JP2817147B2 - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JP2817147B2
JP2817147B2 JP26538588A JP26538588A JP2817147B2 JP 2817147 B2 JP2817147 B2 JP 2817147B2 JP 26538588 A JP26538588 A JP 26538588A JP 26538588 A JP26538588 A JP 26538588A JP 2817147 B2 JP2817147 B2 JP 2817147B2
Authority
JP
Japan
Prior art keywords
layer
conductivity type
region
base region
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26538588A
Other languages
Japanese (ja)
Other versions
JPH02111074A (en
Inventor
雅己 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26538588A priority Critical patent/JP2817147B2/en
Publication of JPH02111074A publication Critical patent/JPH02111074A/en
Application granted granted Critical
Publication of JP2817147B2 publication Critical patent/JP2817147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に伝導度変調型電界効
果トランジスタに関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a conductivity modulation type field effect transistor.

〔従来の技術〕[Conventional technology]

従来の伝導度変調型電界効果トランジスタを第3図に
基づいて説明する。従来の伝導度変調型電界効果トラン
ジスタは、第1導電型の半導体層1上に第2導電型の低
濃度層3を有する半導体基板の表面部に互いに離れて設
けられた第1導電型ベース領域4とこのベース領域4内
に設けられた第2導電型ソース領域5及びこのソース領
域5の相互間の半導体基板上にゲート酸化膜6を介して
設けられたポリシリコンによるゲート電極7を有し、ソ
ース領域5及び基板下部より、それぞれソース電極8,ド
レイン電極9を有し、下部第1導電型半導体層1は基板
と平行である。
A conventional conductivity modulation type field effect transistor will be described with reference to FIG. A conventional conductivity-modulated field-effect transistor includes a first conductivity type base region which is provided apart from each other on a surface portion of a semiconductor substrate having a second conductivity type low concentration layer 3 on a first conductivity type semiconductor layer 1. 4, a second conductivity type source region 5 provided in the base region 4 and a gate electrode 7 made of polysilicon provided on the semiconductor substrate between the source regions 5 with a gate oxide film 6 interposed therebetween. A source electrode 8 and a drain electrode 9 from the source region 5 and the lower part of the substrate, respectively, and the lower first conductivity type semiconductor layer 1 is parallel to the substrate.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来の伝導度変調型電界効果トランジスタに
おいて、ゲート電極7に正の電圧を加えるとゲート電極
7直下のPベース領域4の表面が反転しnチャネルが生
じる。nチャネルが生じるとn+ソース領域5、−nチャ
ネル−n-層3−p+ドレイン層1からなるPINダイオード
と同一の構造が形成されていると考えられるようにな
る。そしてn+ソース領域5よりN-層3にnチャネルを介
して電子が流入し、N-層3の電位を下げる。従って、こ
のPINダイオードが順バイアスされてp+ドレイン層1か
らホールが注入される。このように、n-層3はp+ドレイ
ン層1から注入されたホールとソース領域5から注入さ
れた電子が蓄積し導伝変調をうけ、オン抵抗が低下す
る。
In the conventional conductivity-modulated field effect transistor described above, when a positive voltage is applied to the gate electrode 7, the surface of the P base region 4 immediately below the gate electrode 7 is inverted, and an n-channel is generated. When the n-channel is generated, it can be considered that the same structure as the PIN diode including the n + source region 5 and the -n channel -n - layer 3-p + drain layer 1 is formed. Then N from n + source region 5 - electrons flows through the n-channel in the layer 3, N - lowering the potential of the layer 3. Therefore, the PIN diode is forward-biased and holes are injected from the p + drain layer 1. As described above, the n layer 3 is subjected to conduction modulation due to accumulation of holes injected from the p + drain layer 1 and electrons injected from the source region 5, and the ON resistance is reduced.

