6450600A publication Critical patent/JPS6450600A/en
Application granted granted Critical
Publication of JP2822034B2 publication Critical patent/JP2822034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁束の制御や磁気の干渉を受け易い素子、装
置を磁気(電磁波)から守るためのツールド材料に関す
る。 〔従来の技術〕 従来、磁束の制御や磁気の干渉を受け易い素子或は装
置を磁気から守るためのシールド材料には、パーマロ
イ,センダスト,純鉄など高透磁率材料が用いられてい
た。また加工はプレスや切削により行われていた。 〔発明が解決しようとする問題点〕 しかしながら従来技術では、材料の比透磁率や飽和磁
束密度に限界があるため、完全に磁束を制御したり完全
に磁気をシールドするにはシールド材の断面積を底くす
ると共に積層する必要があるため形状の制約が大きく、
旦つ材料コストは高いものとなっていた。また加工は切
削やプレスにより行われているため複雑形状で旦つ寸法
精度の高い磁気シールド材を多量に製造することは困難
であった。 本発明はこの様な問題を解決するものであり、その目
的は磁束の制御や磁気シールド性に優れ且つ形状自由度
の高い磁気シールド材を容易に得んとするものである。 〔問題点を解決するための手段〕 本発明は、超電導体粉末と、Pb,Sn,ZN,Pb合金,Sn合
金,ZN合金またはMg合金からなる金属バインダーと、を
主成分とする磁気シールド材料であって、前記超電導体
粉末が前記金属バインダー中に分散して成ることを特徴
とする。 〔実施例〕 我々は様々な実験を繰り返す中で超電導体の粉末をバ
インダーで結合したものであっても超電導体粉末の構
造,粒径,粒度分布,充填度,バインダーの種類、分散
性の適正化を行うことによりマイスナー効果により磁気
を遮蔽することを発見した。 以下実施例に従い本発明を詳細に説明する。 まず最初にDy(NO3)3.6H2O,Ba(CH3COO)2,Cu(CH3C
OO),H2Oを純粋に入れ攪拌分散させる。この時のDy,B
a,Cuの割合は1:2:3である。(Dyの他にSc,Y,Lanthanido
等a族元素を用いても同構造の超電導体を得られる。)
次にこの液体をドライスプレー法により乾燥させると同
時に燃焼させ微粉末を得る。次にこの微粉末を900℃,
酸素雰囲気中に於て8時間焼成する。焼成後の冷却は20
℃/H〜50℃/H程度の除冷である。この焼成後の微粉末を
Aとする。Aの平均粒径は0.5〜1μm程度である。得
られたAをプレスした後850℃,空気中に於て焼結させ
その後Arガス雰囲気中に於てボ−ルミルにより粒径が1
〜10μmとなるような粒度分布に粉砕する。この粉砕後
の粉末をBとする。超電導体粉末は微粉砕化を行い過ぎ
るとバインダーに分散後マイスナー効果を示さなくなる
ため注意が必要である。次に有機溶剤に希釈したシラン
カップリング剤で粉末の表面処理をおこなう。この表面
処理は混合,成形過程に於ける超電導体粉末の劣化を極
力抑えるためである。次にAとBを1:3の割合で配合し
た後これにマトマイズ法により粒径13〜10μmに粉末化
した金属バインダーのPb−Sn系(Pb:38.14% Sn:61.86
%)合金を加え混合分散する。この時の金属バインダー
の充填量は体積比で35%である。ここでAとBを混合す
るのは形状(特に粒度)の異なる2種類の粉末を加える
ことにより分散性を良くするためである。また金属バイ
ンダーは融点が700℃以下の低融点金属が好ましい。こ
れは成形等加工温度が高いと本実施例による超電導体は
還元され安定した構造を採ることが出来ないためであ
る。また低温成形が出来ると危険度が少ないため一般に
行われているプラスチック成形と同じ程度の管理や装置
で良く製造場所や加工メーカーの制限が少ない。次に得
られた混合物を190℃〜270℃に加熱せしめダイキャスト
成形し磁気シールド材を得る。 本実施例では超電導体粉末に酸化物系セラミックを用
いたが3元系化合物や合金等を用いても良くまた金属バ
インダーにPb−Sn系合金を用いたがPb,Sn,Zn,Pb合金,Sn
合金,Zn合金,Mg合金,等であっても良く更に成形法も押
し出し法,遠心成形法,圧縮成形法等であっても何等差
し支えない。 〔発明の効果〕 以上述べたように本発明によればマイスナー効果を利
用した磁気シールドであるため確実に磁気を遮蔽するこ
とが可能であり且つシールド効果はシールド材の厚さに
ほとんど依存しないため形状への制限は少ない。また低
温成形が可能であるためダイキャスト法,押し出し法,
圧縮法,遠心法による成形を容易に行えるため複雑な形
状で且つ寸法精度の高いものであっても多量に製造でき
る。さらに酸化物セラミックの様に、超電導体そのもの
は靱性がなく脆いものであっても超電導体の粉末を靱性
があり且つ機械的強度の高い金属バインダーで結合して
いるため衝撃に強く割れ欠けの無い使いやすい磁気シー
ルド材となる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a tooled material for controlling elements and devices which are susceptible to magnetic flux control and magnetic interference from magnetism (electromagnetic waves). [Prior Art] Conventionally, high permeability materials such as permalloy, sendust, and pure iron have been used as shield materials for controlling magnetic flux and protecting elements or devices that are susceptible to magnetic interference from magnetism. Processing was performed by pressing or cutting. [Problems to be Solved by the Invention] However, in the conventional technology, since the relative permeability and the saturation magnetic flux density of the material are limited, it is necessary to completely control the magnetic flux or completely shield the magnetism in order to completely shield the magnetism. It is necessary to make the bottom and stack, so the shape restrictions are large,
One day the material costs were high. In addition, since machining is performed by cutting or pressing, it has been difficult to produce a large amount of a magnetic shielding material having a complicated shape and high dimensional accuracy. The present invention solves such a problem, and an object of the present invention is to easily obtain a magnetic shield material having excellent magnetic flux control and magnetic shielding properties and a high degree of freedom in shape. [Means for Solving the Problems] The present invention provides a magnetic shield material containing a superconductor powder and a metal binder composed of Pb, Sn, ZN, Pb alloy, Sn alloy, ZN alloy or Mg alloy as main components. Wherein the superconductor powder is dispersed in the metal binder. [Examples] We repeated various experiments, and even when superconductor powder was bound with a binder, the structure, particle size, particle size distribution, filling degree, binder type, and dispersibility of the superconductor powder were appropriate. It has been found that the magnetic effect is shielded by the Meissner effect. Hereinafter, the present invention will be described in detail with reference to Examples. First, Dy (NO 3 ) 3.6H 2 O, Ba (CH 3 COO) 2 , Cu (CH 3 C
