JP2818843B2 - Suspended water method for retaining walls - Google Patents

Suspended water method for retaining walls

Info

Publication number
JP2818843B2
JP2818843B2 JP26520390A JP26520390A JP2818843B2 JP 2818843 B2 JP2818843 B2 JP 2818843B2 JP 26520390 A JP26520390 A JP 26520390A JP 26520390 A JP26520390 A JP 26520390A JP 2818843 B2 JP2818843 B2 JP 2818843B2
Authority
JP
Japan
Prior art keywords
ground
water
agar
temperature
retaining wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26520390A
Other languages
Japanese (ja)
Other versions
JPH04143308A (en
Inventor
敏 赤川
豊 桂
文昭 平野
澄夫 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP26520390A priority Critical patent/JP2818843B2/en
Publication of JPH04143308A publication Critical patent/JPH04143308A/en
Application granted granted Critical
Publication of JP2818843B2 publication Critical patent/JP2818843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】 本発明は、土構造の施工、特に山留め壁の地中止水工
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the construction of an earth structure, and more particularly, to a method of suspending a ground retaining wall.

【従来の技術及び発明が解決しようとする課題】2. Description of the Related Art

地盤に鉛直方向に連続した止水を行う方法としては、
地盤改良工法(深層撹拌混合工法=セメントや石膏など
の安定材と原位置の地盤土を強制的に撹拌混合する)が
一般的である。しかしこの方法においては地盤改良を柱
列状に行うため、柱列間の水密性が低下する。 また、セメントを混合し止水性を向上させるため、必
要以上に改良体の強度が上昇してしまう。 そしてまた、水平方向(地盤の堆積方向)の改良不可
能である。 さらに従来、地盤を部分的に止水改良する方法として
は、薬液注入工法があり、現在水ガラス系のものが使用
されている。しかしこの方法は改良範囲が狭い場合等に
よく使用されているが、広範囲な改良には水平方向、鉛
直方向の連続性が保証できないため使用できない。 また、薬液注入工法において、水ガラス系、アクリル
アミド系、尿素系等の薬液を注入して止水構造体を構築
するには、薬液のゲルタイムの関係から注入ピッチを短
くして、多数箇所に注入しないと、連続性に優れる止水
構築体が構築できなく、作業性に手数がかかり、薬液の
取扱いに注意を要し、そして公害問題もあり、かつ高価
な薬液のためコストが高くなる等の問題がある。 そして例えば、水ガラス系の注入剤では化学反応によ
ってゲル化するため、地下水の水質や薬剤の混合状態な
どによってゲルタイムや固化強度などが影響を受け、所
定の注入効果が得られない場合があった。 また、粘土、フライアッシュなどの充填材を充填する
工法もあるが、それらの充填材を細部まで充填すること
は困難である。 そしてまた、コンクリートやモルタルなどによる充填
工法では、材料に柔軟性がないため、地盤に大きな変形
が生じた際に充填部が変形し得ない(充填部に柔軟性が
ないため)ので、再度地盤に変形要因が加わった時には
該部に亀裂が生じる等の問題があった。
As a method of making water continuous in the vertical direction on the ground,
The ground improvement method (deep stirring and mixing method = forcibly mixing and mixing in situ ground soil with a stabilizer such as cement or gypsum) is common. However, in this method, since the ground improvement is performed in a column shape, the watertightness between the column lines is reduced. In addition, since the cement is mixed to improve the water blocking property, the strength of the improved body is increased more than necessary. Further, it is impossible to improve the horizontal direction (the direction in which the ground is deposited). Conventionally, as a method of partially improving the water stopping of the ground, there is a chemical liquid injection method, and a water glass type is currently used. However, this method is often used when the range of improvement is narrow, but cannot be used for wide-range improvement because continuity in the horizontal and vertical directions cannot be guaranteed. In addition, in the chemical liquid injection method, in order to construct a water-stop structure by injecting water glass, acrylamide, urea, or other chemicals, the injection pitch is shortened due to the gel time of the chemical, and injection is performed at many locations. Otherwise, a water-stop construction with excellent continuity cannot be constructed, the workability is troublesome, the handling of the chemical solution requires attention, and there is a pollution problem, and the cost increases due to the expensive chemical solution. There's a problem. For example, in the case of a water glass-based injection agent, since gelation is caused by a chemical reaction, the gel time, solidification strength, and the like are affected by the quality of groundwater and the mixing state of the agent, and a predetermined injection effect may not be obtained. . In addition, there is also a construction method of filling a filler such as clay and fly ash, but it is difficult to fill these fillers in detail. In addition, in the filling method using concrete or mortar, since the material is not flexible, when a large deformation occurs in the ground, the filling portion cannot be deformed (because the filling portion has no flexibility). When a deformation factor is added to the above, there is a problem that a crack is generated in the portion.

