JPS63248183A - Electromagnetic-wave sheilding material - Google Patents

Electromagnetic-wave sheilding material

Info

Publication number
JPS63248183A
JPS63248183A JP62082510A JP8251087A JPS63248183A JP S63248183 A JPS63248183 A JP S63248183A JP 62082510 A JP62082510 A JP 62082510A JP 8251087 A JP8251087 A JP 8251087A JP S63248183 A JPS63248183 A JP S63248183A
Authority
JP
Japan
Prior art keywords
electromagnetic
matrix
shielding effect
superconductor
superconductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62082510A
Other languages
Japanese (ja)
Inventor
Kenichi Sato
謙一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62082510A priority Critical patent/JPS63248183A/en
Publication of JPS63248183A publication Critical patent/JPS63248183A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase mechanical strength by using a superconductor inferior in workability such as ductility, to improve a shielding effect and to enhance profitability by matrix-dispersing the required superconductor. CONSTITUTION:Superconductors 1 consisting of oxide ceramics are dispersed to matrix aluminum 2, an electromagnetic shielding material having large mechanical strength is formed by employing a superconductive material inferior in workability such as ductility, and an electromagnetic-wave shielding effect, particularly, reflection loss, is increased by the superconductors 1 having infinite large conductivity and zero permeability, thus improving a shielding effect. The profitability of the electromagnetic shielding material is enhanced by the constitution of easy preparation and working.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 7 この発明は、各種電子機器、人体などへの電磁波を
シールドする材料に関するものであり、特にシールド効
果の大きな電磁波シールド材に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] 7 The present invention relates to a material that shields electromagnetic waves from various electronic devices, the human body, etc., and particularly relates to an electromagnetic wave shielding material with a large shielding effect.

〔従来の技術および発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

従来の電磁材シールド材は、鉄、銅、アルミニウムやフ
ェライトなど番そのまま用いたり、又(封脂などに粉末
や繊維の形で分散させた形で使用されている。
Conventional electromagnetic material shielding materials are used as they are, such as iron, copper, aluminum, and ferrite, or in the form of powders or fibers dispersed in sealants, etc.

電磁波シールド効果としては、導電−@/透磁率を大き
くしたり(反射損失)、又導電率×透磁率を大きくする
(吸収損失)ことでシールド効′X!:と高くする方法
が採られているが、fμ在用いられている鉄、銅、アル
ミニウムやフェライトなどではそれらの値に限界があり
、シールド効果として充分でなかった。
The electromagnetic shielding effect can be increased by increasing the conductivity-@/magnetic permeability (reflection loss) or by increasing the conductivity x magnetic permeability (absorption loss). : However, there are limits to these values for iron, copper, aluminum, ferrite, etc. currently used in fμ, and the shielding effect was not sufficient.

ところで、最近高い超電導臨界一度を汀するi¥2 (
ヒ物セラミックス系の超電導材料が開発され、注目を浴
びている。これらの酸化物セラミックス系1;召電導の
中には、液体窒素の温度で超電導状態になるものがあり
、また11来【・;は常温でも・旧主・j事状態を示す
ものが示唆されている。
By the way, i¥2 (
Superconducting materials based on amorphous ceramics have been developed and are attracting attention. Some of these oxide ceramic systems become superconducting at the temperature of liquid nitrogen, and it has been suggested that some of them exhibit a superconducting state even at room temperature. ing.

これらの、直重5セラミックスは、−:i2:こ延性に
劣リ、加工性が悪いため、バルクの状態でシールド材に
使うと加工の面でコストがかかったり、機械的強度の点
で不利な点もある。
These straight weight 5 ceramics have -:i2: poor ductility and poor workability, so if they are used for shielding materials in the bulk state, they will be costly in terms of processing and disadvantageous in terms of mechanical strength. There are also some points.

この発明は、かかる発明を解消するためになされたもの
であり、この発明の目的は、延性等の加工比に劣る超電
導材料でも電磁波シールド材として防用することができ
る様に、又、機械的強度の改aをし、効果の大きい低コ
ストの電磁波シールド材を提供することにある。
This invention was made in order to solve the above-mentioned problems, and the purpose of this invention is to enable even superconducting materials with inferior processing ratios such as ductility to be used as electromagnetic shielding materials, and to improve mechanical properties. The purpose of the present invention is to provide a low-cost electromagnetic wave shielding material that has improved strength and is highly effective.

C問題点を解決するための手段および作用〕この発明に
よる電磁波シールド材では酸化物セラミックスからなる
超′[d導体を、樹脂、アルミニウム、銅又はフェライ
トおよびそれらの混合物からなるマトリックスに分散し
ているように構成されている。
Means and operation for solving problem C] In the electromagnetic shielding material according to the present invention, a super'[d conductor made of oxide ceramics is dispersed in a matrix made of resin, aluminum, copper, ferrite, or a mixture thereof. It is configured as follows.

