JPS61268759A - Radio absorbing material - Google Patents

Radio absorbing material

Info

Publication number
JPS61268759A
JPS61268759A JP11074585A JP11074585A JPS61268759A JP S61268759 A JPS61268759 A JP S61268759A JP 11074585 A JP11074585 A JP 11074585A JP 11074585 A JP11074585 A JP 11074585A JP S61268759 A JPS61268759 A JP S61268759A
Authority
JP
Japan
Prior art keywords
transition metal
metal element
nickel
iron
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11074585A
Other languages
Japanese (ja)
Inventor
Kenichi Hatakeyama
賢一 畠山
Takashi Harada
高志 原田
Tetsuji Inui
乾 哲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11074585A priority Critical patent/JPS61268759A/en
Publication of JPS61268759A publication Critical patent/JPS61268759A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled material with absorption characteristics stable to temperature variation, usable in high-frequency zone, by incorporating a polymeric resin with transition metal element-contg. fibrous noncrystalline alloy or either granular or foil-shaped transition metal element (such as iron or nickel)-contg. noncrystalline alloy. CONSTITUTION:The objective material can be obtained by incorporating (A) a polymeric resin 1 with (B) transition metal element (such as iron or nickel)- contg. fibrous noncrystalline alloy 2. For such ratio absorbing material as to be effective for both electric and magnetic field components of electromagnetic wave, at least one kind of granular or foil-shaped noncrystalline alloy 3 containing crystalline transition metal element such as iron or nickel is preferably dispersed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電波吸収体、電磁遮蔽体に使用される電波吸収
材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a radio wave absorbing material used for radio wave absorbers and electromagnetic shields.

(従来技術とその問題点) 高分子樹脂に種々の形状の金属体を分散して電波吸収効
果を持たせた材料は、すでに開発されている。
(Prior Art and its Problems) Materials that have a radio wave absorption effect by dispersing metal bodies of various shapes in a polymer resin have already been developed.

電波遮蔽体は種々の還境条件下で使用されるので、広い
温度範囲で特性の安定した材料が望まれる。従来の電波
吸収材料は、金属体の導電性を利用したものであるが、
一般に金属の導電率の温度係数は小さくなく、使用温度
範囲が広いと吸収材の特性が安定しないという欠点があ
った。繊維状の金属を使用する吸収材では繊維が樹脂と
の混合過程で切断され、設計、展進に支障をきたしてい
たO 又、従来、金属体を分散した吸収材料は主にその導電率
の大きさに注目して設計されている。一方、磁気的性質
を有する金属体を使用すれば、電気的損失と、磁気的損
失を併用した効率の良い吸収材が可能となる。
Since radio wave shields are used under various environmental conditions, materials with stable characteristics over a wide temperature range are desired. Conventional radio wave absorbing materials utilize the conductivity of metal bodies, but
In general, the temperature coefficient of conductivity of metals is not small, and there is a drawback that the properties of the absorbent material are unstable when used over a wide temperature range. In absorbent materials that use fibrous metal, the fibers are cut during the mixing process with resin, causing problems in design and development. Designed with size in mind. On the other hand, if a metal body with magnetic properties is used, it becomes possible to create an efficient absorber that uses both electrical loss and magnetic loss.

(発明の目的) 本発明は温度変化に対して安定な吸収特性を持ち、かつ
高周波帯での使用が可能な吸収材、及び電気的損失と磁
気的損失を併用した吸収材を得ることにある。
(Objective of the invention) The present invention is to obtain an absorber that has stable absorption characteristics against temperature changes and can be used in a high frequency band, and an absorber that uses both electrical and magnetic losses. .

(発明の構成) 本発明は高分子樹脂に鉄、ニッケル等の遷移金属元素を
含む繊維状の非晶質合金を配合したことを特徴とする電
波吸収材料と、高分子樹脂に粒状、又は箔状の非晶質で
ない鉄、ニッケル、又は遷移金属元素を含む非晶質合金
のうち、少なくともひとつ以上を配合したことを特徴と
する電波吸収材料である。
(Structure of the Invention) The present invention provides a radio wave absorbing material characterized by blending a fibrous amorphous alloy containing a transition metal element such as iron or nickel into a polymer resin, This radio wave absorbing material is characterized by containing at least one of non-amorphous iron, nickel, or an amorphous alloy containing a transition metal element.

(構成に関する説明) 第1図に第1の発明による吸収材の構成例を示す。(Explanation regarding configuration) FIG. 1 shows an example of the structure of the absorbent material according to the first invention.

(1)は高分子樹脂、(2)は鉄、ニッケル等の遷移金
属元素を含む非晶質合金の繊維である。吸収材の電波的
特性は殆んど(2)の金属繊維の働らきで定まり、高分
子樹脂が与える影響は小さいので、任意の樹脂が使用可
能である。
(1) is a polymer resin, and (2) is an amorphous alloy fiber containing transition metal elements such as iron and nickel. The radio wave characteristics of the absorbing material are mostly determined by the function of the metal fibers in (2), and the effect of the polymer resin is small, so any resin can be used.