【課題を解決するための手段】[Means for Solving the Problems]

本発明者らは上記従来技術の問題点に鑑み、鋭意研究
の結果、作業が容易で、止水性が優れ、充填性がよく、
柔軟性があって、かつ無公害性の止水部を構築できる山
留め壁の地中止水工法を開発した。 すなわち本発明は、鋼杭、木杭、横矢板等の山留め壁
材と地盤との間に、常温ないし100℃程度の温度範囲に
おける温度変化により融解、凝固する寒天、ゼラチン等
の親水性材料のゲル化物を充填することを特徴とする山
留め壁の地中止水工法である。充填は特に、少なくとも
山留め壁材の単位体(例えば、1枚の鋼矢板)と単位体
の接続部の周縁部に施すことが効果的である。 該本発明方法については、親水性材料の水溶液に、
土、粘土、ベントナイト等の無機系材料微粉末を添加・
混合することも好ましく、また更に親水性材料の水溶液
に、アルファ澱粉、CMC、蛋白質等の有機糊料を添加・
混合してなることも好ましい。 上記において、寒天水溶液のゲル化物の場合は、その
濃度は0.2〜4%の水溶液であることが好ましい。該寒
天ゲルの場合は、融解温度が80〜90℃、凝固温度が30〜
40℃であり、該ゲル化物は温度低下により凝固した時に
その透水係数は1×10-6〜1×10-8cm/sec程度となる。
該親水性材料の単位体積重量は、通常1.0〜1.3t/m3であ
る。 なお、他の親水性材料としては、例えばゼラチンがあ
り、その水溶液も温度変化によるゲル−ゾル変換が生じ
るので、寒天水溶液と同様に本発明に係る止水材料に使
用できるが、腐敗による劣化が生じやすいため、寒天の
方が好ましい。 本発明に係る止水材料は、温度変化によりその形態変
化をする、すなわちゾル−ゲル形態変化するため、破壊
に到る歪が大きく、そこに例えば地震等による大きな衝
撃変形が周囲から作用したとしても、容易に追従でき
る。 よって、従来技術の薬液注入あるいは充填材充填によ
る止水部のように亀裂を生じる問題はない。 参考に、第4図に寒天ゲル(寒天1〜4%水溶液)の
1軸圧縮試験結果を示すが、破壊歪は10%以上と非常に
大きく、柔軟性に富むことが判る。 また、本発明に係る止水材料は、加温状態ではゾル状
態で浸透性がよいため、加温状態での地盤内への充填性
は良好である。 したがって充填時に、山留め壁材(例えば鋼矢板)、
地盤又は該止水材料水溶液を加温してやれば良好な充填
性が保証される。 山留め壁材や地盤の加温方法としては、それらに熱
風、温水を供給する方法や、電気ヒータを挿入して通電
加熱する方法等が採用できる。 なお、本発明に係る止水材料の強度は第5図図示のよ
うに寒天の濃度を変化させることによって調節できる。 さらに、CMCを0.2%添加するだけで、強度を約2倍と
することができる。 したがって、本発明工法は、鉛直方向及び水平方向の
両方向に対し良好な連続性を有し、しかも自在な強度
で、本設構造としての使用も可能なほか、仮設備構造と
しての使用の場合は使用後の撤去も容易な止水工法とな
る。 また、本発明工法実施後においても止水性等の改良効
果が不十分な場合は、施工済みのゲル化材料の再浸透を
促したり、同材料の再注入をすればよいが、これら操作
は上記のとおり実施が極めて容易である。
The present inventors in view of the above-mentioned problems of the prior art, as a result of intensive research, easy work, excellent water stoppage, good fillability,
We have developed a water stoppage method for mountain retaining walls that is flexible and can construct a pollution-free water stop. That is, the present invention relates to a hydrophilic material such as agar or gelatin that melts and solidifies between a ground retaining wall material such as a steel pile, a wooden pile, and a horizontal sheet pile and ground by a temperature change in a temperature range of room temperature to about 100 ° C. This is a ground stop water method for a mountain retaining wall, characterized by filling with a gelled material. In particular, it is effective to fill at least the peripheral portion of the connection portion between the unit body (for example, one steel sheet pile) and the unit body of the retaining wall material. About the method of the present invention, the aqueous solution of the hydrophilic material,
Add fine powder of inorganic materials such as soil, clay, bentonite, etc.
Mixing is also preferable, and further, an organic paste such as alpha starch, CMC, protein, etc. is added to the aqueous solution of the hydrophilic material.
It is also preferable to mix them. In the above, in the case of a gelled agar aqueous solution, the concentration is preferably an aqueous solution having a concentration of 0.2 to 4%. In the case of the agar gel, the melting temperature is 80 to 90 ° C, and the coagulation temperature is 30 to