この発明において、超電導体として用いられる超電導材
料は、特に限定されるものではないが、La−Ba−C
u−0系、La−3r−Cu−0系、Y−Ba−Cu−
0系などの材料が用いられる。
In this invention, the superconducting material used as the superconductor is not particularly limited, but La-Ba-C
u-0 series, La-3r-Cu-0 series, Y-Ba-Cu-
Materials such as 0 series are used.

この発明に用いるマトリックスとしては、樹脂アルミニ
ウム、銅、又はフェライトおよびそれらの混合物が用い
られる。アルミニウムや銅を用いれば、それらの導電率
がシールド効果に寄与し、フェライトを用いらば透磁率
がシールド効果に寄与する。樹脂を用いると、樹脂自体
のシールド効果はないが、低コストで作製ができる。又
いずれの材料を用いてもマトリクスとして強度の向上を
はかることができる。
As the matrix used in this invention, resin aluminum, copper, ferrite, and mixtures thereof are used. If aluminum or copper is used, their electrical conductivity will contribute to the shielding effect, and if ferrite is used, their magnetic permeability will contribute to the shielding effect. When resin is used, the resin itself does not have a shielding effect, but it can be manufactured at low cost. Furthermore, any material can be used as a matrix to improve the strength.

この発明のシールド材としての農法は特に限定されるも
のではないが、酸化物セラミックスを適当な熱処理を施
して、超電導特性を高めたのち、必要により粉砕してマ
トリックス材料粉末と混合して焼結などで一体化したり
、圧延、押出し、射出成型される。
The farming method used as the shielding material of this invention is not particularly limited, but the oxide ceramics are subjected to appropriate heat treatment to enhance superconducting properties, and then crushed if necessary, mixed with matrix material powder, and sintered. It can be integrated, rolled, extruded, or injection molded.

この本発明の電磁波シールド材では、上述の様に酸化物
セラミックス超電導体が分散しているので、導電率が無
限大に大きく、又下部臨界磁界以下では透磁率が零であ
るので、導電率/透磁率比が無限大に大きくなり、特に
反射損失が大きくするので、すぐれた電磁波シールド効
果が得られる。
In the electromagnetic shielding material of the present invention, since the oxide ceramic superconductor is dispersed as described above, the conductivity is infinitely large, and the magnetic permeability is zero below the lower critical magnetic field, so the conductivity/ Since the magnetic permeability ratio becomes infinitely large and the reflection loss becomes particularly large, an excellent electromagnetic wave shielding effect can be obtained.

又、マトリックスとして、1脂、胴、アルミニウム又は
フェライトおよびそれらの混合物のマトリックス中に超
電導体が分散されているので、機賊的特性の改善が得ら
れる。
Furthermore, since the superconductor is dispersed in a matrix of monomer, aluminum, aluminum, or ferrite, and mixtures thereof, improved mechanical characteristics can be obtained.

本発明において、超電導体は1柵以下の粒径にすること
が望ましく、1mm以下にすることにより、超電導体特
性のうち、臨界電流密度を大きくとれる。又、本発明に
おいて、超電導が分散されているという状態は、超電導
体同志が必ずしもi4I Hしているという事を表現し
ているのではなく、お互いに接触している状態も表現し
ている。
In the present invention, it is desirable that the superconductor has a grain size of 1 mm or less, and by setting the grain size to 1 mm or less, the critical current density among the superconductor characteristics can be increased. Furthermore, in the present invention, the state that the superconductors are dispersed does not necessarily represent that the superconductors are in i4IH, but also represents the state that the superconductors are in contact with each other.

〔実施例〕〔Example〕

第1図は、この発明の一実施例を示す断面図であり、1
は超電導体、2はマトリクスのアルミニウムである。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention.
is a superconductor, and 2 is aluminum of the matrix.

第2図は、本発明の別の一実施例であり、lは超電導体
、2はマトリクスの銅粒子、3はマトリクスのエポキシ
樹脂である。
FIG. 2 shows another embodiment of the present invention, where l is a superconductor, 2 is a matrix of copper particles, and 3 is a matrix of epoxy resin.

〔発明の効果〕〔Effect of the invention〕

この発明による電磁波シールド材は、超電導体をマトリ
クスに分散させており、導電率は無限大に大きく、透磁
率が零なので電磁波シールド効果特に反射損失が大きく
とれるので、効果が大きく、又マトリクスに分散させで
あるので@械的強度が改良され、又延性に劣る酸化物セ
ラミックス超電導体が低コストで利用できる。
The electromagnetic wave shielding material according to this invention has superconductors dispersed in a matrix, and has infinitely large electrical conductivity and zero magnetic permeability, so it has a large electromagnetic shielding effect, especially reflection loss, and is highly effective. Since it is a stranded material, its mechanical strength is improved, and oxide ceramic superconductors with poor ductility can be used at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施例を示す断面図である
。 図中、1は超電導体、 2はマトリクスの銅粒子 3はマトリクスのエポキシ1fft BBを示す。
FIGS. 1 and 2 are cross-sectional views showing embodiments of the present invention. In the figure, 1 is a superconductor, 2 is a matrix of copper particles 3 is a matrix of 1 fft BB epoxy.