第2図は、高分子樹脂(1)に粒状の非晶質でない鉄、
ニッケル、又は遷移金属元素を含む非晶質合金(2)を
少なくとも一種以上を分散した吸収材である。
Figure 2 shows granular non-amorphous iron in polymer resin (1).
This is an absorbent material in which at least one type of amorphous alloy (2) containing nickel or a transition metal element is dispersed.

非晶質金属の抵抗率の温度変化は、一般の金属き比べて
1/200〜1/9000と小さい。従って、非晶質合
金の繊維を第1図に示す様に樹脂中に分散したとき、主
に繊維の導電率で決定される電波吸収材としての特性は
、通常の金属繊維を使用した場合と比べると温度変化に
対して安定した特性を得ることができる。
The temperature change in resistivity of amorphous metals is as small as 1/200 to 1/9000 of that of general metals. Therefore, when fibers of amorphous alloy are dispersed in resin as shown in Figure 1, the characteristics as a radio wave absorbing material determined mainly by the conductivity of the fibers are different from those when ordinary metal fibers are used. In comparison, stable characteristics against temperature changes can be obtained.

非晶質合金は通常の金属と比べて機械的強度が大きく、
繊維状にして用いる場合は重要な要素となる。特にFe
、Co、Ni等の遷移金属元素を含むものは、その引張
り強度が200〜4oo(KII/wIP)であり、通
常の金属の値40〜50(助/薦−)と比べて5〜10
倍の値を有している。引張り強度が大きいので断面積の
小さな細い繊維を樹脂中に混合しても、その混合過程で
繊維が切断されることはない。細い繊維を使用できるの
で、電波吸収体用の吸収材に於ては短ボい繊維でも有効
にアンテナとして作用させることができる。繊維長が短
いほど高周波帯用吸収材に使えるので、非晶質金属の繊
維を混合した場合は通常の金属繊維を用いた吸収材に比
べて高周波帯での設計に望ましい。
Amorphous alloys have greater mechanical strength than ordinary metals,
This is an important factor when used in the form of fibers. Especially Fe
Those containing transition metal elements such as , Co, and Ni have a tensile strength of 200 to 4oo (KII/wIP), which is 5 to 10 oo compared to the value of normal metals of 40 to 50 (assistance/recommendation).
It has twice the value. Because of its high tensile strength, even if thin fibers with a small cross-sectional area are mixed into the resin, the fibers will not be cut during the mixing process. Since thin fibers can be used, even short fibers can effectively act as an antenna in the absorbing material for radio wave absorbers. The shorter the fiber length, the more it can be used as an absorber for high frequency bands, so when amorphous metal fibers are mixed, it is more desirable for designs in high frequency bands than absorbers using ordinary metal fibers.

次に、電磁波の電界成分と磁界成分の両者に対して有効
な電波吸収材について述べる。従来、金属体の持つ導電
率に注目して粒状、箔状の金属を樹脂に混合した吸収材
が知られているが、磁気的損失を含ませれば、効率良く
電磁波に対して損失を与えることができる。磁気的性質
を有する金属は、鉄、ニッケル、コバルト等の金属及び
、これ等の遷移金属系元素を含む非晶質合金である。但
し、*雄状の形状にすると、アンテナとして作用したり
、又は繊維相互の接触の確率が大きくなるので導電率の
効果が磁気的効果に比べて大き過ぎる。従って、第2図
に示す様に、粒状又は箔状にして使用するのが望ましい
。この場合は、磁気的効果、電気的効果は金属体の配合
量が増すほど大きいので、樹脂の性能を着るしく損わな
い範囲で配合量を増して使用する。粒子の大きざ、箔の
厚みは表皮深さ程度以上大きいと電磁波が浸透せず、単
に金属体として働らくことになるので、対象周波数帯の
上限周波数に於ける表皮深さ以下であることが望ましい
Next, a radio wave absorbing material that is effective against both the electric field component and the magnetic field component of electromagnetic waves will be described. Conventionally, absorption materials made by mixing granular or foil-shaped metals with resin have been known, focusing on the electrical conductivity of metal objects, but if magnetic loss is included, it is possible to efficiently provide loss to electromagnetic waves. Can be done. Metals having magnetic properties include metals such as iron, nickel, and cobalt, and amorphous alloys containing transition metal elements such as these. However, if it is made into a male shape, it will act as an antenna or the probability of fibers coming into contact with each other will increase, so the effect of electrical conductivity will be too large compared to the magnetic effect. Therefore, it is desirable to use it in the form of granules or foil as shown in FIG. In this case, since the magnetic and electrical effects increase as the amount of metal added increases, the amount used is increased within a range that does not seriously impair the performance of the resin. If the size of the particles and the thickness of the foil are larger than the skin depth, electromagnetic waves will not penetrate and it will simply act as a metal body, so it is important that the foil thickness is below the skin depth at the upper limit frequency of the target frequency band. desirable.