At 40 ° C., the gelled material has a water permeability of about 1 × 10 −6 to 1 × 10 −8 cm / sec when it solidifies due to a decrease in temperature.
The unit weight of the hydrophilic material is usually 1.0 to 1.3 t / m 3 . As another hydrophilic material, there is, for example, gelatin, and an aqueous solution thereof also undergoes gel-sol conversion due to a change in temperature, and thus can be used for the water-stopping material according to the present invention similarly to the agar aqueous solution. Agar is preferred because it is more likely to occur. The water-stopping material according to the present invention changes its form due to a change in temperature, that is, because the sol-gel changes its form, the strain leading to destruction is large, and a large impact deformation due to, for example, an earthquake or the like acts on it from the surroundings. Can be easily followed. Therefore, there is no problem that a crack is generated unlike a water stop portion due to injection of a chemical solution or filling of a filler in the related art. For reference, FIG. 4 shows the results of a uniaxial compression test of the agar gel (agar aqueous solution of 1 to 4%). It can be seen that the breaking strain is very large, 10% or more, and that it is rich in flexibility. In addition, the water-stopping material according to the present invention has good permeability in a sol state in a heated state, and thus has a good filling property in the ground in a heated state. Therefore, at the time of filling, mountain retaining wall material (for example, steel sheet pile),
If the ground or the aqueous solution of the water-stopping material is heated, good filling properties are guaranteed. As a method of heating the retaining wall material or the ground, a method of supplying hot air or hot water thereto, a method of inserting an electric heater and heating by heating can be adopted. The strength of the water-stopping material according to the present invention can be adjusted by changing the concentration of agar as shown in FIG. Further, the strength can be approximately doubled only by adding 0.2% of CMC. Therefore, the method of the present invention has good continuity in both the vertical direction and the horizontal direction, and has a flexible strength, and can be used as a permanent structure. Removal after use will be an easy waterproofing method. In addition, even after the implementation of the method of the present invention, if the effect of improving the water stoppage is insufficient, the re-penetration of the applied gelled material may be promoted, or the material may be re-injected. As described above, implementation is extremely easy.