OO), is purely placed stirred dispersed H 2 O. Dy, B at this time
The ratio of a and Cu is 1: 2: 3. (In addition to Dy, Sc, Y, Lanthanido
A superconductor having the same structure can be obtained by using a group a element. )
Next, the liquid is dried by a dry spray method and burned at the same time to obtain a fine powder. Next, this fine powder is heated at 900 ° C.
Bake for 8 hours in an oxygen atmosphere. Cooling after firing is 20
The cooling is about 50 ° C / H to 50 ° C / H. The fired fine powder is designated as A. The average particle size of A is about 0.5 to 1 μm. The obtained A was pressed, sintered at 850 ° C. in air, and then subjected to ball milling in an Ar gas atmosphere to a particle size of 1%.
Grind to a particle size distribution of ~ 10 µm. This crushed powder is referred to as B. It is necessary to pay attention to superconducting powder, which is too finely pulverized, because it does not exhibit the Meissner effect after being dispersed in the binder. Next, the surface of the powder is treated with a silane coupling agent diluted in an organic solvent. This surface treatment is for minimizing the deterioration of the superconductor powder during the mixing and molding processes. Next, A and B were blended at a ratio of 1: 3, and a Pb-Sn-based metal binder (Pb: 38.14% Sn: 61.86) was powderized to a particle size of 13 to 10 μm by a matting method.
%) Add alloy and mix and disperse. At this time, the filling amount of the metal binder is 35% by volume. Here, the reason why A and B are mixed is to improve dispersibility by adding two kinds of powders having different shapes (particularly, particle sizes). The metal binder is preferably a low melting point metal having a melting point of 700 ° C. or less. This is because if the processing temperature for forming or the like is high, the superconductor according to this embodiment is reduced and cannot have a stable structure. In addition, since low-temperature molding is less risky, the same level of management and equipment as in plastic molding generally used is sufficient, and there are fewer restrictions on the manufacturing location and processing manufacturer. Next, the obtained mixture is heated to 190 ° C. to 270 ° C. and die cast to obtain a magnetic shield material. In this example, the oxide ceramic was used for the superconductor powder, but a ternary compound or alloy may be used, and a Pb-Sn alloy is used for the metal binder.However, Pb, Sn, Zn, Pb alloy, Sn
Alloy, Zn alloy, Mg alloy, etc., and the molding method may be extrusion, centrifugal molding, compression molding, or the like. [Effects of the Invention] As described above, according to the present invention, since the magnetic shield utilizing the Meissner effect is used, it is possible to reliably shield the magnetism and the shielding effect hardly depends on the thickness of the shielding material. There are few restrictions on the shape. In addition, die casting method, extrusion method,
Since molding by a compression method or a centrifugal method can be easily performed, a large number of products having complicated shapes and high dimensional accuracy can be manufactured. Furthermore, even if the superconductor itself is not tough and brittle, as in oxide ceramics, the superconductor powder is bonded with a tough and high mechanical strength metal binder, so it is strong against impact and has no cracks. It becomes an easy-to-use magnetic shield material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬戸 毅 長野県諏訪市大和3丁目3番5号 セイ コーエプソン株式会社内 (72)発明者 柳澤 通雄 長野県諏訪市大和3丁目3番5号 セイ コーエプソン株式会社内 (72)発明者 下田 達也 長野県諏訪市大和3丁目3番5号 セイ コーエプソン株式会社内 (56)参考文献 特開 昭63−248183(JP,A) 特開 昭49−23594(JP,A) 特開 昭56−40289(JP,A) (58)調査した分野(Int.Cl.6,DB名) H05K 9/00 H01L 39/00 H01L 12/00──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Takeshi Takeshi 3-3-5 Yamato, Suwa-shi, Nagano Seiko Epson Corporation (72) Inventor Michio Yanagisawa 3-5-2, Yamato, Suwa-shi, Nagano Say (72) Inventor Tatsuya Shimoda 3-5-5 Yamato, Suwa-shi, Nagano Prefecture Seiko Epson Corporation (56) References JP-A-63-248183 (JP, A) JP-A-49- 23594 (JP, A) JP-A-56-40289 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H05K 9/00 H01L 39/00 H01L 12/00