(発明の効果) 本発明によって、吸収特性の温度変化が小さく。(Effect of the invention) According to the present invention, the temperature change in absorption characteristics is small.

かつ、高周波帯で設計、製造可能な吸収材が得られる。Moreover, an absorbent material that can be designed and manufactured in a high frequency band can be obtained.

又、導電率とともに磁気的効果を併用した吸収材が得ら
れる。
In addition, an absorbent material having both electrical conductivity and magnetic effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明による電波吸収材料の例を示す
図。 (1)は高分子樹脂、(2)は非晶質合金の繊維、(3
)は粒状、又は箔状の鉄又はニッケル又は非晶質合金で
ある。
FIGS. 1 and 2 are diagrams showing examples of radio wave absorbing materials according to the present invention. (1) is polymer resin, (2) is amorphous alloy fiber, (3
) is iron or nickel or an amorphous alloy in granular or foil form.

Claims (2)

【特許請求の範囲】[Claims] (1)高分子樹脂に遷移金属元素を含む繊維状の非晶質
合金を配合したことを特徴とする電波吸収材料。
(1) A radio wave absorbing material characterized by blending a fibrous amorphous alloy containing a transition metal element with a polymer resin.
(2)高分子樹脂に粒状、又は箔状の鉄、ニッケル又は
遷移金属元素を含む非晶質合金のうち、少なくともひと
つ以上を配合したことを特徴とする電波吸収材料。
(2) A radio wave absorbing material characterized in that a polymer resin is blended with at least one amorphous alloy containing granular or foil-like iron, nickel, or a transition metal element.
JP11074585A 1985-05-23 1985-05-23 Radio absorbing material Pending JPS61268759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11074585A JPS61268759A (en) 1985-05-23 1985-05-23 Radio absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11074585A JPS61268759A (en) 1985-05-23 1985-05-23 Radio absorbing material

Publications (1)

Publication Number Publication Date
JPS61268759A true JPS61268759A (en) 1986-11-28

Family

ID=14543462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11074585A Pending JPS61268759A (en) 1985-05-23 1985-05-23 Radio absorbing material

Country Status (1)

Country Link
JP (1) JPS61268759A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165896U (en) * 1987-04-17 1988-10-28
JPH01149874A (en) * 1987-12-07 1989-06-12 Toagosei Chem Ind Co Ltd Adhesive
JPH0818305A (en) * 1994-06-25 1996-01-19 Nec Corp Coaxial low pass filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165896U (en) * 1987-04-17 1988-10-28
JPH01149874A (en) * 1987-12-07 1989-06-12 Toagosei Chem Ind Co Ltd Adhesive
JPH0818305A (en) * 1994-06-25 1996-01-19 Nec Corp Coaxial low pass filter

Similar Documents

Publication Publication Date Title
Tan et al. PANI/FeCo@ C composite microspheres with broadband microwave absorption performance
US4474676A (en) Electromagnetic interference shielding material
EP0090432A2 (en) Electro-magnetic wave absorbing material
CN108865062B (en) Electromagnetic wave absorbent and preparation method thereof
KR900006195B1 (en) Absorbing materials for electro magnetic waves
KR101342660B1 (en) Shield film of electromagnetic wave
KR100370069B1 (en) Method for fabricating electromagnetic wave compatibility materials using carbon nanotube or carbon nanofiber, and materials thereby
JPS61268759A (en) Radio absorbing material
CN113692212B (en) Multilayer wave absorber structure and application thereof
CN103590123B (en) A kind of composite fibre materials
JP2003332113A (en) Flat soft magnetic powder and composite magnetic sheet using the same
JPS61190813A (en) High frequency attenuation cable
JPH03138808A (en) Electrically conductive resin component material and its moldings
Pratap et al. Structural design of radar absorber using glass fiber-epoxy composites loaded with BaU hexaferrite for defence applications
JP2003060383A (en) Electromagnetic wave absorbing sheet
JP2002083704A (en) Radio wave absorber
KR102019877B1 (en) Particle-matrix composite with effective permeability by using coil-type conductive micro particles
JP2002344192A (en) Composite powder for radio wave absorber
Li et al. Electromagnetic absorption properties of FexCoNi magnetic nano particles
SU1734149A1 (en) Radio-absorbing composite material
JPS6247410A (en) Electromagnetic wave shielding material
JPS61265803A (en) Manufacture of electromagnetic-wave shielding material
JPS6245100A (en) Radio wave absorbing body
WO2005069712A1 (en) Woody electric wave absorber
JPS61157541A (en) Electrically conductive filter