【実 施 例】【Example】

次に本発明の実施例を図面に基づいて説明する。 第1図は、鋼矢板を互いに密着して、地中に垂直に打
ち込み、止水材を充填し、横からの土圧や水圧を抑制す
るようにした山留め壁の概略斜視図であり、第2図は地
中に水平方向に新杭横矢板を積み重ね、止水材を充填
し、土圧を抑制するようにした山留め壁の斜視図であ
る。 また、第3図は地盤中に木杭を密接して打ち込み、そ
れらの底部に止水材を充填浸透させて底部止水壁を形成
し、かつそれらの木杭同志の接続部にも止水材を充填し
て、土圧を抑制するようにした山留め壁の斜視図を示
す。 実施例1: 第1図図示のごとく、地盤G中に鋼矢板1・・をその
かみ合い接続部1′・・を互いに組み込みながら垂直に
打ち込んで、山留め壁を構築した。 次いで、山留め壁の鋼矢板1と地盤Gとの間隙部3
に、以下のようにして寒天水溶液止水材を流し込み、凝
固させた。特に、鋼矢板1のかみ合い接続部1′付近に
重点的に止水材2を供給し、凝固せしめて、止水構造を
形成した。 止水材2の充填は、鋼矢板1の前面部側のみでなく、
後面部側にも施したが、図示のごとく間隙部3に隣接す
る地盤G側面には止水材2が一定範囲に浸透し、地盤と
止水材が混合した状態の止水壁が形成された。該混合部
分は地盤を構成する固体粒子が核となっており、強度の
高い止水壁を構成する結果となった。 (1)、まず、水に重量比1%の寒天を分散させ、85
℃に加熱して寒天水溶液を調製する。 (2)、次いで該寒天水溶液にカルボキシメチルセル
ロース(CMC)を0.2%添加して溶解させる。これは、必
要量のCMCが溶解している水溶液を寒天溶液に添加し
て、混合溶液を作ってもよい。 (3)、その後、該寒天水溶液の温度を凝固点(30〜
40℃)以上に保ちながら、注入ポンプを使用して地盤G
と鋼矢板1との間隙部3中に供給した。 (4)、そこで、地盤の温度が15℃程度であることを
利用して、注入寒天水溶液を自然冷却し、凝固させ、止
水構造を形成した。 (5)、(3)〜(4)工程を他の鋼矢板1・・部分
に適用することによって、連続性のある止水壁構造を地
盤中に構築した。 得られた山留め壁の地中止水構造は、大きな振動等の
衝撃を加えた結果においても、亀裂を生じることなく良
好な止水性が保持できた。 第2実施例: 第2図図示のごとく、地盤G中に親杭4・・一定間隔
をおいて垂直に打ち込み、次いで親杭4の接続部4′の
凹溝4″に、上方から横矢板5・・を差し込んで、山留
め壁を構築した。 その後、山留め壁の横矢板5と地盤Gとの間隔部3
に、及び接続部4′の凹溝4″に下記のようにして寒天
水溶液止水材を流し込み、凝固させた。特に、凹溝4″
付近に重点的に止水材2を供給し、凝固せしめて、止水
構造を形成した。 止水材2の充填は、親杭4及び横矢板5の前面部側の
みでなく、後面部側にも施したが、図示のごとく間隔部
3に隣接する地盤G側面には止水材料2が一定範囲に浸
透し、地盤と止水材が混合した状態の止水壁が形成され
た。該混合部分は地盤を構成する固体粒子が核となって
おり、強度の高い止水壁を構成する結果となった。 (1)、まず、水に重量比1%の寒天を分散させ、加
熱して寒天水溶液を調製する。 (2)、該寒天水溶液にベントナイト3%を添加し、
徐々に冷却する。 (3)、得られた寒天水溶液−ベントナイトスラリー
の温度を一定(40℃程度)に保ちながら、圧送ポンプに
よって、間隔部3に注入充填する。 (4)、地盤の温度が15℃程度であることを利用し
て、前記スラリーを自然冷却し、凝固させて止水壁を構
築する。 (5)、(3)〜(4)工程を繰り返し遂行すること
によって、連続性のある止水壁を構築する。 得られた山留め壁の地中止水構造は、実施例1と同様
に大きな振動等の衝撃を加えた結果においても、亀裂を
生じることなく良好な止水性が保持できた。 実施例3: 第3図図示のごとく、まず地盤G中に木杭6・・によ
る山留め壁を構築するのに先立ち、その底部7に止水材
2を充填浸透させて止水壁8を形成する。次いでその上
部に木杭6・・を一定間隔で垂直に打ち込んだ後、各木
杭6・・の連続部6′と地盤Gとの間隙部3に、以下の
ようにして寒天水溶液止水材2を流し込み、凝固させ
た。特に、木杭6・・の接続部付近に重点的に止水材2
を供給し、凝固せしめて、止水構造を形成した。 (1)、まず、水に重量比1%の寒天を分散させ、加
熱して寒天水溶液を調製する。 (2)、該寒天水溶液に粘土3%を添加し、徐々に冷
却する。 (3)、得られた寒天水溶液−粘土スラリーの温度を
一定(40℃程度)に保ちながら、圧送ポンプによって、
間隙部3に注入充填する。 (4)、地盤の温度が15℃程度であることを利用し
て、前記スラリーを自然冷却し、凝固させて止水壁を構
築する。 (5)、(3)〜(4)工程を繰り返し遂行すること
によって、連続性のある止水壁を構築する。 得られた山留め壁の地中止水構造は、山留め壁の底部
7に連続した止水壁8を有し、実施例1及び2と同様に
強度の高い止水壁となり、また大きな振動等の衝撃を加
えた結果においても、亀裂を生じることなく良好な止水
性が保持できた。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic perspective view of a retaining wall in which steel sheet piles are closely adhered to each other, are vertically driven into the ground, are filled with a waterproof material, and suppress earth pressure and water pressure from the side. FIG. 2 is a perspective view of a pile retaining wall in which horizontal piles of new piles are stacked horizontally in the ground, filled with a waterproof material, and suppressed in earth pressure. Fig. 3 shows that wooden piles are driven into the ground in close contact with each other, and the bottom is filled with water-blocking material to make it penetrate to form a bottom water-blocking wall. The perspective view of the retaining wall which filled the material and suppressed the earth pressure is shown. Example 1 As shown in FIG. 1, steel sheet piles 1... Were driven vertically into the ground G while engaging and connecting the connecting portions 1 ′. Next, the gap 3 between the steel sheet pile 1 of the retaining wall and the ground G