Claims (1)

(57)【特許請求の範囲】 1.超電導体粉末と、 Pb,Sn,Zn,Pb合金、Sn合金、Zn合金またはMg合金からな
る金属バインダーと、 を主成分とする磁気シールド材料であって、 前記超電導体粉末が前記金属バインダー中に分散してな
ることを特徴とする磁気シールド材料。 2.形状が異なる2種以上の超電導体粉末が混在してな
る特許請求の範囲第1項に記載の磁気シールド材料。 3.前記超電導体粉末の粒度分布は、0.5〜10μmの範
囲内であることを特徴とする特許請求の範囲第1項に記
載の磁気シールド材料。
(57) [Claims] A superconducting powder and a metal binder composed of Pb, Sn, Zn, Pb alloy, Sn alloy, Zn alloy or Mg alloy, a magnetic shielding material containing, as a main component, the superconducting powder in the metal binder. A magnetic shielding material characterized by being dispersed. 2. 2. The magnetic shield material according to claim 1, wherein two or more superconductor powders having different shapes are mixed. 3. 2. The magnetic shield material according to claim 1, wherein the particle size distribution of the superconductor powder is in a range of 0.5 to 10 [mu] m.
JP62207715A 1987-08-21 1987-08-21 Magnetic shielding material Expired - Lifetime JP2822034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62207715A JP2822034B2 (en) 1987-08-21 1987-08-21 Magnetic shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62207715A JP2822034B2 (en) 1987-08-21 1987-08-21 Magnetic shielding material