このとき、ホールは矢印11,12で示したような通路を
経てベース領域4に集められ、ソース電極5にぬけ出て
いく。そして、大電流駆動となった場合、素子の電流密
度が高くなりソース領域5の下のPベース層4に存在す
る抵抗成分13のためにこの部分を通る時に電圧降下が生
じる。この電圧降下によりこの部分のn+ソース領域5と
Pベース領域4との間のPN接合を順バイアスする結果と
なるので、この電圧降下が高いと電子は直接ソース領域
5よりPベース領域4中へ注入され寄生NPNトランジス
タがオンし寄生サイリスタのラッチアップが生じてしま
う。
At this time, the holes are collected in the base region 4 through the passages indicated by arrows 11 and 12, and pass through the source electrode 5. In the case of driving with a large current, the current density of the element increases, and a voltage drop occurs when passing through this portion due to the resistance component 13 existing in the P base layer 4 below the source region 5. This voltage drop results in a forward biasing of the PN junction between the n + source region 5 and the P base region 4 in this part, so that if this voltage drop is high, electrons will be more directly in the P base region 4 than in the source region 5. And the parasitic NPN transistor is turned on, causing latch-up of the parasitic thyristor.

本発明の目的はラッチアップを生じにくく大電流を駆
動させることのできる伝導度変調型電界効果トランジス
タを提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a conductivity modulation type field effect transistor which does not easily cause latch-up and can drive a large current.

〔課題を解決するための手段〕[Means for solving the problem]

本発明によれば、第1導電型の半導体層上に第2導電
型の低濃度層を有する半導体基板の表面部に互いに離れ
て設けられた第1導電型ベース領域とこのベース領域内
に設けられた第2導電型ソース領域及びこのソース領域
の相互間の半導体基板上にゲート酸化膜を介して設けら
れたポリシリコンによるゲート電極を有し、ソース領域
及び基板下部よりそれぞれソース電極,ドレイン電極を
有する伝導度変調型電界効果トランジスタにおいて、ベ
ース領域直下では基板表面から第1導電型層までの距離
を短く形成した電界効果トランジスタを得る。
According to the present invention, a first conductivity type base region is provided on a surface portion of a semiconductor substrate having a second conductivity type low-concentration layer on a first conductivity type semiconductor layer and is provided in the base region. A second conductive type source region and a polysilicon gate electrode provided on the semiconductor substrate between the source regions via a gate oxide film, and a source electrode and a drain electrode from the source region and the lower portion of the substrate, respectively. A field effect transistor having a short distance from the substrate surface to the first conductivity type layer immediately below the base region.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示したもので、伝導度変
調型電界効果トランジスタの断面図である。第1図にお
いて第1導電型の半導体層1上に第2導電型の低濃度層
3を有する半導体基板の表面部に互いに離れて設けられ
た第1導電型ベース領域4とこのベース領域内に設けら
れた第2導電型ソース領域5及びこのソース領域の相互
間の前記半導体基板上にゲート酸化膜6を介して設けら
れたポリシリコンによるゲート電極7を有しソース領域
5及び基板下部よりソース電極8,ドレイン電極9を有し
ている。そして本実施例においては、ベース領域4のソ
ース領域5の囲まれた部分の直下において、第1導電型
層1上に第1導電型層10を設け、この部分における第1
導電型層とベース領域4との距離を短くしている。
FIG. 1 shows an embodiment of the present invention and is a cross-sectional view of a conductivity modulation type field effect transistor. In FIG. 1, a first conductivity type base region 4 is provided on a surface portion of a semiconductor substrate having a second conductivity type low-concentration layer 3 on a first conductivity type semiconductor layer 1 and separated from each other. The semiconductor device has a second conductivity type source region 5 provided and a gate electrode 7 made of polysilicon provided on the semiconductor substrate via a gate oxide film 6 between the source regions. It has an electrode 8 and a drain electrode 9. In this embodiment, the first conductivity type layer 10 is provided on the first conductivity type layer 1 immediately below the portion of the base region 4 surrounded by the source region 5, and the first conductivity type layer 10 in this portion is provided.
The distance between the conductive layer and the base region 4 is reduced.