Then, a water stoppage material of an aqueous agar solution was poured in and solidified as follows. In particular, the water-stop material 2 was mainly supplied to the vicinity of the meshing connection portion 1 'of the steel sheet pile 1 and solidified to form a water-stop structure. The filling of the water stopping material 2 is performed not only on the front side of the steel sheet pile 1,
Although applied to the rear surface side, as shown in the figure, on the side surface of the ground G adjacent to the gap portion 3, the water-stopping material 2 penetrates into a certain range, and a water-stopping wall in a state where the ground and the water-stopping material are mixed is formed. Was. In the mixed portion, the solid particles constituting the ground were the core, resulting in the formation of a water-tight wall having high strength. (1) First, disperse 1% by weight of agar in water.
Prepare an aqueous agar solution by heating to ° C. (2) Then, 0.2% of carboxymethylcellulose (CMC) is added to and dissolved in the aqueous agar solution. In this method, an aqueous solution in which a required amount of CMC is dissolved may be added to the agar solution to form a mixed solution. (3) Then, the temperature of the agar aqueous solution is raised to the freezing point (30 to
40 ° C) or higher, using an injection pump to
And steel sheet pile 1. (4) Then, utilizing the fact that the temperature of the ground was about 15 ° C., the injected agar aqueous solution was naturally cooled and solidified to form a water-stop structure. By applying the steps (5), (3) and (4) to the other steel sheet piles 1 and so on, a continuous water blocking wall structure was constructed in the ground. The obtained ground stop water structure of the retaining wall was able to maintain good water stoppage without cracking even when a shock such as a large vibration was applied. 2nd Embodiment: As shown in FIG. 2, the parent pile 4 is driven vertically into the ground G at regular intervals, and then into the concave groove 4 ″ of the connecting portion 4 ′ of the parent pile 4 from above. Then, a mountain retaining wall was constructed by inserting 5 ... Then, a gap 3 between the horizontal sheet pile 5 of the mountain retaining wall and the ground G was formed.
And an agar-water-stopping material was poured into the groove 4 "of the connecting portion 4 'and solidified as described below. In particular, the groove 4" was formed.