Publications (2)

Publication Number Publication Date
JPS6450600A JPS6450600A (en) 1989-02-27
JP2822034B2 true JP2822034B2 (en) 1998-11-05

Family

ID=16544359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62207715A Expired - Lifetime JP2822034B2 (en) 1987-08-21 1987-08-21 Magnetic shielding material

Country Status (1)

Country Link
JP (1) JP2822034B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7338185B2 (en) * 2019-03-20 2023-09-05 株式会社リコー thermal recording medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145240B2 (en) * 1972-06-23 1976-12-02
JPS5640289A (en) * 1979-09-11 1981-04-16 Shinku Yakin Kk Superconductive shielding assembly
JPS63248183A (en) * 1987-04-02 1988-10-14 Sumitomo Electric Ind Ltd Electromagnetic-wave sheilding material

Also Published As

Publication number Publication date
JPS6450600A (en) 1989-02-27

Similar Documents

Publication Publication Date Title
US3424578A (en) Method of producing permanent magnets of rare earth metals containing co,or mixtures of co,fe and mn
CA1037293A (en) Hard magnetic material
US6379579B1 (en) Method for the preparation of soft magnetic ferrite powder and method for the production of laminated chip inductor
US5443617A (en) Powdery raw material composition for a permanent magnet
KR20200050948A (en) Method for manufacturing soft magnetic powder, Fe powder or alloy powder containing Fe, soft magnetic material, and method for producing metal core
EP0285990B1 (en) A rare-earth permanent magnet
US5278137A (en) YBa2 Cu3 O7-y type oxide superconductive material containing dispersed Y2 BaCuO5 phase and having high critical current density
EP0537363B1 (en) Oxide superconductor and production thereof
JP2822034B2 (en) Magnetic shielding material
JPS6017905A (en) Permanent magnet alloy powder
EP0573224B1 (en) Method of producing a solid resin-coated magnet powder for producing anisotropic bonded magnet
CN114133231A (en) Nickel-zinc ferrite material and method for producing same
JPS59143002A (en) Organic binder of fine pulverous powder for powder metallurgy
US5084439A (en) Meltable high temperature Tb-R-Ba-Cu-O superconductor
JP2700643B2 (en) Manufacturing method of rare earth permanent magnet with excellent oxidation resistance
US4865660A (en) Rare-earth element/cobalt type magnet powder for resin magnets
JP2570326B2 (en) Manufacturing method of shielding material
EP0697383B1 (en) Method of preparing a ferrite compact
JPH01111843A (en) Rare-earth permanent magnet material and its manufacture
JPS56134522A (en) Preparation of magnetic powder for magnetic recording use
Sarkar et al. Fabrication and electrical properties of ceramic superconductor/polymer composites
JPH04191302A (en) Manufacture of rare earth metal-iron based permanent magnet
WO2020137542A1 (en) Sintered body and method for producing same
JPH09162020A (en) Manufacture of superconductor powder
JPS61213340A (en) Manufacture of rare earth magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term