伝導度変調型電界効果トランジスタのオン状態では前
述したように、P+領域1からN-領域3への正孔の注入が
生じ非常に低いオン抵抗を有するが、電流が大きくなる
につれベース領域4のソース領域5直下の抵抗13による
電圧降下が無視できなくなりベース領域4の電位を上昇
せしめ寄生NPNトランジスタがオンしてしまいラッチア
ップが生じる。そこでこのベース領域4直下、特に、ソ
ース領域5に囲まれたベース領域4の下に第1導電型層
10を設け、基板表面からの距離を短くすることにより
(通常10〜100μm程度)、ベース抵抗13による電圧降
下に寄与しない部分のみホールの注入効率を上げその他
の部分は逆に注入効率を下げる。このようにしてオン抵
抗の増大を抑制しつつラッチアップ耐量の増大を図るこ
とができる。
In the on state of the conductivity modulation type field effect transistor, as described above, holes are injected from the P + region 1 to the N region 3 and have a very low on-resistance, but as the current increases, the base region 4 The voltage drop due to the resistor 13 immediately below the source region 5 cannot be ignored and the potential of the base region 4 rises, turning on the parasitic NPN transistor and causing latch-up. Therefore, the first conductivity type layer is provided directly under the base region 4, in particular, under the base region 4 surrounded by the source region 5.
By providing 10 and shortening the distance from the substrate surface (usually about 10 to 100 μm), the hole injection efficiency is increased only in the portion that does not contribute to the voltage drop due to the base resistor 13, and the injection efficiency is reduced in the other portions. In this way, it is possible to increase the latch-up resistance while suppressing the increase in the on-resistance.

すなわち、抵抗部分13を経る通路12を流れるホールの
量を小さくしこの抵抗13を経ない通路11を流れるホール
の量を多くすることによってオン電圧の上昇を防止しラ
ッチアップ耐量を向上させる。そのためには通路12の第
1導電層からベース4までの距離を長く、通路11の第1
導電層からベース4までの距離を短くしN-領域3中での
ホールの再結合割合を制御する。N-領域3の距離が長け
ればホールの再結合の割合は大きく短かければ再結合の
割合は小さいので、同一の構造で同一電流の場合、P+
(1)が平坦な従来の場合と比較して通路11を経て流れ
るホールの量は多く、通路12を経て流れるホールの量は
少なくなり、内部抵抗13が存在する部分の電圧降下が小
さくなってPN接合が順バイアスされにくくなる結果、ラ
ッチアップで生じにくくなる。
That is, by reducing the amount of holes flowing through the passage 12 passing through the resistor portion 13 and increasing the amount of holes flowing through the passage 11 not passing through the resistor 13, an increase in on-voltage is prevented and the latch-up resistance is improved. To do so, the distance from the first conductive layer of the passage 12 to the base 4 is increased, and the first
The distance from the conductive layer to the base 4 is reduced to control the recombination ratio of holes in the N region 3. N - the ratio of recombination by multiplying the recombination rate of the large short hole Longer distance region 3 is small, if the same current with the same structure, and if the P + layer (1) is flat prior In comparison, the amount of holes flowing through the passage 11 is large, the amount of holes flowing through the passage 12 is small, the voltage drop in the portion where the internal resistance 13 exists is small, and the PN junction is less likely to be forward biased, Latch-up is less likely to occur.

第2図は本発明の他の実施例の断面図である。第1導
電型の半導体層1上に第2導伝型の高濃度層2さらに低
濃度層3を有する半導体基板の表面部に互いに離れて設
けられた第一導伝型ベース領域4とベース領域4内に設
けられた第二導電型ソース領域5及びソース領域5の間
の半導体基板上にゲート酸化膜6を介して設けられたポ
リシリコンによるゲート電極7を有し前記ソース領域5
及び基板下部よりソース電極8ドレイン電極9を有して
いる。
FIG. 2 is a sectional view of another embodiment of the present invention. A first conductive type base region 4 and a base region provided on a surface portion of a semiconductor substrate having a second conductive type high-concentration layer 2 and a low-concentration layer 3 on a first conductive type semiconductor layer 1 and separated from each other. And a gate electrode 7 made of polysilicon provided on a semiconductor substrate between the source region 5 and the source region 5 with a gate oxide film 6 interposed therebetween.
And a source electrode 8 and a drain electrode 9 from below the substrate.