The water-stopping material 2 was mainly supplied to the vicinity and solidified to form a water-stopping structure. The filling of the water stopping material 2 was performed not only on the front side of the parent pile 4 and the horizontal sheet pile 5 but also on the rear side, but as shown in FIG. Penetrated into a certain area, and a water-stop wall in a state where the ground and the water-stop material were mixed was formed. In the mixed portion, the solid particles constituting the ground were the core, resulting in the formation of a water-tight wall having high strength. (1) First, 1% by weight of agar is dispersed in water and heated to prepare an agar aqueous solution. (2) adding 3% of bentonite to the agar aqueous solution,
Cool slowly. (3) While keeping the temperature of the obtained agar aqueous solution-bentonite slurry constant (about 40 ° C.), the space portion 3 is injected and filled by a pressure pump. (4) By utilizing the fact that the temperature of the ground is about 15 ° C., the slurry is naturally cooled and solidified to construct a water blocking wall. By continuously performing the steps (5), (3) and (4), a continuous water stop wall is constructed. The obtained ground stop water structure of the retaining wall was able to maintain good water stoppage without cracking even in the case where a shock such as a large vibration was applied as in Example 1. Third Embodiment As shown in FIG. 3, prior to constructing a retaining wall made of wooden piles 6 in the ground G, a waterproofing material 2 is filled and infiltrated into a bottom portion 7 thereof to form a waterproofing wall 8. I do. Then, wooden piles 6 are vertically driven into the upper part thereof at regular intervals, and then a water-stopping material for agar aqueous solution is inserted into the gap 3 between the continuous portion 6 'of each wooden pile 6 and the ground G as follows. 2 was poured and solidified. In particular, the water-stopping material 2 is focused on the vicinity of the connection between the wooden piles 6
And solidified to form a water-stop structure. (1) First, 1% by weight of agar is dispersed in water and heated to prepare an agar aqueous solution. (2) Clay 3% is added to the agar aqueous solution, and the mixture is gradually cooled. (3) While keeping the temperature of the obtained agar-aqueous solution-clay slurry constant (about 40 ° C.),
The gap 3 is injected and filled. (4) By utilizing the fact that the temperature of the ground is about 15 ° C., the slurry is naturally cooled and solidified to construct a water blocking wall. By continuously performing the steps (5), (3) and (4), a continuous water stop wall is constructed. The obtained ground stop water structure of the retaining wall has a continuous waterproof wall 8 at the bottom 7 of the retaining wall, and as in the first and second embodiments, the water stopping wall has high strength. As a result, good water stoppage could be maintained without cracking.