Claims (3)

【特許請求の範囲】[Claims] (1)酸化物セラミックスからなる超電導体をマトリッ
クスに分散してなることを特徴とする電磁波シールド材
(1) An electromagnetic shielding material characterized by comprising superconductors made of oxide ceramics dispersed in a matrix.
(2)マトリックスが樹脂、アルミニウム、銅又はフェ
ライトおよびそれらの混合物からなることを特徴とする
特許請求の範囲第(1)項記載の電磁波シールド材。
(2) The electromagnetic shielding material according to claim (1), wherein the matrix is made of resin, aluminum, copper, ferrite, or a mixture thereof.
(3)酸化物セラミックスが粒径1mm以下である特許
請求の範囲第(1)項又は第(2)項記載の電磁波シー
ルド材。
(3) The electromagnetic shielding material according to claim (1) or (2), wherein the oxide ceramic has a particle size of 1 mm or less.
JP62082510A 1987-04-02 1987-04-02 Electromagnetic-wave sheilding material Pending JPS63248183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62082510A JPS63248183A (en) 1987-04-02 1987-04-02 Electromagnetic-wave sheilding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62082510A JPS63248183A (en) 1987-04-02 1987-04-02 Electromagnetic-wave sheilding material

Publications (1)

Publication Number Publication Date
JPS63248183A true JPS63248183A (en) 1988-10-14

Family

ID=13776515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62082510A Pending JPS63248183A (en) 1987-04-02 1987-04-02 Electromagnetic-wave sheilding material

Country Status (1)

Country Link
JP (1) JPS63248183A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248016A (en) * 1987-04-03 1988-10-14 Hitachi Ltd Manufacture of superconductor
JPS63283083A (en) * 1987-05-15 1988-11-18 Hitachi Ltd Composite body containing superconducting particle
JPS6450600A (en) * 1987-08-21 1989-02-27 Seiko Epson Corp Magnetic shielding material
JPS6460638A (en) * 1987-08-31 1989-03-07 Dowa Mining Co Filling or coating material for resin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145240A (en) * 1974-10-16 1976-04-17 Tokyo Electric Power Co Anteiunyosochino seigyosochi

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145240A (en) * 1974-10-16 1976-04-17 Tokyo Electric Power Co Anteiunyosochino seigyosochi

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248016A (en) * 1987-04-03 1988-10-14 Hitachi Ltd Manufacture of superconductor
JPS63283083A (en) * 1987-05-15 1988-11-18 Hitachi Ltd Composite body containing superconducting particle
JPS6450600A (en) * 1987-08-21 1989-02-27 Seiko Epson Corp Magnetic shielding material
JPS6460638A (en) * 1987-08-31 1989-03-07 Dowa Mining Co Filling or coating material for resin

Similar Documents

Publication Publication Date Title
JPS63248183A (en) Electromagnetic-wave sheilding material
Namai et al. High magnetic permeability of ε-GaxFe2− xO3 magnets in the millimeter wave region
KR900007123A (en) Superconductor Metal Matrix Composite and Manufacturing Method Thereof
JPS63248184A (en) Electromagnetic-wave shielding material
US2994045A (en) Electrical transmission devices utilizing gyromagnetic ferrites
Malini et al. Dielectric and mechanical properties of rubber ferrite composites
JP2570326B2 (en) Manufacturing method of shielding material
JP2585579B2 (en) Superconductor manufacturing method
White et al. Application of Mechanical Alloying to the Manufacture of Cu--Nb 3 Sn Multifilamentary Superconducting Wire
JPH04114411A (en) Magnetic composition for microwave and millimeter wave
JP2775826B2 (en) Faraday swirl
JPH0268969A (en) Superconducting fluid element
JPS63313900A (en) Composite superconductive magnetic shielding material
JPS61268759A (en) Radio absorbing material
Suzumura et al. Effect of a Sinusoidal Magnetic Field on Superconductors in One-Dimensional Model
Lee et al. Strain Scattering by Vacancies and Impurities in Metals
Hoste et al. Influence of high level Ag doping on the superconducting properties of YBa2Cu3O7/Ag composites
Tagaya et al. Magnetic properties of (Pb, Cu) 1 (Sr, Gd) 2 (La, Gd) 2Cu2Oz
JPH01138798A (en) Magnetic shielding device utilizing oxide superconductor
JPS6484515A (en) Conductor including rare earth element
JPH03179619A (en) Manufacture of oxide superconductive wire rod
Kitagawa et al. Process for Producing Oxide Powder and Oxide Superconductor
JPH02167853A (en) Production of oxide superconductor
Klimenko et al. A Study of the Temperature Curves of the Transition to the Superconducting State in Inhomogeneous Specimens of Nb sub 3 Sn
JPH0682948B2 (en) Method for manufacturing plate-like body for magnetic shielding