この実施例では基板内に数μmから20μm程度の高濃
度層2を有している。この層の存在により少数キャリア
の注入効率が下がるためラッチアップ耐量が増加し、タ
ーンが時間が短くなりスイッチングスピードが速くなる
という利点がある。
In this embodiment, the substrate has a high concentration layer 2 of about several μm to about 20 μm. The presence of this layer has the advantage that the injection efficiency of minority carriers is reduced, the latch-up withstand capability is increased, the turn time is shortened, and the switching speed is increased.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、ベース領域下では基板
表面から第一導電型層までの距離を短くすることにより
ラッチ耐量を増加させることができる。
As described above, according to the present invention, the latch resistance can be increased by shortening the distance from the substrate surface to the first conductivity type layer under the base region.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による伝導度変調型電界効果トランジス
タの第1の実施例の断面図、第2図は本発明の第2の実
施例の断面図、第3図は従来の伝導度変調型電界効果ト
ランジスタの断面図である。 1,10……第一導電型層、2……高濃度第二導電型層、3
……低濃度第二導電型層、4……ベース領域、5……ソ
ース領域、6……ゲート酸化膜、7……ゲート電極、8
……ソース電極、9……ドレイン電極。
FIG. 1 is a cross-sectional view of a first embodiment of a conductivity modulation type field effect transistor according to the present invention, FIG. 2 is a cross-sectional view of a second embodiment of the present invention, and FIG. It is sectional drawing of a field effect transistor. 1,10 ... first conductivity type layer, 2 ... high concentration second conductivity type layer, 3
... Low-concentration second-conductivity-type layer, 4. Base region, 5 Source region, 6 Gate oxide film, 7 Gate electrode, 8
... source electrode, 9 ... drain electrode.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電型の半導体層上に第2導電型の低
濃度層を有する半導体基板の表面部に互いに離れて設け
られた第1導電型ベース領域と該ベース領域内に設けら
れた第2導電型ソース領域及び該ソース領域の間の前記
基板上にゲート酸化膜を介して設けられたゲート電極を
有し前記ソース領域及び基板下部よりそれぞれソース電
極、ドレイン電極を有する電界効果トランジスタにおい
て、該ベース領域直下の前記第1導電型の半導体層上に
更に第1導電型の凸部領域を設けたことを特徴とした電
界効果トランジスタ。
A first conductive type base region provided on a surface portion of a semiconductor substrate having a second conductive type low-concentration layer on a first conductive type semiconductor layer, and a first conductive type base region provided in the base region; A field effect transistor having a second conductivity type source region and a gate electrode provided on the substrate between the source region via a gate oxide film, and having a source electrode and a drain electrode below the source region and the substrate, respectively. 3. The field effect transistor according to claim 1, further comprising a first conductivity type convex region provided on the first conductivity type semiconductor layer immediately below the base region.
JP26538588A 1988-10-20 1988-10-20 Field effect transistor Expired - Lifetime JP2817147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26538588A JP2817147B2 (en) 1988-10-20 1988-10-20 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26538588A JP2817147B2 (en) 1988-10-20 1988-10-20 Field effect transistor

Publications (2)

Publication Number Publication Date
JPH02111074A JPH02111074A (en) 1990-04-24
JP2817147B2 true JP2817147B2 (en) 1998-10-27

Family

ID=17416442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26538588A Expired - Lifetime JP2817147B2 (en) 1988-10-20 1988-10-20 Field effect transistor

Country Status (1)

Country Link
JP (1) JP2817147B2 (en)

Also Published As

Publication number Publication date
JPH02111074A (en) 1990-04-24

Similar Documents

Publication Publication Date Title
JPH0467343B2 (en)
JP3209091B2 (en) Semiconductor device having insulated gate bipolar transistor
US4987098A (en) Method of producing a metal-oxide semiconductor device
US5079607A (en) Mos type semiconductor device
JP2946750B2 (en) Semiconductor device
US5705842A (en) Horizontal MOSFET
US6111278A (en) Power semiconductor devices having discontinuous emitter regions therein for inhibiting parasitic thyristor latch-up
JPH053205A (en) Insulated-gate bipolar transistor
JPH0654796B2 (en) Composite semiconductor device
JPH0465552B2 (en)
JPH0620141B2 (en) Conduction modulation type MOSFET
JP3163815B2 (en) Semiconductor device
JP3063278B2 (en) Vertical field-effect transistor
JP2817147B2 (en) Field effect transistor
JP2601862B2 (en) Anode short type conductive modulation MOSFET
JP3114317B2 (en) Semiconductor device
JP3206395B2 (en) Semiconductor device
JPH02100367A (en) Vertical conductivity modulation type mosfet
JP2660001B2 (en) Conduction modulation type MOSFET
KR100266388B1 (en) Semiconductor device and method of manufacturing thereof
JPH02128474A (en) Field effect transistor
JP2724204B2 (en) Conduction modulation type MOSFET
JP2501236B2 (en) Thyristor with turn-off gate
JP2856257B2 (en) P-channel insulated gate bipolar transistor
JPH042169A (en) Horizontal type conductivity modulation semiconductor device