【発明の効果】【The invention's effect】

上記のとおり本発明に係る止水材料は、地盤と止水壁
との間への充填性が極めて良好であり、加温充填後、自
然放置することによって、温度降下により柔軟性のある
ゲル化物となる。 そのため、大きな振動等の衝撃が加わってもその柔軟
性により亀裂が生成しなく、良好な止水性を保持するこ
とができる。 そしてその止水材料は無公害性のものであり、動植物
繁殖の自然環境を損なうことがない。
As described above, the water-stopping material according to the present invention has an extremely good filling property between the ground and the water-stopping wall. Becomes Therefore, even if a shock such as a large vibration is applied, a crack is not generated due to its flexibility, and good water stopping property can be maintained. The water-stopping material is non-polluting and does not impair the natural environment for animal and plant propagation.

【図面の簡単な説明】 第1図は、本発明実施例の山留め壁の概略斜視図、第2
図は他の実施例の山留め壁の斜視図、第3図その他の実
施例の山留め壁の斜視図であり、第4図は寒天水溶液ゲ
ル止水材料(寒天1〜4%水溶液)の1軸圧縮試験結果
を示すクラブ図、第5図は寒天ゲル止水材料のせん断強
度と寒天の濃度との関係を示すグラフ図を表す。 1:鋼矢板,1′:鋼矢板の接続部, 2:止水材,3:間隙部,4:親杭, 4′:接続部,4″:凹溝,5:横鋼矢板, 6:木杭,6′:接続部,7:底部, 8:止水壁,G:地盤
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic perspective view of a retaining wall according to an embodiment of the present invention, FIG.
Fig. 3 is a perspective view of a retaining wall of another embodiment, Fig. 3 is a perspective view of a retaining wall of another embodiment, and Fig. 4 is a single axis of an agar aqueous gel waterproofing material (agar 1 to 4% aqueous solution). FIG. 5 is a graph showing the relationship between the shear strength of the agar gel waterproof material and the concentration of agar. 1: steel sheet pile, 1 ': connection part of steel sheet pile, 2: waterproof material, 3: gap, 4: parent pile, 4': connection part, 4 ": concave groove, 5: horizontal steel sheet pile, 6: Wooden pile, 6 ': Connection, 7: Bottom, 8: Water barrier, G: Ground

フロントページの続き (72)発明者 堀内 澄夫 東京都中央区京橋2丁目16番1号 清水 建設株式会社内 (56)参考文献 特開 平4−14522(JP,A) (58)調査した分野(Int.Cl.6,DB名) E02D 5/02 - 5/20Continuation of the front page (72) Inventor Sumio Horiuchi 2-16-1 Kyobashi, Chuo-ku, Tokyo Shimizu Construction Co., Ltd. (56) References JP-A-4-14522 (JP, A) (58) Fields investigated ( Int.Cl. 6 , DB name) E02D 5/02-5/20

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鋼杭、木杭、横矢板等の山留め壁材と地盤
との間に、常温ないし100℃程度の温度範囲における温
度変化により融解、凝固する寒天、ゼラチン等の親水性
材料のゲル化物を充填することを特徴とする山留め壁の
地中止水工法。
1. A hydrophilic material, such as agar or gelatin, which melts and solidifies between a ground retaining wall material such as a steel pile, a wooden pile, and a horizontal sheet pile and the ground due to a temperature change in a temperature range from room temperature to about 100 ° C. A ground stop water method for retaining retaining walls, characterized by filling with a gelled material.
【請求項2】鋼杭、木杭、横矢板等の山留め壁材の単位
体同志の接続部周縁と地盤との間に、常温ないし100℃
程度の温度範囲における温度変化により融解、凝固する
寒天、ゼラチン等の親水性材料のゲル化物を充填するこ
とを特徴とする山留め壁の地中止水工法。
2. Between room temperature and 100.degree. C. between the periphery of the connecting portion of the unit body of the retaining wall material such as steel pile, wooden pile, horizontal sheet pile and the like and the ground.
A water retaining method for retaining a mountain retaining wall, characterized by filling a gel material of a hydrophilic material such as agar or gelatin which melts and solidifies due to a temperature change in a temperature range of about a degree.
【請求項3】親水性材料のゲル化物に、土、粘土、ベン
トナイト等の無機系材料微粉末を添加・混合してなるこ
とを特徴とする請求項1又は2記載の山留め壁の地中止
水工法。
3. A ground stop water for a retaining wall according to claim 1, wherein a fine powder of an inorganic material such as soil, clay and bentonite is added to and mixed with the gelled material of the hydrophilic material. Construction method.
【請求項4】親水性材料のゲル化物に、アルファ澱粉、
CMC、蛋白質等の有機糊料を添加・混合してなることを
特徴とする請求項1ないし3のいずれかに記載の山留め
壁の地中止水工法。
4. The gelatinized hydrophilic material, wherein alpha starch,
The method according to any one of claims 1 to 3, wherein an organic paste such as CMC or protein is added and mixed.
【請求項5】親水性材料のゲル化物が、融解温度が80〜
90℃、凝固温度が30〜40℃である濃度が0.2〜4%の寒
天水溶液のゲル化物であることを特徴とする請求項1な
いし4のいずれかに記載の山留め壁の地中止水工法。
5. A gelled hydrophilic material having a melting temperature of 80 to 50.
The method according to any one of claims 1 to 4, wherein the gel is a gel of an aqueous agar solution having a solidification temperature of 90 ° C and a solidification temperature of 30 to 40 ° C and a concentration of 0.2 to 4%.
【請求項6】親水性材料のゲル化物が、寒天を親水性材
料として含み、温度低下により凝固した時にその透水係
数が1×10-6〜1×10-8cm/secであることを特徴とする
請求項1ないし5のいずれかに記載の山留め壁の地中止
水工法。
6. The gelled hydrophilic material contains agar as a hydrophilic material and has a water permeability of 1 × 10 −6 to 1 × 10 −8 cm / sec when solidified by a decrease in temperature. 6. The method of suspending ground for a retaining wall according to any one of claims 1 to 5.
JP26520390A 1990-10-04 1990-10-04 Suspended water method for retaining walls Expired - Fee Related JP2818843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26520390A JP2818843B2 (en) 1990-10-04 1990-10-04 Suspended water method for retaining walls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26520390A JP2818843B2 (en) 1990-10-04 1990-10-04 Suspended water method for retaining walls

Publications (2)

Publication Number Publication Date
JPH04143308A JPH04143308A (en) 1992-05-18
JP2818843B2 true JP2818843B2 (en) 1998-10-30

Family

ID=17413968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26520390A Expired - Fee Related JP2818843B2 (en) 1990-10-04 1990-10-04 Suspended water method for retaining walls

Country Status (1)

Country Link
JP (1) JP2818843B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6618114B2 (en) * 2015-12-25 2019-12-11 株式会社竹中工務店 Construction method of mountain retaining wall by the retaining wall and parent pile sheet pile method
JP6994401B2 (en) * 2018-02-15 2022-01-14 鹿島建設株式会社 Yamadome construction method

Also Published As

Publication number Publication date
JPH04143308A (en) 1992-05-18

Similar Documents

Publication Publication Date Title
JP3342000B2 (en) Liquefaction prevention method for sandy ground by injection method
JP2818843B2 (en) Suspended water method for retaining walls
CN108130905A (en) Steel-pipe pile
CN106245641A (en) PHC pile tube post grouting construction technique and PHC pile tube composite pile
JP3676441B2 (en) Pit and construction method of basement using it
JP2855158B2 (en) Ground improvement material and its application
CN111962541A (en) Foundation pit water burst plugging method based on double-liquid grouting method under complex stratum condition
CN210597405U (en) Ancient building shock insulation barrier
JPH0452327A (en) Stabilized soil and construction method using this soil
JP2896476B2 (en) Soil liquefaction prevention method
JP3706998B2 (en) Ethanol bentonite grout method
JP4242670B2 (en) Soil-stabilized soil and method for producing the same
JPH05272132A (en) Underground continuous water-stopping wall and forming method thereof
CN210315683U (en) Basement bottom plate stagnant water structure
JPH0258634A (en) Foundation installation construction
JP2711203B2 (en) Ground improvement method
JPH0558086B2 (en)
JPH0414522A (en) Method for constructing water stopping layer
JPH11247200A (en) Caisson settlement method
GB2359074A (en) Bentonite-slag slurries; in-ground hydraulic cut-off barriers
JPS63223210A (en) Formation of water-impermeable layer
JPH0430490B2 (en)
CN114837451A (en) Water stop structure for maintaining leakage water of brick-concrete masonry structure and construction method
JPS60101181A (en) Grout for foundation
Hass et al. Isolierung und Absicherung grundwasserkontaminierender Schadstoffquellen im Untergrund durch Umschliessung mittels Dichtwaenden und Injektionssohlen. Abschlussbericht.(Insulation and sealing of ground-water-polluting sources in the ground by construction of sealing walls and injection soles. Final report)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees