JP2810533B2 - 堆積膜形成方法及び堆積膜形成装置 - Google Patents

堆積膜形成方法及び堆積膜形成装置

Info

Publication number
JP2810533B2
JP2810533B2 JP33383390A JP33383390A JP2810533B2 JP 2810533 B2 JP2810533 B2 JP 2810533B2 JP 33383390 A JP33383390 A JP 33383390A JP 33383390 A JP33383390 A JP 33383390A JP 2810533 B2 JP2810533 B2 JP 2810533B2
Authority
JP
Japan
Prior art keywords
microwave
film
shaped member
film forming
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33383390A
Other languages
English (en)
Other versions
JPH04202668A (ja
Inventor
勉 村上
正博 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP33383390A priority Critical patent/JP2810533B2/ja
Publication of JPH04202668A publication Critical patent/JPH04202668A/ja
Application granted granted Critical
Publication of JP2810533B2 publication Critical patent/JP2810533B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、大面積に亘って均一なマイクロ波プラズマ
を生起させ得る新規なマイクロ波エネルギー供給装置を
用い、これにより引き起こされるプラズマ反応により、
原料ガスを分解、励起させることによって大面積の機能
性堆積膜を連続的に形成する方法及び装置に関する。
更に詳しくは、前記原料ガスの利用効率を飛躍的に高
め、且つ高速で均一性の良い機能性堆積膜を大面積に亘
って連続的に形成することが出来る方法及び装置であっ
て、具体的には光起電力素子等の大面積薄膜半導体デバ
イスの量産化を低コストで実現させ得るものである。
〔従来技術の説明〕
近年、全世界的に電力需要が急激に増大し、そうした
需要をまかなうべく電力生産が活発化するに及んで環境
汚染の問題が深刻化して来ている。
因に、火力発電に代替する発電方式として期待され、
すでに実用期に入ってきている原子力発電においては、
チエルノブイリ原子力発電所事故に代表されるように重
大な放射能汚染が人体に被害を与えると共に自然環境を
侵す事態が発生し、原子力発電の今後の普及が危ぶま
れ、現実に原子力発電所の新設を禁止する法令を定めた
国さえ出てきている。
又、火力発電にしても増大する電力需要をまかなう上
から石炭、石油に代表される化石燃料の使用量は増加の
一途をたどり、それにつれて排出される二酸化炭素の量
が増大し、大気中の二酸化炭素等の温室効果ガス濃度を
上昇させ、地球温暖化現象を招き、地球の年平均気温は
確実に上昇の一途をたどっており、IEA(International
Energy Agency)では2005年までに二酸化炭素の排出量
を20%削減することを提言している。
こうした背景のある一方、開発途上国における人工増
加、そして、それに伴う電力需要の増大は必至であり、
先進諸国における今後更なる生活様式のエレクトロニク
ス化の促進による人口一人当たりの電力消費量の増大と
相まって、電力供給問題は地球規模で検討されねばなら
ない状況になってきている。
このような状況下で、太陽光を利用する太陽電池によ
る発電方式は、前述した放射能汚染や地球温暖化等の問
題を惹起することはなく、また、太陽光は地球上至ると
ころに降り注いでいるためエネルギー源の偏在が少な
く、さらには、複雑な大型の設備を必要とせず比較的高
い発電効率が得られる等、今後の電力需要の増大に対し
ても、環境破壊を引き起こすことなく対応できるクリー
ンな発電方式として注目を集め、実用化に向けて様々な
研究開発がなされている。
ところで、太陽電池を用いる発電方式については、そ
れを電力需要を賄うものとして確立させるためには、使
用する太陽電池が、光電変換効率が充分に高く、特性安
定性に優れたものであり、且つ、大量生産し得るもので
あることが基本的に要求される。
因に、一般的な家庭において必要な電力を賄うには、
一世帯あたり3kW程度の出力の太陽電池が必要とされる
ところ、その太陽電池の光電変換効率が例えば10%程度
であるとすると、必要な出力を得るための前記太陽電池
の面積は30m2程度となる。そして、例えば十万世帯の家
庭において必要な電力を供給するには3,000,000m2とい
った面積の太陽電池が必要となる。
こうしたことから、容易に入手できるシラン等の気体
状の原料ガスを使用し、これをグロー放電分解して、ガ
ラスや金属シート等の比較的安価な基板上にアモルフア
スシリコン等の半導体薄膜を堆積させることにより作製
できる太陽電池が、量産性に富み、単結晶シリコン等を
用いて作製される太陽電池に比較して低コストで生産で
きる可能性があるとして注目され、その製造方法につい
て各種の提案がなされている。
太陽電池を用いる発電方式にあっては、単位モジユー
ルを直列又は並列に接続し、ユニツト化して所望の電
流、電圧を得る形式が採用されることが多く、各モジユ
ールにおいては断線やシヨートが生起しないことが要求
される。加えて、各モジユール間の出力電圧や出力電流
のばらつきのないことが重要である。こうしたことか
ら、少なくとも単位モジユールを作製する段階でその最
大の特性決定要素である半導体層そのものの特性均一性
が確保されていることが要求される。そして、モジユー
ル設計をし易くし、且つモジユール組立工程の簡略化で
きるようにする観点から大面積に亘って特性均一性の優
れた半導体堆積膜が提供されることが太陽電池の量産性
を高め、生産コストの大幅な低減を達成せしめるについ
て要求される。
太陽電池については、その重要な構成要素たる半導体
層は、いわゆるpn接合、pin接合等の半導体接合がなさ
れている。それらの半導体接合は、導電型の異なる半導
体層を順次積層したり、一導電型の半導体層中に異なる
導電型のドーパントをイオン打込み法等によって打込ん
だり、熱拡散によって拡散させたりすることにより達成
される。
この点を、前述した注目されているアモルフアスシリ
コン等の薄膜半導体を用いた太陽電池についてみると、
その作製においては、ホスフイン(PH3)、ジボラン(B
2H6)等のドーパントとなる元素を含む原料ガスを主原
料ガスであるシラン等に混合してグロー放電分解するこ
とにより所望の導電型を有する半導体膜が得られ、所望
の基板上にこれらの半導体膜を順次積層形成することに
よって容易に半導体接合が達成できることが知られてい
る。そしてこのことから、アモルフアスシリコン系の太
陽電池を作製するについて、その各々の半導体層形成用
の独立した成膜室を設け、該成膜室にて各々の半導体層
の形成を行う方法が提案されている。
因に米国特許4,400,409号特許明細書には、ロール・
ツー・ロール(Roll to Roll)方式を採用した連続プラ
ズマCVD装置が開示されている。この装置によれば、複
数のグロー放電領域を設け、所望の幅の十分に長い可撓
性の基板を、該規板が前記各グロー放電領域を順次貫通
する経路に沿って配置し、前記各グロー放電領域におい
て必要とされる導電型の半導体層を堆積形成しつつ、前
記基板をその長手方向に連続的に搬送せしめることによ
って、半導体接合を有する素子を連続形成することがで
きるとされている。なお、該明細書においては、各半導
体層形成時に用いるドーパントガスが他のグロー放電領
域へ拡散、混入するのを防止するにはガスゲートが用い
られている。具体的には、前記各グロー放電領域同志
を、スリツト状の分離通路によって相互に分離し、さら
に該分離通路に例えばAr,H2等の掃気用ガスの流れを形
成させる手段が採用されている。こうしたことからこの
ロール・ツー・ロール方式は、半導体素子の量産に適す
る方式であると言えよう。
しかしながら、前記各半導体層の形成はRF(ラジオ周
波数)を用いたプラズマCVD法によって行われるとこ
ろ、連続的に形成される膜の特性を維持しつつその膜堆
積速度の向上を図るにはおのずと限界がある。即ち、例
えば膜厚が高々5000Åの半導体層を形成する場合であっ
ても相当長尺で、大面積にわたって常時所定のプラズマ
を生起し、且つ該プラズマを均一に維持する必要があ
る。ところが、そのようにするについては可成りの熟練
を必要とし、その為に関係する種々のプラズマパラメー
ターを一般化するのは困難である。また、用いる成膜用
原料ガスの分解効率及び利用効率は高くはなく、生産コ
ストを引き上げる要因の一つともなっている。
また他に、特開昭61-288074号公報には、改良された
ロール・ツー・ロール方式を用いた堆積膜形成装置が開
示されている。この装置においては、反応容器内に設置
されたフレキシブルな連続シート状基板の一部にホロ様
たるみ部を形成し、この中に前記反応容器とは異なる活
性化空間にて生成された活性種及び必要に応じて他の原
料ガスを導入し熱エネルギーにより化学的相互作用をせ
しめ、前記ホロ様たるみ部を形成しているシート状基板
の内面に堆積膜を形成することを特徴としている。この
ようにホロ様たるみ部の内面に堆積を行うことにより、
装置のコンパクト化が可能となる。さらに、あらかじめ
活性化された活性種を用いるので、従来の堆積膜形成装
置に比較して成膜速度を早めることができる。
ところが、この装置はあくまで熱エネルギーの存在下
での化学的相互作用による堆積膜形成反応を利用したも
のであり、更なる成膜速度の向上を図るには、活性種の
導入量及び熱エネルギーの供給量を増やすことが必要で
あるが、熱エネルギーを大量且つ均一に供給する方法
や、反応性の高い活性種を大量に発生させて反応空間に
ロスなく導入する方法にも限界がある。
一方、最近注目されているのが、マイクロ波を用いた
プラズマプロセスである。マイクロ波は周波数帯が短い
ため従来のRFを用いた場合よりもエネルギー密度を高め
ることが可能であり、プラズマを効率良く発生させ、接
続させることに適している。
例えば、米国特許第4,517,223号明細書及び同第4,50
4,518号明細書には、低圧下でのマイクロ波グロー放電
プラズマ内で小面積の基体上に薄膜を堆積形成させる方
法が開示されているが、該方法によれば、低圧下でのプ
ロセス故、膜特性の低下の原因となる活性種のポリマリ
ゼーシヨンを防ぎ高品質の堆積膜が得られるばかりでな
く、プラズマ中でのポリシラン等の粉末の発生を抑え、
且つ、堆積速度の飛躍的向上が図れるとされてはいるも
のの、大面積に亘って均一な堆積膜形成を行うにあたっ
ての具体的開示はなされていない。
一方、米国特許第4,729,341号明細書には、一対の放
射型導波管アプリケーターを用いた高パワープロセスに
よって、大面積の円筒形基体上に光導電性半導体薄膜を
堆積形成させる低圧マイクロ波プラズマCVD法及び装置
が開示されているが、大面積基体としては円筒形の基
体、即ち、電子写真用光受容体としてのドラムに限られ
ており、大面積且つ長尺の基体への適用はなされていな
い。
ところで、マイクロ波を用いたプラズマはマイクロ波
の波長が短いためエネルギーの不均一性が生じやすく大
面積化に対しては、解決されねばならない問題点が種々
残されている。
例えば、マイクロ波エネルギーの均一化に対する有効
な手段として遅波回路の利用があるが、該遅波回路には
マイクロ波アプリケーターの横方向への距離の増加に伴
いプラズマへのマイクロ波結合の急激な低下が生じると
いった独特の問題点を有している。そこで、この問題点
を解決する手段として、被処理体と遅波回路との距離を
変える基体の表面近傍でのエネルギー密度を均一にする
方法が試みられている。例えば、米国特許第3,814,983
号明細書及び同第4,521,717号明細書には、そうした方
法が開示されている。そして前者においては、基体に対
してある角度に遅波回路を傾斜させる必要性があること
が記載されているが、プラズマに対するマイクロ波エネ
ルギーの伝達効率は満足のゆくものではない。また、後
者にあっては、基体とは平行な面内に、非平行に2つの
遅波回路を設けることが開示されている。即ち、マイク
ロ波アプリケーターの中央に垂直な平面同志が、被処理
基板に平行な面内で、且つ基板の移動方向に対して直角
な直線上で互いに交わるように配置することが望ましい
こと、そして2つのアプリケーター間の干渉を避けるた
め、アプリケーター同志を導波管のクロスバーの半分の
長さだけ基体の移動方向に対して横にずらして配設する
ことのそれぞれが開示されている。
また、プラズマの均一性(即ち、エネルギーの均一
性)を保持するようにするについての提案がいくつかな
されている。それらの提案は、例えばジヤーナル・オブ
・バキユーム・サイエンス・テクノロジイー(Journal
of Vacuum Science Technology)B−4(1986年1月〜
2月)295頁−298頁および同誌のB−4(1986年1月〜
2月)126頁−130頁に記載された報告に見られる。これ
らの報告によれば、マイクロ波プラズマ・デイスク・ソ
ース(MPDS)と呼ばれるマイクロ波リアクタが提案され
ている。即ち、プラズマは円板状あるいはタブレツト状
の形をなしていて、その直径はマイクロ波周波数の関数
となっているとしている。そしてそれら報告は次のよう
な内容を開示している。即ち、まず、プラズマ・デイス
ク・ソースをマイクロ波周波数によって変化させること
ができるという点にある。ところが、2.45GHzで作動で
きるように設計したマイクロ波プラズマ・デイスク・ソ
ースにおいては、プラズマの閉じ込め直径はたかだか10
cm程度であり、プラズマ体積にしてもせいぜい118cm3
度であって、大面積化とは到底言えない。また、前記報
告は、915MHzという低い周波数で作動するように設計し
たシステムでは、周波数を低くすることで約40cmのプラ
ズマ直径、及び2000cm3のプラズマ体積が与えられると
している。前記報告は更に、より低い周波数、例えば、
400MHzで作動させることにより1mを超える直径まで放電
を拡大できるとしている。ところがこの内容を達成する
装置となると極めて高価な特定のものが要求される。
即ち、マイクロ波の周波数を低くすることで、プラズ
マの大面積化は達成できるが、このような周波数域での
高出力のマイクロ波電源は一般化されてはいなく、入手
困難であり入手出来得たとしても極めて高価である。そ
してまた、周波数可変式の高出力のマイクロ波電源は更
に入手困難である。
同様に、マイクロ波を用いて高密度プラズマを効率的
に生成する手段として、空胴共振器の周囲に電磁石を配
置し、ECR(電子サイクロトロン共鳴)条件を成立させ
る方法が特開昭55-141729号公報及び特開昭57-133636号
公報等により提案されており、また学会等ではこの高密
度プラズマを利用して各種の半導体薄膜が形成されるこ
とが多数報告されており、すでにこの種のマイクロ波EC
RプラズマCVD装置が市販されるに至っている。
ところが、これらのECRを用いた方法においては、プ
ラズマの制御に磁石を用いているため、マイクロ波の波
長に起因するプラズマの不均一性に、更に、磁界分布の
不均一性も加わって、大面積の基板上に均一な体積膜を
形成するのは技術的に困難とされている。また、大面積
化のため装置を大型化する場合には、おのずと用いる電
磁石も大型化し、それに伴う重量及びスペースの増大、
また、発熱対策や大電流の直流安定化電源の必要性等実
用化に対しては解決されねばならない問題が種々残され
ている。
更に、形成される堆積膜についても、その特性は従来
のRFプラズマCVD法にて形成されるものと比較して同等
と言えるレベルには至っておらず、また、ECR条件の成
立する空間で形成される堆積膜とECR条件外のいわゆる
発散磁界空間で形成される堆積膜とでは特性及び堆積速
度が極端に異なるため、特に高品質、均一性が強く要求
される半導体デバイスの作製に適している方法とは言え
ない。
前述の米国特許第4,517,223号明細書及び同第4,729,3
41号明細書では、高密度のプラズマを得るについては、
非常に低い圧力を維持する必要性があることが開示され
ている。即ち、堆積速度を早めたり、ガス利用効率を高
めるためには低圧下でのプロセスが必要不可欠であると
している。しかしながら、高堆積速度、高ガス利用効
率、高パワー密度及び低圧の関係を維持するには、前述
の特許に開示された遅波回路及び電子サイクロトロン共
鳴法のいずれをしても十分とは言えないものである。
ところで、前述の特開昭55-141729号公報及び特開昭5
7-133636号公報等開示されたECR(電子サイクロトロン
共鳴)条件を成立させる方法や米国特許第4,729,341号
に開示された方法に於ては、マイクロ波アプリケーター
と成膜室は、誘電体により仕切られた構造となっており
該誘電体は成膜室を真空に保つ役割とともにマイクロ波
エネルギーを成膜室に透過させる機能を有しており一般
にマイクロ波投入窓と呼ばれている。このような構造を
有するマイクロ波導入方法の問題点は、前記マイクロ波
投入窓に堆積膜が付着することである。すなわち外周面
のうち少なくともマイクロ波プラズマ領域に接している
部分には、前記帯状部材上と同様膜堆積が起こる。従っ
て、堆積する膜の種類、特性にもよるが、該堆積膜によ
って前記マイクロ波アプリケーター手段から放射、伝達
されるマイクロ波エネルギーが吸収又は反射等され、前
記帯状部材によって形成される成膜室内へのマイクロ波
エネルギーの放射、伝達量が減少し、放電開始直後に比
較して著しくその変化量が増大した場合には、形成され
る堆積膜の堆積速度の減少や特性等の変化を生じたり、
前記分離手段上に堆積した膜が剥離したり、飛散したり
して帯状部材上に堆積する膜の特性を変化させたり、ピ
ンホールを発生させたりする。さらに著しい場合には、
マイクロ波プラズマの維持そのものが困難になる。
従って従来、このような装置で製造を行うときには、
通常一定周期毎に、前記分離手段に堆積される膜をドラ
イエツチング、ウエツトエツチング、又は機械的方法等
により除去することか行われており従ってこのような製
造方式は本質的にバツチ式であり生産性の低いものであ
るのみならず各バツチ毎のわずかな条件のばらつきによ
り製品の特性がバラ付くことがあった。また、前述した
エツチング工程を特に、真空状態を維持したまま堆積膜
の除去を行う方法としてはドライエツチングが好適に用
いられる。マイクロ波投入窓に堆積膜が付着するとマイ
クロ波の成膜室への電送特性が変化してしまいきわめて
制御性を損なうものである。さらに前記マイクロ波投入
窓に付着した堆積膜が剥離して堆積膜上に飛散すると堆
積膜のピンホールを発生させたりするための製品の歩留
りが低下することとなる。従って、上述したマイクロ波
手段の持つ種々の問題点を解決した新規なマイクロ波ア
プリケーターの早期提供が必要とされていることは言う
までもないが同時に前記マイクロ波投入窓を使用する成
膜方法及び装置にあってはさらに、投入窓のクリーニン
グ方法も解決する必要がある。
ところで、薄膜半導体は前述した太陽電池用の用途の
他にも、液晶デイスプレイの画素を駆動するための薄膜
トランジスタ(TFT)や密着型イメージセンサー用の光
電変換素子及びスイツチング素子等大面積又は長尺であ
ることが必要な薄膜半導体デバイス作製用にも好適に用
いられ、前記画像入出力装置用のキーコンポーネントと
して一部実用化されているが、高品質で均一性良く高速
で大面積化できる新規な堆積膜形成法の提供によって、
更に広く一般に普及されるようになることが期待されて
いる。
〔発明の目的〕
本発明は、上述のごとき従来の薄膜半導体デバイス形
成方法及び装置における諸問題を克服して、大面積に亘
って均一に、且つ高速で機能性堆積膜を形成する新規な
方法及び装置を提供することを目的とするものである。
本発明の他の目的は、帯状部材上に連続して機能性堆
積膜を形成する方法及び装置を提供することにある。
本発明の更なる目的は、堆積膜形成用の原料ガスの利
用効率を飛躍的に高めると共に、薄膜半導体デバイスの
量産化を低コストで実現し得る方法及び装置を提供する
ことにある。
本発明の更に別の目的は、大面積、大容量に亘ってほ
ぼ均一なマイクロ波プラズマを生起することを可能にす
るマイクロ波アプリケーターを提供すると供に該マイク
ロ波を成膜空間に安定的に投入するに際し必須となるマ
イクロ波投入窓を提供することにある。
本発明の更に別の目的は、比較的幅広で長尺の基板上
に連続して安定性良く、高効率で高い光電変換効率の光
起電力素子を形成するための新規な方法及び装置を提供
するものである。
〔発明の構成・効果〕
本発明者らは、従来の薄膜半導体デバイス形成装置に
おける上述の諸問題を解決し、前記本発明の目的を達成
すべく鋭意研究を重ねたところ、マイクロ波エネルギー
をマイクロ波の進行方向に対して垂直な一方向に指向性
をもたせて放射又は伝達させるようにしたマイクロ波ア
プリケーター手段を、マイクロ波透過性部材で包含さ
せ、且つその内周壁には前記マイクロ波アプリケーター
手段を接触させないようにした状態で成膜室中に突入さ
せ、前記成膜室内に堆積膜形成用の原料ガスを導入し
て、所定の圧力に保ち、前記マイクロ波アプリケーター
手段にマイクロ波電源よりマイクロ波を供給したとこ
ろ、前記成膜室内において、前記アプリケーター手段の
長手方向に均一なマイクロ波プラズマを生起できるとい
う知見を得た。
本発明は、上述の知見に基づき更に検討を重ねた結果
完成に至ったものであり、下述するところを骨子とする
マイクロ波プラズマCVD法による大面積の機能性堆積膜
を連続的に形成する方法及び装置を包含する。
本発明の方法は、次のとおりのものである。即ち、長
手方向に帯状部材を移動せしめ、その中途で前記帯状部
材上を側壁とする成膜空間を形成し、該形成された成膜
空間内にガス供給手段を介して堆積膜形成用原料ガスを
導入し、同時に、マイクロ波エネルギーをマイクロ波の
進行方向に対して垂直な一方向に均一に放射又は伝達さ
せるようにしたマイクロ波アプリケーター手段を設け、
該アプリケーター手段と前記成膜空間との間に設けられ
たマイクロ波を透過する分離手段を介して、該マイクロ
波エネルギーを該成膜空間内の該帯状部材に向けて放射
又は伝達させてマイクロ波プラズマを該成膜空間内に生
起せしめ、該マイクロ波プラズマに曝される前記側壁を
構成する該帯状部材上に堆積膜を形成すると共に、前記
分離手段に隣接して設けられた化学的又は機械的堆積膜
除去手段により、前記分離手段上に堆積する堆積膜を堆
積膜形成中又は形成後に除去することを特徴とするマイ
クロ波プラズマCVD法による堆積膜形成方法である。
本発明の方法においては、前記移動する帯状部材は、
その中途において、湾曲開始端形成手段と湾曲終了端形
成手段とを用いて、前記湾曲開始端形成手段と前記湾曲
終了端形成手段との間に前記帯状部材の長手方向に間隙
を残して該帯状部材を湾曲させて前記成膜空間の側壁を
成すようにされる。
そして、前記湾曲開始端形成手段と前記湾曲終了端形
成手段との間に前記帯状部材の長手方向に残された間隙
よりマイクロ波エネルギーを前記成膜空間内に放射又は
伝達するようにする。
前記マイクロ波アプリケーター手段より放射又は伝達
されるマイクロ波エネルギーは、前記成膜空間と前記ア
プリケーター手段との間に設けられたマイクロ波透過性
部材を介して前記成膜空間内に放射又は伝達するように
する。
前記マイクロ波透過性部材には接触させない範囲で、
前記マイクロ波アプリケーター手段を前記帯状部材の幅
方向とほぼ平行となるように近接させて配設し、前記柱
状の成膜空間内にマイクロ波エネルギーを放射又は伝達
するようにする。
前記マイクロ波アプリケーター手段からは、前記帯状
部材の幅方向とほぼ同じ長さに均一にマイクロ波エネル
ギーを放射又は伝達するようにする。
前記マイクロ波アプリケーター手段は、前記マイクロ
波透過性部材を介して、前記成膜空間内に生起するマイ
クロ波プラズマから分離するようにする。
本発明の方法において、前記柱状の成膜空間内に放射
又は伝達されたマイクロ波エネルギーは、前記成膜空間
外へ漏洩しないようにする。
本発明の方法において前記アプリケーター手段に隣接
して設けたエツチング室にエツチングガスを導入し、放
電エネルギーによりエツチングガスのプラズマを生起し
前記マイクロ波アプリケーター手段上に堆積する膜を除
去するようにする。
また、前記アプリケーター手段に接触して設けたブレ
ードにより前記アプリケーター手段上に堆積する膜を除
去する。
更には、本発明の装置は、長手方向に帯状部材を移動
せしめ、その中途で前記帯状部材上に堆積膜を形成する
堆積膜形成装置であって、該帯状部材を支持するため長
手方向にそれ等の間に所定の空間を空けて互いに平行に
配されているローラーの組によって送り出し機構から巻
き取り機構に長手方向に移動する途中に設けられ、該帯
状部材が壁として機能して形成される成膜空間を形成す
るため該帯状部材を支持する成膜空間形成手段と、マイ
クロ波の進行方向に対して垂直な一方向に指向性を持た
せて該成膜空間内に配される該帯状部材に向けて均一に
マイクロ波エネルギーを導入して前記成膜空間内にマイ
クロ波プラズマを発生するため、該成膜空間に接続され
たマイクロ波アプリケーター手段と、 前記マイクロ波エネルギーを、前記成膜空間内に通過
せしめ、且つ、前記成膜空間内に生起された該マイクロ
波プラズマから前記アプリケーター手段を分離するため
の分離手段と、前記分離手段に隣接して設けられる、前
記分離手段上に堆積する堆積膜を化学的又は機械的方法
により除去する除去手段と、前記成膜空間内部を排気す
るための排気手段と、前記成膜空間内に堆積膜形成原料
ガスを導入するためのガス供給手段と、前記帯状部材を
加熱又は冷却するための温度制御手段と、とを有するこ
とを特徴とする堆積膜形成装置である。
本発明の装置において、前記湾曲部形成手段は、少な
くとも一組以上の、湾曲開始端形成手段と湾曲終了端形
成手段とで構成され、前記湾曲開始端形成手段と前記湾
曲終了端形成手段とを、前記帯状部材の長手方向に間隙
を残して配設される。
なお、前記湾曲部形成手段は、少なくとも一対の支持
・搬送用ローラーと支持・搬送用リングとで構成され、
前記一対の支持・搬送用ローラーは前記帯状部材の長手
方向に間隙を残して平行に配設される。
本発明の装置において前記分離手段は、前記湾曲開始
端形成手段と前記湾曲終了端形成手段との間に残された
間隙にほぼ平行に近接させ、且つ、前記成膜室の外側に
配設される。
また、前記分離手段は、ほぼ円筒形であっても良い
し、又は、ほぼ半円筒形であっても良い。
一方、前記マイクロ波アプリケーター手段は、前記分
離手段の周壁から隔てて、且つ、前記分離手段の内部に
包含されるように配設させる。
本発明の装置において、前記分離手段には、冷却手段
が設けられており、該冷却手段としては、前記分離手段
の内周面に沿って流れる空気流である。
また、前記冷却手段は、前記分離手段の内部に配設さ
れ前記分離手段との間に冷却媒体を流すことが出来る導
管構造とすべく、前記分離手段と同心状に構成されても
良い。
本発明の装置において、前記マイクロ波アプリケータ
ー手段はマイクロ波伝送用導波管であり、該導波管に
は、その長手方向にほぼ均一に前記成膜室内へマイクロ
波エネルギーをマイクロ波の進行方向に対して垂直な一
方向に指向性をもたせて放射するために、実質的に方形
の孔が開けてある。
なお、前記方形の孔は、前記導波管の片面に少なくと
も1つ以上開けられており、この孔よりマイクロ波が放
射される構造となっている。
また、前記方形の孔を複数開ける場合には、これらの
孔を前記導波管の長手方向に間隔を隔てて配設する。
また、前記方形の孔は、単一で縦横比の大きい長方形
であっても良く、その寸法は、マイクロ波の1波長より
も大きい寸法で前記方形導波管の長手方向のほぼ全体の
幅及び長さにほぼ等しくする。
そして、前記方形の孔より、前記導波管の長手方向に
対して、放射されるマイクロ波の少なくとも1波長以上
の長さでマイクロ波エネルギーを均一に放射する構成と
する。
また、前記方形の孔からほぼ均一な密度でマイクロ波
エネルギーを前記マイクロ波アプリケーターの全長に亘
って確実に放射するように、前記方形の孔にはシヤツタ
ー手段が設けられる。
本発明の装置において、前記帯状部材を湾曲させて形
成する柱状の成膜室内に前記マイクロ波プラズマを閉じ
込める構成とする。
本発明の装置において、エツチング室を前記アプリケ
ーター手段に隣接して設け、前記エツチング室にエツチ
ングガスを導入し、放電エネルギーによりエツチングガ
スのプラズマを生起し前記マイクロ波アプリケーター手
段上に堆積する膜を除去する構成とする。
また、前記アプリケーター手段に接触して設けたブレ
ードにより前記アプリケーター手段上に堆積する膜を除
去する構成としてもよい。
以下、本発明の方法について更に詳しく説明する。
本発明の方法において、前記移動する帯状部材の中途
において、湾曲開始端形成手段と湾曲終了端形成手段と
を用いて前記帯状部材を湾曲させて形成される柱状の成
膜空間の側壁の大部分は、前記移動する帯状部材で形成
されるが、前記湾曲開始端形成手段と前記湾曲終了端形
成手段との間には前記帯状部材の長手方向に間隙が残さ
れるようにする。
そして、本発明の方法において、前記柱状の成膜空間
内にてマイクロ波プラズマを均一に生起させるには、前
記帯状部材の幅方向に均一にマイクロ波エネルギーを放
射又は伝達し得るマイクロ波アプリケーター手段を、前
記湾曲開始端形成手段を前記湾曲終了端形成手段との間
に長手方向に残された間隙とほぼ平行に近接させて設す
るのが望ましい。前記マイクロ波アプリケーター手段か
らはマイクロ波の進行方向に対して垂直な一方向に指向
性をもたせてマイクロ波エネルギーが放射又は伝達させ
るようにするが、いずれの場合においても、前記柱状の
成膜空間内に放射又は伝達されたマイクロ波エネルギー
は前記側壁を構成する帯状部材にて反射、散乱され前記
成膜空間内に一様に充満し、同時にガス供給手段にて導
入された堆積膜形成用原料ガスに効率よく吸収されるた
め、均一なマイクロ波プラズマを形成させることができ
る。
ただし、前記マイクロ波プラズマを安定して、再現性
良く生起させるためには、前記成膜空間内にマイクロ波
エネルギーを効率よく放射又は伝達させ、且つマイクロ
波エネルギーが前記成膜空間内からの漏洩が生じないよ
うに配慮する必要がある。
例えば、マイクロ波エネルギーが前記マイクロ波アプ
リケーター手段から指向性をもって放射又は伝達される
方向は、前記帯状部材の湾曲開始端形成手段と湾曲終了
端形成手段との間に残された間隙に向いていることが必
要である。そして、マイクロ波エネルギーを効率良く前
記柱状の成膜空間内に放射又は伝達せしめるには、前記
湾曲開始端形成手段と湾曲終了端形成手段との間に残さ
れた間隙の前記帯状部材の長手方向の開口幅の最小の寸
法はマイクロ波の波長の好ましくは1/4波長以上、より
好ましくは1/2波長以上とするのが望ましい。
また、前記間隙と前記マイクロ波アプリケーター手段
が配設される間隔を大きくしすぎた場合には前記成膜空
間内へのマイクロ波エネルギーの放射又は伝達量が減少
すると供に、放射又は伝達されたマイクロ波エネルギー
の閉じ込めが不十分となる場合がある。
ただし、前記マイクロ波エネルギーの放射又は伝達方
向と前記開口幅、及び前記間隙と前記マイクロ波アプリ
ケーター手段との間隔とは前記柱状の成膜空間内へマイ
クロ波エネルギーを効率良く供給する上で重要な意味を
持っているが相互に関係しあっているので最も効率が上
げられるように適宜調整、配置するのが好ましい。
なお、前記柱状の成膜空間の両端面からはマイクロ波
の漏洩がないように導電性部材で密封したり、穴径が用
いるマイクロ波の波長の好ましくは1/2波長以下、より
好ましくは1/4波長以下の金網、パンチングボード等で
覆うことが望ましい。
本発明の方法において、前記移動する帯状部材を前記
湾曲開始端形成手段と湾曲終了端形成手段とを用いて湾
曲させて形成される柱状の成膜空間の両端面の形状とし
ては、前記成膜空間内に放射又は伝達されたマイクロ波
エネルギーがほぼ均一に該成膜空間内に充満するように
されるのが好ましく、円形状、楕円形状、方形状、多角
形状に類似する形であってほぼ対称な形で比較的滑らか
な湾曲形状であることが望ましい。勿論、前記湾曲開始
端形成手段と前記湾曲終了端形成手段との間に前記帯状
部材の長手方向に残された間隙部分においては、前記端
面形状は不連続となる場合がある。
本発明の方法において、前記湾曲開始端形成手段と湾
曲終了端形成手段とは前記移動する帯状部材の長手方向
に少なくとも2ケ所配設され、前記帯状部材を湾曲せし
め、該湾曲した帯状部材を側壁とした柱状の成膜空間が
形成される。湾曲形状は、その中で生起されるマイクロ
波プラズマの安定性、均一性を保つ上で常に一定の形状
が保たれることが好ましく、前記帯状部材は前記湾曲開
始端形成手段及び前記湾曲終了端形成手段によってシ
ワ、たるみ、横ずれ等が生ぜぬように支持されるのが望
ましい。そして、前記湾曲開始端形成手段及び前記湾曲
終了端形成手段に加えて、湾曲形状を保持するための支
持手段を設けても良い。具体的には前記湾曲した帯状部
材の内側又は外側に所望の湾曲形状を連続的に保持する
ための支持手段を設ければ良い。前記湾曲した帯状部材
の内側に前記支持手段を設ける場合には、堆積膜の形成
される面に対して接触する部分をできるだけ少なくする
ように配慮する。例えば、前記帯状部材の両端部分に前
記支持手段を設けるのが好ましい。
前記帯状部材としては、前記湾曲形状を連続的に形成
できる柔軟性を有するものを用い、湾曲開始端、湾曲終
了端及び中途の湾曲部分においては滑らかな形状を形成
させることが望ましい。
前記成膜空間内にガス供給手段により導入された堆積
膜形成用原料ガスは、効率良く前記成膜空間外に排気さ
れ前記成膜空間内は前記マイクロ波プラズマが均一に生
起される程度の圧力に保たれるようにするが、特にその
排気される方向については制限はない。しかし、その排
気孔においては、その箇所からのマイクロ波の漏洩がな
く、且つ原料ガスの排気は効率良くなされるように配慮
される必要がある。勿論、複数の排気孔より原料ガスの
排気がなされる場合には、前記成膜空間内でのガスの拡
散、流型等がほぼ均一になされるようにするのが好まし
く、排気孔の数を制限したりしても良い。
前記柱状の成膜空間内においてマイクロ波プラズマを
均一に安定して生起、維持させるためには、前記成膜空
間の形状及び容積、前記成膜空間内に導入する原料ガス
の種類及び流量、前記成膜空間内の圧力、前記成膜空間
内へ放射又は伝達されるマイクロ波エネルギー量、及び
マイクロ波の整合等について各々最適な条件があるもの
の、これらのパラメーターは相互に有機的に結びついて
おり、一概に定義されるものではなく、適宜好ましい条
件を設定するのが望ましい。
本発明の方法によれば、帯状部材を側壁とした成膜空
間を形成し、且つ、該成膜空間の側壁を構成する前記帯
状部材を連続的に移動せしめると共に、前記成膜空間の
側壁を構成する帯状部材の幅方向に対して均一にマイク
ロ波エネルギーを放射又は伝達せしめるマイクロ波アプ
リケーター手段を具備させることによって、大面積の機
能性堆積膜を連続して、均一性良く形成することができ
る。
本発明の方法が従来の堆積膜形成方法から客観的に区
別される点は、成膜空間を柱状とし、その側壁が連続的
に移動しつつ、構造材としての機能を果たし、且つ、堆
積膜形成用の支持体をも兼ねるようにした点にある。
ここで、構造材としての機能とは、特に、成膜用の雰
囲気空間すなわち成膜空間と成膜用には関与しない雰囲
気空間とを物理的、化学的に隔離する機能であって、具
体的には、例えば、ガス組成及びその状態の異なる雰囲
気を形成したり、ガスの流れる方向を制限したり、更に
は、圧力差の異なる雰囲気を形成したりする機能を意味
するものである。
即ち、本発明の方法は、前記帯状部材を湾曲させて柱
状の成膜空間の側壁を形成し、他の残された壁面、すな
わち両端面及び前記側壁の一部に残された間隙のうちの
いずれかの箇所より、堆積膜形成用の原料ガス及びマイ
クロ波エネルギーを前記成膜空間内に供給し、また、排
気させることによって、マイクロ波プラズマを前記成膜
空間内に閉じ込め、前記側壁を構成する帯状部材上に機
能性堆積膜を形成せしめるものであり、前記帯状部材そ
のものが成膜空間を成膜用には関与しない外部雰囲気空
間から隔離するための構造材としての重要な機能を果た
しているとともに、堆積膜形成用の支持体として用いる
こともできる。
従って、前記帯状部材を側壁として構成される成膜空
間の外部の雰囲気は、前記成膜空間内とは、ガス組成及
びその状態、圧力等について相当異なる状態となってい
る。
一方、従来の堆積膜形成方法においては堆積膜形成用
の支持体は、堆積膜を形成するための成膜空間内に配設
され、専ら、該成膜空間にて生成する例えば堆積膜形成
用の前駆体等を堆積させる部材としてのみ機能するもの
であり、本発明の方法におけるように前記成膜空間を構
成する構造材として機能させるものではない。
また、従来法であるRFプラズマCVD法、スパツタリン
グ法等においては、前記堆積膜形成用の基板又は支持体
は放電の生起、維持のための電極を兼ねることはあるが
プラズマの閉じ込めは不十分であり、成膜用には関与し
ない外部雰囲気空間との隔離は不十分であって、構造材
として機能しているとは言い難い。
一方、本発明の方法は、機能性堆積膜形成用の支持体
として機能し得る帯状部材を前記成膜空間の側壁として
用い、前記構造材としての機能を発揮せしめると共に、
前記帯状部材上への機能性堆積膜の連続形成をも可能に
するものである。
本発明の方法において、前記帯状部材を用いて柱状の
成膜空間の側壁を形成し、該柱状の成膜空間内にマイク
ロ波エネルギーを前記帯状部材の幅方向に均一に放射又
は伝達させて、前記柱状の成膜空間内にマイクロ波を閉
じ込めることによって、マイクロ波エネルギーは効率良
く前記柱状の成膜空間内で消費されて、均一なマイクロ
波プラズマが生起され、形成される堆積膜の均一性も高
まる。更には、前記マイクロ波プラズマに曝される側壁
を構成する帯状部材を絶えず連続的に移動させ、前記成
膜空間外へ排出させることによって、前記帯状部材上
に、その移動方向に対して均一性の高い堆積膜を形成す
ることができる。
勿論、前記帯状部材が相当幅広のものであっても、前
記マイクロ波アプリケーター手段からのマイクロ波エネ
ルギーの放射又は伝達量がその長手方向に均一に保たれ
る限り対応できる。
本発明の方法においては、前記帯状部材で成膜空間を
形成し、該成膜空間内でのみ堆積膜を形成せしめるよう
に、前記成膜空間外におけるガス組成及びその状態は前
記成膜空間内とは異なるように条件設定する。例えば、
前記成膜空間外のガス組成については、堆積膜形成には
直接関与しないようなガス雰囲気としても良いし、前記
成膜空間から排出される原料ガスを含んだ雰囲気であっ
ても良い。また、前記成膜空間内にはマイクロ波プラズ
マが閉じ込められているのは勿論であるが、前記成膜空
間外には前記マイクロ波プラズマが漏洩しないようにす
ることが、プラズマの安定性、再現性の向上や不要な箇
所への膜堆積を防ぐ上でも有効である。具体的には前記
成膜空間の内外で圧力差をつけたり、電離断面積の小さ
いいわゆる不活性ガス、H2ガス等の雰囲気を形成した
り、あるいは、積極的に前記成膜空間内からマイクロ波
の漏洩が起こらないような手段を設けることが有効であ
る。マイクロ波の漏洩防止手段としては、前記成膜空間
の内外を結ぶ間隙部分を導電性部材で密封したり、穴径
が好ましくは用いるマイクロ波の波長の1/2波長以下、
より好ましくは1/4波長以下の金網、パンチングボード
で覆っても良く、また、前記成膜空間の内外を結ぶ間隙
の最大寸法がマイクロ波の波長の好ましくは1/2波長以
下、より好ましくは1/4波長以下とするのが望ましい。
また、前記成膜空間の外部の圧力を前記成膜空間内の圧
力に比較して非常に低く設定するか又は逆に高く設定す
ることによっても、前記成膜空間外でマイクロ波プラズ
マが生起しないような条件設定ができる。
このように、前記帯状部材に成膜空間を構成する構造
材としての機能をもたせることに、本発明の方法の特徴
があり、従来の堆積膜形成方法とは区別され、更に多大
な効果をもたらす。
本発明の方法において、前記マイクロ波アプリケータ
ー手段から用いる帯状部材の幅方向の長さに対して少な
くともほぼ均一にマイクロ波の進行方向に対して垂直な
一方向に指向性をもたせてマイクロ波エネルギーを放射
又は伝達させるには漏れ波式又は遅波回路式のうちいず
れかの方式が好適に採用される。いずれの方式において
もマイクロ波の放射又は伝達量はマイクロ波の進行方向
に対して均一となるように配慮する。また、前記マイク
ロ波アプリケーター手段は、前記成膜空間内に生起する
マイクロ波プラズマから、マイクロ波透過性部材にて分
離する。こうすることによって、前記マイクロ波アプリ
ケーター手段から放射又は伝達されるマイクロ波エネル
ギーは外部環境の変化によらずその長手方向に均一に保
たれる。例えば、前記分離手段の外周壁上に堆積膜が堆
積しマイクロ波の絶対透過量が変化するような場合にお
いても、少なくとも長手方向でのマイクロ波プラズマの
均一性は保たれるわけであり、更に、前記分離手段を均
一に効率良く冷却できる構造とすることによって局部的
なマイクロ波の透過の不均一性をも回避できる。また、
前記分離手段の冷却さえ十分に行われるならば、相当の
高パワープロセスにも対応できる方法となる。
本発明において、成膜を行うと前記分離手段の外周面
のうち少なくともプラズマに曝されている部分は帯状部
材と同様に膜が堆積する。堆積する膜の種類、特性にも
よるが、該堆積膜によって前記マイクロ波アプリケータ
ー手段から放射、伝達されるマイクロ波エネルギーが吸
収又は反射等され、前記帯状部材によって形成される成
膜室内へのマイクロ波エネルギーの放射、伝達量が減少
し、放電開始直後に比較して著しくその変化量が増大し
た場合には、形成される堆積膜の堆積速度の減少や特性
等の変化を生じたり、前記分離手段上に堆積した膜が剥
離したり、飛散したりして帯状部材上に堆積する膜の特
性を変化させたり、ピンホールを発生させたりする。さ
らに著しい場合には、マイクロ波プラズマの維持そのも
のが困難になる。本発明においては、このような前記分
離手段上に堆積する膜を除去するための除去手段が設け
られる。該除去手段は、前記分離手段と隣接して設けら
れることが望ましく、前記分離手段上の膜を化学的方法
あるいは、機械的方法、さらには、これらを併用した方
法のうち好適な方法を選んで使用するのが望ましい。除
去方法のさらに具体的な方法としては、機械的方法とし
ては、適当な材質のブレードを前記分離手段の外周面に
接触させ、前記分離手段を長手方向を軸として回転させ
ることにより前記分離手段外周面上の膜を前記ブレード
により掻き取る方法を用いることができる。掻き取った
膜は前記排気手段に依って外部に排出しても良いし、膜
を溜めるためのトラツプを設けてもよい。このようにし
て前記分離手段外周面上の堆積膜を除去した後回転して
再び成膜室に対抗しプラズマに曝される。この方法にお
いては、成膜と同時に前記分離手段のクリーニングが可
能であり、連続した生産が可能となり、極めて生産性が
上昇することが期待できる。
化学的方法としては、前記分離手段の外周面に隣接し
てエツチング室を設け該エツチング室中にエツチングガ
スを導入しプラズマ放電し前記分離手段上に堆積する膜
をエツチングする方法が使用可能である。前記分離手段
を長手方向を軸として回転させプラズマに曝されて堆積
した前記分離手段外周面上の膜をエツチング室内でエツ
チングする事ができる。この場合も成膜と同時にクリー
ニングが可能であり、成膜の中断無しに前記分離手段を
清浄に保つことができる。
以下、本発明のマイクロ波プラズマCVD装置の構成及
び特徴点について更に詳細に順を追って記載する。
本発明の装置によれば、マイクロ波プラズマ領域を移
動しつつある帯状部材で閉じ込めることにより、前記マ
イクロ波プラズマ領域内で生成した堆積膜形成に寄与す
る前駆体を高い収率で帯状部材上に捕獲し、更には堆積
膜を連続して帯状部材上に形成できるため、堆積膜形成
用原料ガスの利用効率を飛躍的に高めることができる。
更には、本発明のマイクロ波アプリケーター手段を用
いることにより、前記マイクロ波アプリケーター手段の
長手方向に生起するマイクロ波プラズマの均一性が高め
られているため、前記帯状部材の幅方向に形成される堆
積膜の均一性が優れているのは勿論のこと、前記帯状部
材を前記マイクロ波アプリケーター手段の長手方向に対
してほぼ垂直方向に連続的に搬送することにより、前記
帯状基体の長手方向に形成される堆積膜の均一性にも優
れたものとなる。
また、本発明の装置によれば、連続して安定に均一性
良く放電が維持できるため、長尺の帯状部材上に連続し
て、安定した特性の機能性堆積膜を堆積形成でき、界面
特性の優れた積層デバイスを作製することができる。
また、本発明のマイクロ波アプリケーター手段を用
い、その孔径や開口率を種々変化させることにより、長
手方向に亘って均一性の高いマイクロ波プラズマを生起
させることができる。
本発明の装置において、前記帯状部材を構造材として
機能させるにあたり、前記成膜室の外部は大気であって
も良いが、前記成膜室内への大気の流入によって、形成
される機能性堆積膜の特性に影響を及ぼす場合には適宜
の大気流入防止手段を設ければ良い。具体的にはOリン
グ、ガスケツト、ヘリコフレツクス、磁性流体等を用い
た機械的封止構造とするか、又は、形成される堆積膜の
特性に影響が少ないかあるいは効果的な希釈ガス雰囲
気、又は適宜の真空雰囲気を形成するための隔離容器を
周囲に配設することが望ましい。前記機械的封止構造と
する場合には、前記帯状部材が連続的に移動しながら封
止状態を維持できるように特別配慮される必要がある。
本発明の装置と他の複数の堆積膜形成手段を連結させ
て、前記帯状部材上に連続して堆積膜を積層させる場合
には、ガスゲート手段等を用いて各装置を連結させるの
が望ましい。また、本発明の装置のみを複数連結させる
場合には、各装置において成膜室は独立した成膜雰囲気
となっているため、前記隔離容器は単一でも良いし、各
々の装置に設けても良い。
本発明の装置において、前記成膜室の外部の圧力は減
圧状態でも加圧状態でも良いが、前記成膜室内との圧力
差によって前記帯状部材が大きく変形するような場合に
は適宜の補助構造材を前記成膜室内に配設すれば良い。
該補助構造材としては、前記成膜室の側壁とほぼ同一の
形状を、適宜の強度を有する金属、セラミツクス又は強
化樹脂等で構成される線材、薄板等で形成したものであ
ることが望ましい。また、該補助構造材の前記マイクロ
波プラズマに曝されない側の面に対向する前記帯状部材
上は、実質的に該補助構造材の影となる故堆積膜の形成
はほとんどなされないので前記補助構造材の前記帯状部
材上への投影面積は可能な限り小さくなるように設計さ
れるのが望ましい。
また、該補助構造材を前記帯状部材に密着させ、且つ
前記帯状部材の搬送速度に同期させて回転又は移動させ
ることにより、前記補助構造材上に施されたメツシユパ
ターン等を前記帯状部材上に形成させることもできる。
本発明の方法及び装置において好適に用いられる帯状
部材の材質としては、マイクロ波プラズマCVD法による
機能性堆積膜形成時に必要とされる温度において変形、
歪みが少なく、所望の強度を有するものであることが好
ましく、具体的にはステンレススチール、アルミニウム
及びその合金、鉄及びその合金、銅及びその合金等の金
属の薄板及びその複合体、及びポリイミド、ポリアミ
ド、ポリエチレンテレフタレート、エポキシ等の耐熱性
樹脂性シート又はこれらとガラスフアイバー、カーボン
フアイバー、ホウ素フアイバー、金属繊維等との複合
体、及びこれらの金属の薄膜、樹脂シート等の表面に異
種材質の金属薄膜及び/またはSiO2、Si3N4、Al2O3、Al
N等の絶縁性薄膜をスパツタ法、蒸着法、鍍金法等によ
り表面コーテイング処理を行ったものが挙げられる。ま
た、前記帯状部材の厚さとしては、前記搬送手段による
搬送時に形成される湾曲形状が維持される強度を発揮す
る範囲内であれば、コスト、収納スペース等を考慮して
可能な限り薄い方が望ましい。具体的には、好ましくは
0.01mm乃至5mm、より好ましくは0.02mm乃至2mm、最適に
は0.05mm乃至1mmであることが望ましいが、比較的金属
等の薄板を用いた方が厚さを薄くしても所望の強度が得
られやすい。前記帯状部材の幅寸法については、本発明
のマイクロ波アプリケーター手段を用いる限りその長手
方向に対するマイクロ波プラズマの均一性が保たれるの
で特に制限はないが、前記湾曲形状が維持される程度で
あることが好ましく、具体的には好ましくは5cm乃至200
cm、より好ましくは10cm乃至150cmであることが望まし
い。
更に、前記帯状部材の長さについては、特に制限され
ることはなく、ロール状に巻き取られる程度の長さであ
っても良く、長尺のものを溶接等によって更に長尺化し
たものであっても良い。
本発明の装置において、前記帯状部材を連続的に湾曲
させながら支持・搬送する手段としては、搬送時に前記
帯状部材がたるみ、シワ、横ズレ等を生ずることなく、
その湾曲した形状を一定に保つことが必要である。例え
ば、所望の湾曲形状を有する支持・搬送用リングを少な
くとも一対設け、該支持・搬送用リングにて前記帯状部
材の好ましくは両端を支持し、またその形状に沿わせて
湾曲させ、更に前記帯状部材の長手方向に設けられた少
なくとも一対の湾曲開始端形成手段及び湾曲終了端形成
手段としての支持・搬送用ローラーにて絞り込み、ほぼ
柱状に湾曲させ、更に前記支持・搬送用リング及び支持
・搬送用ローラーの少なくとも一方に駆動力を与えて、
湾曲形状を維持しつつ前記帯状部材をその長手方向に搬
送せしめる。なお、前記支持・搬送用リングにて前記帯
状部材を支持・搬送する方法としては単なる滑り摩擦の
みによっても良いし、あるいは前記帯状部材にスプロケ
ツト穴等の加工を施し、又前記支持・搬送用リングにつ
いてもその周囲に鋸刃状の突起を設けたいわゆるギア状
のものも用いたりしても良い。
前記支持・搬送用リングの形状については、好ましく
は湾曲形状を形成するにあたり、円形状であることが望
ましいが、楕円状、方形状、多角形状であっても連続的
に一定してその形状を保つ機構を有するものであれば特
に支障はない。搬送速度を一定に保つことが、前記湾曲
形状にたるみ、シワ、横ズレ等を生ぜしめることなく搬
送する上で重要なポイントとなる。従って、前記支持・
搬送機構には前記帯状部材の搬送速度の検出機構及びそ
れによるフイードバツクのかけられた搬送速度調整機構
が設けられることが望ましい。また、これらの機構は半
導体デバイスを作製する上での膜厚制御に対しても多大
な効果をもたらす。
また、前記支持・搬送用リングはその目的上プラズマ
に曝される程度の差はあれ、マイクロ波プラズマ領域内
に配設されることとなる。従って、マイクロ波プラズマ
に対して耐え得る材質、すなわち耐熱性、耐腐食性等に
優れたものであることが望ましく、又、その表面には堆
積膜が付着し、長時間の堆積操作時には該付着膜が剥
離、飛散し、形成しつつある堆積膜上に付着して、堆積
膜のピンホール等の欠陥発生の原因となり、結果的には
作製される半導体デバイスの特性悪化や歩留り低下の原
因となるので、前記堆積膜の付着係数が低い材質もしく
は付着しても相当の膜厚まで強い付着力を保持し得る材
質及び表面形状のもので構成されることが望ましい。具
体的材質としては、ステンレススチール、ニツケル、チ
タン、バナジウム、タングステン、モリブデン、ニオブ
及びその合金を用いて加工されたもの、またはその表面
にアルミナ、石英、マグネシア、ジルコニア、窒化ケイ
素、窒化ホウ素、窒化アルミニウム等のセラミツクス材
料を溶射法、蒸着法、スパツタ法、イオンプレーテイン
グ法、CVD法等によりコーテイング処理したもの、また
は前記セラミツクス材料の単体もしくは複合体で成形加
工したもの等を挙げることができる。また、表面形状と
しては鏡面加工、凹凸加工等堆積される膜の応力等を考
慮して適宜選択される。
前記支持・搬送用リングに付着した堆積膜は剥離、飛
散等が発生する以前に除去されることが好ましく、真空
中にてドライエツチング又は分解後ウエツトエツチン
グ、ビーズブラスト等の化学的、物理的手法によって除
去されることが望ましい。
前記支持・搬送用ローラーは、前記支持・搬送用リン
グに比較して前記帯状部材に接触する面積は大きく設計
されるので、前記帯状部材との熱交換率は大きい。従っ
て、該支持・搬送用ローラーで前記帯状部材の温度が極
端に上昇又は低下することのないように適宜温度調整が
なされる機構を有するものであることが望ましい。しか
るに、少なくとも一対以上設けられる支持・搬送用ロー
ラーの設定温度が異なるということもあり得る。更に、
前記支持・搬送用ローラーには前記帯状部材の搬送張力
検出機構が内蔵されることも搬送速度を一定に保持する
上で効果的である。
更に、前記支持・搬送用ローラーには前記帯状部材の
搬送時のたわみ、ねじれ、横ずれ等を防ぐためにクラウ
ン機構が設けられることが好ましい。
本発明において形成される湾曲形状は、前記分離手段
に近接するか、もしくは前記分離手段を包含するように
柱状に形成される。
前記帯状部材を側壁として形成される柱状の成膜室の
両端面の形状としては、ほぼ円形状、楕円状、方形状、
多角形状等であって、且つ前記マイクロ波アプリケータ
ー手段の中心軸に対してほぼ対称形であることが、堆積
膜の均一性を高める上で望ましい。また、前記湾曲部分
の長さはマイクロ波プラズマ領域の体積を決定し、実質
的には前記帯状部材が搬送中に前記マイクロ波プラズマ
領域に曝される時間と相関して形成される堆積膜の膜厚
を決定し、且つ、前記分離手段の前記マイクロ波プラズ
マに曝される周囲長との比において堆積膜形成用原料ガ
スの利用効率が決定される。従って、前記湾曲部分の長
さは前記分離手段の周囲長の好ましくは5倍以内、より
好ましくは4倍以内に設定されることが望ましい。そし
て、前記マイクロ波プラズマ領域において、安定したマ
イクロ波プラズマを維持するためのマイクロ波電力密度
(W/cm3)は用いられる原料ガスの種類及び流量、圧
力、マイクロ波アプリケーターのマイクロ波の放射、伝
達能力、及びマイクロ波プラズマ領域の絶対体積等の相
関によって決まり、一概に定義することは困難である。
本発明の装置において、前記帯状部材が湾曲して柱状
を形成しなくとも、前記マイクロ波アプリケーターの孔
手段の向いている側に対向して水平又はやや湾曲した形
状で搬送されても特にマイクロ波プラズマの放電条件等
について支障をきたすようなことはない。
前記帯状部材を太陽電池用の基板として用いる場合に
は、該帯状部材が金属等の電気導電性である場合には直
接電流取り出し用の電極としても良いし、合成樹脂等の
電気絶縁性である場合には堆積膜の形成される側の表面
にAl,Ag,Pt,Au,Ni,Ti,Mo,W,Fe,V,Cr,Cu,ステンレス,真
ちゅう,ニクロム,SnO2,In2O3,ZnO,SnO2-In2O3(ITO)
等のいわゆる金属単体又は合金、及び透明導電性酸化物
(TCO)を鍍金、蒸着、スパツタ等の方法であらかじめ
表面処理を行って電流取り出し用の電極を形成しておく
ことが望ましい。
勿論、前記帯状部材が金属等の電気導電性のものであ
っても、長波長光の基板表面上での反射率を向上させた
り、基板材質と堆積膜との間での構成元素の相互拡散を
防止したり短絡防止用の干渉層とする等の目的で異種の
金属層等を前記基板上の堆積膜が形成される側に設けて
も良い。又、前記帯状部材が比較的透明であって、該帯
状部材の側から光入射を行う層構成の太陽電池とする場
合には前記透明導電性酸化物や金属薄膜等の導電性薄膜
をあらかじめ堆積形成しておくことが望ましい。
また、前記帯状部材の表面性としてはいわゆる平滑面
であっても、微小の凹凸面であっても良い。
微小の凹凸面とする場合にはその凹凸形状は球場、円
錐状、角錐状等であって、且つその最大高さ(Rmax)が
好ましくは500Å乃至5000Åとすることにより、該表面
での光反射が乱反射となり、該表面での反射光の光路長
の増大をもたらす。
本発明の装置における前記分離手段は、前記成膜室に
近接して配設され、前記成膜室内にマイクロ波エネルギ
ーを放射又は伝達するためのマイクロ波アプリケーター
手段をその内側に包含する構造を有するものである。従
って、前記成膜室内の真空雰囲気と前記マイクロ波アプ
リケーター手段の配設されている外気とを分離し、その
内外間に存在している圧力差に耐え得るような構造に設
計される。具体的には、好ましくは円筒形又は半円筒形
であることが望ましく、他に全体的に滑らかな曲面をも
つ形状のものであってもよい。
また、前記分離手段の周壁の厚さは、用いられる材質
によって多少の差はあるが、概ね好ましくは0.5mm乃至5
mmであることが望ましい。その材質としては、マイクロ
波アプリケーター手段から放射又は伝達されるマイクロ
波エネルギーを最小の損失で前記成膜室中へ透過させる
ことができ、また、前記成膜室内への大気の流入が生じ
ない気密性の優れたものが好ましく、具体的には石英、
アルミナ、窒化ケイ素、ベリリア、マグネシア、ジルコ
ニア、窒化ホウ素、炭化ケイ素等のガラス又はフアイン
セラミツクス等が挙げられる。
前記分離手段が円筒形又は半円筒形である場合にはそ
の直径(内径)は、用いられるマイクロ波アプリケータ
ー手段がその内側に包含され且つ該マイクロ波アプリケ
ーター手段が前記分離手段の内周壁に接することがない
必要最低限の寸法に設定されることが望ましい。
また、前記分離手段において、前記マイクロ波アプリ
ケーター手段が挿入される側と反対側の端部にはマイク
ロ波閉じ込め手段もしくはダミーロードを設けることが
望ましい。前者の場合においては前記帯状部材の端部か
ら突出している部分のほとんどを金属、金網等の導電性
部材で覆い、アースすることが好ましく、特に高パワー
レベルでマイクロ波の整合に不都合が生じる可能性があ
る場合には、後者の手段を設けることが好ましい。
更に、前記分離手段において、前記マイクロ波アプリ
ケーター手段が挿入される側に突出している部分につい
ても金属、金網等の導電性部材で覆い、前記導波管及び
前記隔離容器等にアースすることが安全上好ましい。
また、前記分離手段はマイクロ波エネルギー及び/又
はプラズマエネルギーによる加熱によって熱劣化(ヒビ
割れ、破壊)等を起こすことを防止するため均一に冷却
されることが好ましい。
具体的には、前記冷却手段は前記分離手段の内周面に
沿って流れる空気流であってもよいし、前記分離手段と
ほぼ相似の形状で、前記分離手段の内部に同心状に形成
された囲いで前記分離手段との間に導管を構成し、該導
管に水、オイル、フレオンのような冷却流体を流すもの
であっても良い。
一方、本発明の円筒形等の前記分離手段は、普通の遅
波回路式マイクロ波アプリケーターと一緒に使用しても
よく、その場合、前記遅波回路式マイクロ波アプリケー
ターから伝送されるマイクロ波エネルギーはエバネツセ
ント波を介して前記成膜室内に結合するようになってい
る。このことにより、薄い肉厚の分離手段を利用し、該
分離手段を充分に低い温度まで冷却することで、比較的
高いパワーのマイクロ波エネルギーを前記成膜室内へ導
入しても、発生する熱によって前記分離手段にひび割れ
等の破壊を生じさせることなく、高電子密度のプラズマ
を生起することができる。
また、本発明の装置において、前記分離手段の外周面
のうち少なくともマイクロ波プラズマ領域に接している
部分には、前記帯状部材上と同様膜堆積が起こる。従っ
て、堆積する膜の種類、特性にもよるが、該堆積膜によ
って前記マイクロ波アプリケーター手段から放射、伝達
されるマイクロ波エネルギーが吸収または反射等され、
前記帯状部材によって形成される成膜室内へのマイクロ
波エネルギーの放射、伝達量が減少し、放電開始直後に
比較して著しくその変化量が増大した場合には、形成さ
れる堆積膜の堆積速度の減少や特性等の変化を生じた
り、前記分離手段上に堆積した膜が剥離したり、飛散し
たりして帯状部材上に堆積する膜の特性を変化させた
り、ピンホールを発生させたりする。さらに著しい場合
には、マイクロ波プラズマの維持そのものが困難にな
る。
本発明においては、このような問題を解決する方法と
して成膜室を真空に保ち、成膜を行いながら同時に前記
分離手段上に堆積する膜を除去するために前記分離手段
に隣接し、かつ前記成膜室とは相対する位置に堆積膜の
除去手段を設ける。該除去手段は、前記分離手段と隣接
して設けられることが望ましい。プラズマに曝されるこ
とで堆積した、前記分離手段外周面上の膜を、前記分離
手段を回転させることによりプラズマ領域外に移動させ
膜を除去したのち、さらに回転させ再びプラズマ領域に
戻す機構とする。従って本発明の装置に於いて前記分離
手段の回転手段は必須の機構である。又前記分離手段の
断面形状は円形であることが望ましい。前記分離手段上
の膜を化学的方法あるいは、機械的方法、さらには、こ
れらを併用した方法のうち好適な方法を選んで使用する
のが望ましい。除去方法のさらに具体的な方法として
は、機械的方法としては、適当な材質のブレード前記分
離手段の外周面に接触させ、前記分離手段を長手方向を
軸として回転させることにより前記分離手段外周面上の
膜を前記ブレードにより掻き取る方法を用いることがで
きる。前記ブレードの材質としては前記分離手段の表面
を傷つけない材質であり、前記分離手段の表面温度は冷
却装置を用いても高温に曝されることからブレードも耐
熱性である必要もある。また機械的な摩擦に依ってすり
減ることの少ない材質で無ければならない。このような
要求から、好適な材料としては、シリコンゴム、バイト
ン、セラミツクスなどが挙げられる。また、前記ブレー
ドの形状としては、前記分離手段の長手方向に平行に細
長い形状であり、断面の形状は、前記分離手段に接する
部分が鋭利になるように設計されることが望ましい。ま
た、適度の押し付け力でブレードを前記分離手段に押し
つけることにより掻き取り効果をあげることが必要であ
る。
掻き取った膜は前記排気手段に依って外部に排出して
も良いし、膜を溜めるためのトラツプを設けてもよい。
このようにして前記分離手段外周面上の堆積膜を除去し
た後回転して再び成膜室に対抗しプラズマに曝される。
この方法においては、成膜と同時に前記分離手段のクリ
ーニングが可能であり、連続した生産が可能となり、極
めて生産性が上昇することが期待できる。化学的方法と
しては、前記分離手段の外周面に隣接してエツチング室
を設け該エツチング室中にエツチングガスを導入しプラ
ズマ放電し前記分離手段上に堆積する膜をドライエツチ
ングする方法が使用可能である。前記分離手段の断面の
中心を軸として周方向に回転させプラズマに曝されて堆
積した前記分離手段外周面上の膜をエツチング室内でエ
ツチングする事ができる。この場合も成膜と同時にクリ
ーニングが可能であり、成膜の中断無しに前記分離手段
を清浄に保つことができる。使用するエツチングガス
は、CF4,C2F6,NF3ガスなどが用いられ、場合によりO2
スやArガスなどを添加して用いても良い。プラズマが生
成する方法としてはマイクロ波放電、RF放電、DC放電な
ど所望に応じて選べるが、成膜と同じ内圧で放電できる
ことと無電極で放電が可能なことなどから特にマイクロ
波放電が好適に使用可能である。エツチング室は前記分
離手段に対向する部分に間隙を設け、プラズマが前記分
離手段に曝されるようにし、また、前記分離手段の幅方
向に均一なプラズマを生成させることが必要である。こ
のような要求によりマイクロ波放電を用いる場合には、
成膜室の放電に用いるアプリケーターが好適に用いられ
る。又、他のアプリケーターの例としては、マイクロ波
エネルギーをマイクロ波の進行方向に対して平行な方向
に放射させる構造のものが好適に使用できる。またRF放
電の場合には、前記分離手段の長手方向と平行にプラズ
マが生成するように電極を配置することが必要となる。
前記間隙の設計に当たっては、前記分離手段が効率よく
プラズマに曝されるようにすることと、前記間隙部分か
らエツチング室の外部にプラズマや放電パワーが漏洩し
ないことに留意して設計される必要がある。また、成膜
室中の成膜ガスとエツチング室中のエツチングガスが相
互に混ざりあうことが無いように排気装置はそれぞれ単
独に使用する必要があり、また互いに反対方向に排気口
を配置設けるなどの工夫をすることが望ましい。
さらに必要があれば、前記エツチング室外部にH2、A
r、He等の不活性ガスを流通させることもよい。
本発明におけるマイクロ波アプリケーター手段は、マ
イクロ波電源より供給されるマイクロ波エネルギーを前
記成膜室の内部に放射して、前記ガス導入手段から導入
される堆積膜形成用原料ガスをプラズマ化し維持させる
ことができる構造を有するものである。具体的には、末
端部が開口端となっている導波管が好ましく用いられ
る。該導波管としては、具体的には、円形導波管、方形
導波管、楕円導波管等のマイクロ波伝送用導波管を挙げ
ることができる。ここでは開口端とされることにより前
記導波管の末端部において定在波がたつことを防止でき
る。一方、前記導波管の末端部は閉口端であっても特に
支障をきたすことはない。
本発明の装置において、マイクロ波アプリケーター用
として好適に用いられる円形導波管の寸法としては、使
用されるマイクロ波の周波数帯(バンド)及びモードに
よって適宜設計される。設計にあっては、前記円形導波
管内での伝送ロスが少なく、又、なるべく多重モードが
発生しないように配慮されることが好ましく、具体的に
は、EIAJ規格円形導波管等の他、2.45GHz用の自社規格
として、内直径90mm、100mmのもの等を挙げることがで
きる。
なお、マイクロ波電源からのマイクロ波の伝送は比較
的入手し易く、方形導波管を使用することが好ましい
が、マイクロ波アプリケーターとして用いられる前記円
形導波管への変換部ではマイクロ波エネルギーの伝送ロ
スを最小限に抑えることが必要であり、具体的には電磁
ホーンタイプの方形、円形変換用導波管を用いることが
好ましい。
また、本発明において、マイクロ波アプリケーター用
として好適に用いられる方形導波管の種類としては、使
用されるマイクロ波の周波数帯(バンド)及びモードに
よって適宜選択され、少なくともそのカツトオフ周波数
は使用される周波数よりも小さいものであることが好ま
しく、具体的にはJIS、EIAJ、IEC、JAN等の規格品の
他、2.45GHz用の自社規格として、方形の断面の内径で
幅96mm×高さ27mmのもの等を挙げることができる。
本発明の装置において、本発明のアプリケーター手段
を用いる限り、マイクロ波電源より供給されるマイクロ
波エネルギーは効率良く前記成膜室内へ放射、伝達され
るため、いわゆる反射波に関する問題は回避しやすく、
マイクロ波回路においてはスリースタブチユーナー又は
E−Hチユーナー等のマイクロ波整合回路を用いなくと
も比較的安定した放電を維持することが可能であるが、
放電開始前や放電開始後でも異常放電等により強い反射
波を生ずるような場合にはマイクロ波電源の保護のため
に前記整合回路を設けることが望ましい。
前記導波管にはマイクロ波エネルギーを放射するため
の孔手段がその片面に少なくとも1つ以上開けられてお
り、これらの孔手段は、マイクロ波エネルギーを均一に
放射できるような寸法及び間隔で開けられていることが
必要であるが、各々はそろっていても、そろっていなく
ても良い。具体的な寸法等については後述する実験例に
おいて開示される。
前記導波管に開けられる孔手段の形状は実質的に方形
であることが望ましく、前記導波管の末端部近傍より長
手方向に複数個所望の間隔で開けられている場合には、
そのうちのいくつかを開けたり、閉じたりすることによ
って、用いる前記帯状部材の幅方向に均一なマイクロ波
プラズマを生起させる。この時、放射されるマイクロ波
エネルギーは前記導波管の長手方向に対して放射される
マイクロ波の少なくとも1波長以上の長さで、好ましく
は前記帯状基板の幅方向にほぼ等しく均一に放射される
ことが望ましい。
また、前記孔手段が1つだけ開けられている場合には
方形の縦横比が大きく、前記導波管の長手方向にマイク
ロ波の1波長よりも大きい寸法でほぼ全体の幅、長さに
亘って開けられるのが望ましい。そして、長手方向に放
射されるマイクロ波エネルギーの均一性を高めるため
に、その開口度を調整するためのシヤツター手段が設け
られる。該シヤツター手段の形状は短冊状、細長い台形
状、及び短冊又は細長い台形からその一辺上の一部を半
月状に切り欠いた形状等で、前記導波管の表面形状に沿
ったものであることが望ましく、その材質としては金属
又は導電処理された樹脂が好ましい。そして、その端部
は前記孔手段のマイクロ波電源に近い側の角付近に設け
られた連結部に固定され、そこを支点として開口度が調
整されるが、所望の条件出し終了後はマイクロ波プラズ
マの安定性向上のため固定されても良い。
前記縦横比の大きい孔手段を用いる場合には、長い辺
の長さが、用いる前記帯状部材の幅方向の長さにほぼ等
しいことが望ましい。
更に、前記シヤツター手段は前記連結部のみで前記導
波管にアースされることが望ましく、前記導波管と前記
シヤツター手段とは前記連結部以外の所では絶縁手段に
て絶縁されていることが好ましい。なお、付加的に前記
シヤツター手段と前記方形導波管との間に接触子を設け
た場合には、これはアース接触子となる。
上述した孔手段を用いたマイクロ波アプリケーター手
段はいわゆる「漏れ波」タイプのマイクロ波放射構造で
ある。
一方、本発明においてはマイクロ波アプリケーター手
段として遅波回路式のものを用いても良い。遅波回路を
用いた場合にはマイクロ波エネルギーの大部分はエバネ
ツセント波を介して伝達される。従って、マイクロ波エ
ネルギーはマイクロ波構造に対して横方向の距離の増大
に伴いプラズマに結合する量が急激に減少するという欠
点を有するが、本発明においてはプラズマ領域から前記
マイクロ波アプリケーターを分離することによってこの
欠点を解決することができる。
本発明の装置において前記成膜室及び/又は隔壁容器
を他の成膜手段を有する真空容器と真空雰囲気を分離独
立させ、且つ、前記帯状部材をそれらの中を貫通させて
連続的に搬送するにはガスゲート手段が好適に用いられ
る。本発明の装置において前記成膜室及び/又は隔離容
器内は修正パツシエン曲線の最小値付近の動作に必要な
程度の低圧に保たれるのが望ましいため、前記成膜室及
び/又は隔離容器に接続される他の真空容器内の圧力と
しては少なくともその圧力にほぼ等しいか又はそれより
も高い圧力となるケースが多い。従って、前記ガスゲー
ト手段の能力としては前記各容器間に生じる圧力差によ
って、相互に使用している堆積膜形成用原料ガスを拡散
させない能力を有することが必要である。従って、その
基本概念は米国特許第4,438,723号に開示されているガ
スゲート手段を採用することができるが、更にその能力
は改善される必要がある。具体的には、最大106倍程度
の圧力差に耐え得ることが必要であり、排気ポンプとし
ては排気能力の大きい油拡散ポンプ、ターボ分子ポン
プ、メカニカルブースターポンプ等が好適に用いられ
る。また、ガスゲートの断面形状としてはスリツト状又
はこれに類似する形状であり、その全長及び用いる排気
ポンプの排気能力等と合わせて、一般のコンダクタンス
計算式を用いてそれらの寸法が計算、設計される。更
に、分離能力を高めるためにゲートガスを併用すること
が好ましく、例えばAr,He,Ne,Kr,Xe,Rn等の希ガス又はH
2等の堆積膜形成用希釈ガスが挙げられる。ゲートガス
流量としてはガスゲート全体のコンダクタンス及び用い
る排気ポンプの能力等によって適宜決定されるが、概ね
第6図(a)、(b)に示したような圧力勾配を形成す
るようにすれば良い。第6図(a)において、ガスゲー
トのほぼ中央部に圧力の最大となるポイントがあるた
め、ゲートガスはガスゲート中央部から両サイドの真空
容器側へ流れ、第6図(b)おいてはガスゲートのほぼ
中央部に圧力の最小となるポイントがあるため、両サイ
ドの容器から流れ込む堆積膜形成用原料ガスと共にゲー
トガスもガスゲート中央部から排気される。従って両者
の場合において、両サイドの容器間での相互のガス拡散
を最小限に抑えることができる。実際には、質量分析計
を用いて拡散してくるガス量を測定したり、堆積膜の組
成分析を行うことによって最適条件を決定する。
本発明の装置において、前記ガスゲート手段によっ
て、前記隔離容器と接続される他の真空容器中に配設さ
れる堆積膜形成手段としては、RFプラズマCVD法、スパ
ツタリング法及び反応性スパツタリング法、イオンプレ
ーテイング法、光CVD法、熱CVD法、MOCVD法、MBE法そし
てHR-CVD法等いわゆる機能性堆積膜形成用に用いられる
方法を実現するための手段を挙げることができる。そし
て、勿論本発明のマイクロ波プラズマCVD法及び類似の
マイクロ波プラズマCVD法の手段を接続することも可能
であり、所望の半導体デバイス作製のため適宜手段を選
択し、前記ガスゲート手段を用いて接続される。
本発明の装置において用いられるマイクロ波電源から
供給されるマイクロ波周波数は、好ましくは民生用に用
いられている2.45GHzが挙げられるが、他の周波数帯の
ものであっても比較的入手し易いものであれば用いるこ
とができる。また、安定した放電を得るには発振様式は
いわゆる連続発振であることが望ましく、そのリツプル
幅が、使用出力領域において、好ましくは30%以内、よ
り好ましくは10%以内であることが望ましい。
本発明の装置において、前記成膜室及び/又は隔離容
器を大気に曝すことなく連続して堆積膜形成を行うこと
は、形成される堆積膜の特性安定上、不純物の混入を防
止できるため有効である。ところが、用いられる帯状部
材の長さは有限であることから、これを溶接等の処理に
より接続する操作を行うことが必要である。具体的に
は、前記帯状部材の収納された容器(送り出し側及び巻
き取り側)に近接して、そのような処理室を設ければ良
い。
以下、図面を用いて具体的処理方法について説明す
る。
第12図(その1)(1)図乃至第12図(その4)(1
0)図は、前記帯状部材処理室の概略及び帯状部材等の
成膜時の作動を説明するための模式図を示した。
第12図において、1201aは帯状部材の送り出し側に設
けられた帯状部材処理室(A)、1201bは帯状基体の巻
き取り側に設けられた帯状部材処理室(B)であり、そ
の内部にはバイトン製ローラー1207a、1207b、切断刃12
08a、1208b、溶接治具1209a、1209bが収納されている。
即ち、第12図(その1)(1)は、通常成膜時の状態
であり、帯状部材1202が図中矢印方向に移動していて、
ローラー1207a、切断刃1208a、及び溶接治具1209aは帯
状部材1202に接触していない。1210は帯状部材収納容器
(不図示)との接触手段(ガスゲート)、1211は真空容
器(不図示)との接触手段(ガスゲート)である。
第12図(その1)(2)は、1巻の帯状部材への成膜
工程が終了した後、新しい帯状部材と交換するための第
1工程を示している。まず、帯状部材1202を停止させ、
ローラー1207aを図中点線で示した位置から矢印方向へ
移動させ帯状部材1202及び帯状部材処理室1201aの壁と
密着させる。この状態で帯状部材収納容器と成膜室とは
気密分離される。次に、切断刃1208aを図中矢印方向に
動作させ帯状部材1202を切断する。この切断刃1208aは
機械的、電気的、熱的に帯状部材1202を切断できるもの
のうちのいずれかにより構成される。
第12図(その1)(3)では、切断分離された帯状部
材1203が帯状部材収納容器側へ巻き取られる様子を示し
ている。
上述した切断及び巻き取り工程は帯状部材収納容器内
は真空状態又は大気圧リーク状態のいずれかで行われて
も良い。
第12図(その2)(4)では、新しい帯状部材1204が
送り込まれ、帯状部材1202と接続される工程を示してい
る。帯状部材1204と1202とはその端部が接せられ溶接治
具1209aにて溶接接続される。
第12図(その2)(5)では帯状部材収納容器(不図
示)内を真空排気し、十分成膜室との圧力差が少なくな
った後、ローラー1207aを帯状部材1202及び帯状部材処
理室(A)1201aの壁から離し、帯状部材1202、1204を
巻き取っている状態を示している。
次に、帯状部材の巻き取り側での動作を説明する。
第12図(その3)(6)は、通常成膜時の状態である
が、各治具は第12図(その1)(1)で説明したのとほ
ぼ対称に配置されている。
第12図(その3)(7)は、1巻の帯状部材への成膜
工程が終了した後、これを取り出し、次の成膜工程処理
された帯状部材を巻き取るための空ボビンと交換するた
めの工程を示している。
まず、帯状部材1202を停止させ、ローラー1207bを図
中点線で示した位置から矢印方向へ移動させ、帯状部材
1202及び帯状部材処理室1201bの壁と密着させる。この
状態で帯状部材収納容器と成膜室とは気密分離される。
次に、切断刃1208bを図中矢印方向に動作させ、帯状部
材1202を切断する。この切断刃1208bは機械的、電気
的、熱的に帯状基体1202を切断できるもののうちのいず
れかにより構成される。
第12図(その3)(8)では、切断分離された成膜工
程終了後の帯状部材1205が帯状部材収納容器側へ巻き取
られる様子を示している。
上述した切断及び巻き取り工程は帯状部材収納容器内
は真空状態又は大気圧リーク状態のいずれかで行われて
も良い。
第12図(その4)(9)では、新しい巻き取りボビン
に取り付けられている予備巻き取り用帯状部材1206が送
り込まれ、帯状部材1202と接続される工程を示してい
る。予備巻き取り用帯状部材1206と帯状部材1202とはそ
の端部が接せられ、溶接治具1209bにて溶接接続され
る。
第12図(その4)(10)では、帯状部材収納容器(不
図示)内を真空排気し、十分成膜室との圧力差が少なく
なった後、ローラー1207bを帯状部材1202及び帯状部材
処理室(B)1201bの壁から離し、帯状部材1202、1206
を巻き取っている状態を示している。
本発明の方法及び装置において連続形成される機能性
堆積膜としては非晶質、結晶質を問わず、Si,Ge、C等
いわゆるIV族半導体薄膜、Si,Ge,SiC,SiSn等いわゆるIV
族合金半導体薄膜、GaAs,GaP,GaSb,InP,InAs等いわゆる
III-V族化合物半導体薄膜、及びZnSe,ZnS,ZnTe,CdS,CdS
e,CdTe等いわゆるII-VI族化合物半導体薄膜等が挙げら
れる。
本発明の方法及び装置において用いられる前記機能性
堆積膜形成用原料ガスとしては、上述した各種半導体薄
膜の構成元素の水素化物、ハロゲン化物、有機金属化合
物等で前記成膜室内へ好ましくは気体状態で導入できる
ものが選ばれ使用される。
勿論、これらの原料化合物は1種のみならず、2種以
上混合して使用することもできる。又、これらの原料化
合物はHe,Ne,Ar,Kr,Xe,Rn等の希ガス、及びH2、HF、HCl
等の希釈ガスと混合して導入されても良い。
また、連続形成される前記半導体薄膜は価電子制御及
び禁制帯幅制御を行うことができる。具体的には価電子
制御剤又は禁制帯幅制御剤となる元素を含む原料化合物
を単独で、又は前記堆積膜形成用原料ガス又は前記希釈
ガスに混合して前記成膜室内へ導入してやれば良い。
前記堆積膜形成用原料ガス等は、前記帯状部材及び前
記分離手段で形成される柱状の成膜室内に配設されたそ
の先端部に単一又は複数のガス放出孔を有するガス導入
管より、前記柱状の成膜室内に均一に放出され、マイク
ロ波エネルギーによりプラズマ化され、マイクロ波プラ
ズマ領域を形成する。
本発明の装置において、前記ガス導入管より前記柱状
の成膜室内に導入された堆積膜形成用原料ガスはその一
部又は全部が分解して堆積膜形成用の前駆体を発生し、
堆積膜形成が行われるが未分解の原料ガス、又は分解に
よって異種の組成のガスとなったものはすみやかに前記
柱状の成膜室外に排気される必要がある。ただし、排気
孔面積を必要以上に大きくすると、該排気孔よりのマイ
クロ波エネルギーの漏れが生じ、プラズマの不安定性の
原因となったり、他の電子機器、人体等への悪影響を及
ぼすこととなる。従って、以下に述べる3通りの方法に
より排気孔を設けることが望ましい。(1)前記帯状部
材を湾曲させる際に用いられる支持・搬送用リングのう
ち最も端に設けられるものの両側面にメツシユ又はパン
チングボードを設け、ここからのガス排気は可能とする
が、マイクロ波の漏洩は防止する。ただし、前記メツシ
ユ又はパンチングボードの穴径は前記柱状の成膜室内外
での圧力差を生ぜしめ、且つ、マイクロ波の漏洩を防止
するようなサイズであることが望ましい。具体的には1
つあたりの穴の最大径で好ましくは使用されるマイクロ
波の波長の1/2波長以下、より好ましくは1/4波長以下
で、開口率は好ましくは80%以下、より好ましくは60%
以下であることが望ましい。勿論、この時前記帯状部材
の湾曲開始端と湾曲終了端との間隙、又は帯状部材の湾
曲開始端及び湾曲終了端と前記分離手段との外周壁とで
形成される隙間(スリツト)より同時に排気されても良
いが、その間隙はマイクロ波の漏洩防止上、使用される
マイクロ波の波長の好ましくは1/2波長以下、より好ま
しくは1/4波長以下であることが望ましい。(2)前記
帯状部材を湾曲させる際に用いられる支持・搬送用リン
グのうち最も端に設けられるものの両側面に薄板を設
け、ここからのガス排気及びマイクロ波の漏洩はないよ
うにする。そして、前記帯状部材の湾曲開始端と湾曲終
了端との間隙、又は帯状部材の湾曲端と前記分離手段の
外周壁とで形成される隙間(スリツト)のみからガス排
気を行う。ただし、その間隔はマイクロ波の漏洩防止
上、使用されるマイクロ波の波長の好ましくは1/2波長
以下、より好ましくは1/4波長以下であることが望まし
い。(3)前記支持・搬送用リングの両側面に(1)及
び(2)に記載のメツシユ又はパンチングボード、及び
薄板のいずれか1つずつ設ける。すなわち(1)と
(2)の両者を合わせた方法が挙げられる。前記メツシ
ユ、パンチングボード、薄板ともに前記支持・搬送用リ
ングと同様の材質及び表面処理を施されたものであるこ
とが望ましい。
〔装置例〕
以下、図面を用いて本発明の具体的装置例を挙げて本
発明の装置について説明するが、本発明はこれによって
何ら限定されるものではない。
装置例1 第1図に本発明のマイクロ波プラズマCVD装置の模式
的概略図を示した。
第1図(a)は、除去手段としてエツチングを用いる
方法の一例であり、エツチングの室プラズマはマイクロ
波によって生成する。マイクロ波投入方法は、マイクロ
波エネルギーをマイクロ波の進行方向に対して平行な方
向に放射させるようにしたマイクロ波アプリケーター手
段を用いる。図に於いて、101は帯状部材であり、支持
・搬送用ローラー102、103及び支持・搬送用リング10
4、105によって円柱状に湾曲した形状を保ちながら、図
中矢印方向に搬送される。106、107は帯状部材101を加
熱又は冷却するための温度制御機構である。
108はマイクロ波アプリケーターであり、分離手段109
によって、マイクロ波プラズマ領域113から分離されて
いる。分離手段119は不図示の回転機構により周方向に
回転できるように構成されている。110はマイクロ波漏
洩防止用金属筒、111はマイクロ波漏洩防止用金網、11
2、117はガス導入管である。114、115はマイクロ波漏洩
防止用金網であり、マイクロ波プラズマ領域113は、帯
状部材101の湾曲部分を側壁とした成膜室内に閉じ込め
られている。マイクロ波プラズマ領域113内は不図示の
排気装置により、分離手段109と搬送用ローラー102、10
3との間隙、及び/又はマイクロ波漏洩防止用金網114、
115を介して排気される。116はエツチング室を構成する
部材、118はマイクロ波透過性部材、119はマイクロ波ア
プリケーター、111は方形導波管である。121はエツチン
グガス排出用の間隙であり、分離手段109をプラズマに
曝しエツチングを行うための開口部でもある。
第2図にマイクロ波アプリケーター108として用いら
れるマイクロ波アプリケーター手段201の具体的概略図
を示した。
円形導波管202は末端部203を有し、その片面には複数
の(ここでは例えば5個)間隔をおいて配置された孔20
4乃至208が開けられていて、図中矢印方向からマイクロ
波が進行して来る。ここでは一例として孔205は導波管2
02と同様の材質の蓋で塞いだ様子を示している。このよ
うにいくつかの孔を開けたり、閉じたりすることによっ
て導波管202の長手方向に放射されるマイクロ波エネル
ギーの均一化がなされる。
第1図(b)は第1図(a)に於いて除去手段のみを
別の方法に変えた装置を示す。本装置例で用いる除去手
段はエツチング法であり、放電エネルギーとしてマイク
ロ波を用い、マイクロ波投入方法は、マイクロ波エネル
ギーをマイクロ波の進行方向に対して垂直な一方向にし
構成をもたせて放射または伝達してマイクロ波プラズマ
を生起するアプリケーターを用いる。
第1図(c)は除去手段のみをさらに別の方法に変え
た装置を示す。本装置例で用いる除去手段はエツチング
法でありプラズマはRF放電で生起する。図に於て122はR
F電極を示す。
第1図(d)は除去手段のみさらに別の方法に変えた
装置を示す。本装置例で用いる除去方法はブレードによ
る方法である。図に於いて、123は膜を掻き取るための
ブレードである。
装置例2 本装置例では、装置例1の第1図(a)で示した装置
を隔離容器中に配設した場合の装置例を挙げることがで
きる。第4図にその模式的概略図を示した。400及び422
は隔離容器であり、その内部は排気孔419および423より
不図示の排気ポンプを用いて真空にすることができる。
401、402は固定用フランジであり、隔離容器400及び422
の両壁を貫いて突出している分離手段109を固定してい
る。分離手段109の一方の端はマイクロ波の波長の1/2か
ら1/4に相当する直径に絞られていて先端にギア424が固
定されモーター425の回転が伝わるようになっている。
分離手段109のさらに先端は冷却用空気が流れ出るよう
に開放されている。固定用フランジ401、402は隔離容器
400、422と同様ステンレス鋼のような適当な耐腐蝕性材
料で作製されているのが好ましく、隔離容器400、422と
は着脱自在の構造であることが好ましい。固定用フラン
ジ401は連結フランジ404に取り付けられている。連結フ
ランジ404は隔離容器400、422の側壁に直接取り付けら
れており、ここでは円筒形の分離手段109の外周面とほ
ぼ同じ広がりをもつ開口部405が開けられ、前記分離手
段109が挿入できるようになっている。また、固定用フ
ランジ401には少なくとも2本のOリング406、407が取
り付けられ、隔離容器400、422内の真空雰囲気を外気か
ら分離している。ここで、Oリング406、407の間には冷
却用溝408が設けてあり、これを通って例えば水のよう
な冷媒を循環させ、Oリング406、407を均一に冷却する
ことができる。Oリング用の材質としては例えばバイト
ン等の100℃以上の温度にてその機能を果たすものが好
ましく用いられる。ここで、Oリングの配設される位置
としてはマイクロ波プラズマ領域から十分に離れた所が
好ましく、このことによりOリングが高温で損傷を受け
ないようにすることができる。
110は金属筒であり、その開口端部409には金網111が
取り付けられ、また、アース用フインガー410によっ
て、前記固定用フランジ401と電気的接触を保ち、これ
らの構造によってマイクロ波エネルギーの外部への漏洩
を防止している。なお、開口端部409にはマイクロ波吸
収用のダミーロードを接続しても良い。これは特に高パ
ワーレベルでのマイクロ波エネルギーの漏洩が起こるよ
うな場合に有効である。
隔離容器400には、先に説明した固定用フランジ401の
取り付けられた側壁と対向する側壁に分離手段と同様に
固定するための固定用フランジ402が取り付けられてい
る。411は連結フランジ、412は開口部、413、414はOリ
ング、415は冷却用溝、416は金属筒、417はアース用フ
インガーである。418は連結板であり、マイクロ波アプ
リケーター手段108とマイクロ波電源と方形、円形変換
用導波管403との連結を行うとともに、ここでのマイク
ロ波エネルギーの洩れのない構造であることが好まし
く、例えばチヨークフランジ等を挙げることができる。
更に、方形、円形変換用導波管403は方形導波管421と連
続フランジ420を介して接続されている。アプリケータ
ー119は隔離容器422の壁面を貫通して挿入されていてエ
ツチング室116とマイクロ波透過部材118を介して真空が
保たれる構造で接続している。アプリケーター119と隔
離容器422の壁面は溶接またはフランジより真空が保た
れるように接続されている。
第5図には、本装置例における帯状部材101の搬送機
構の側断面図を模式図に示した。ここでの配置は、分離
手段109の外周面に少なくとも2ケ所の近接点を有し、
円形導波管202に開けられた孔208の向いている側に対し
てほぼ円柱状に湾曲させた場合を示してある。
円筒状を保持するために支持・搬送用ローラー102、1
03及び支持・搬送用リング104(105)が用いられてい
る。ここで、支持・搬送用リング104(105)の幅は、用
いる帯状部材の幅に対してできるだけ比率の小さいもの
を用いることが、基板上に堆積される膜の有効利用率を
高めることとなる。何故なら、基板上に堆積するべき膜
がこの支持・搬送用リング104(105)に堆積してしまう
からである。
また、支持・搬送用リング104、105の両側面にはマイ
クロ波プラズマ領域の閉じ込め用の金網又は薄板501、5
01′が(片側は不図示)取り付けられていることが好ま
しく、そのメツシユ径は用いられるマイクロ波の波長の
好ましくは1/2波長以下、より好ましくは1/4波長以下
で、且つ、この面からの排気がなされる場合には、原料
ガスの透過が確保できる程度のものであることが望まし
い。
また、基板温度制御機構106、107は帯状部材101がマ
イクロ波プラズマ領域を通過する間、その温度を一定に
保つためのものであり、加熱及び/又は冷却のいずれも
可能な手段であることが望ましい。又、該基板温度制御
機構は熱交換効率を高めるために、直接帯状部材に接す
る構造であっても良い。一般的に、マイクロ波プラズマ
に曝されるところは温度上昇がしやすく、用いる帯状部
材の種類、厚さによってその上昇の程度が変わるので適
宜制御される必要がある。
更に、分離手段109の外周面と帯状部材101との近接点
における間隔L1及びL2は、ここからのマイクロ波エネル
ギーの漏洩を防止し、マイクロ波プラズマ領域を湾曲形
状内に閉じ込めるために少なくとも放射されるマイクロ
波の波長の1/2波長よりも短く設定されるのが好まし
い。ただし、前記帯状部材101の湾曲開始端と湾曲終了
端との間隔L3はマイクロ波アプリケーター201から放射
されるマイクロ波エネルギーが前記帯状部材101で形成
される湾曲形状領域内へ効率良く放射されるために、放
射されるマイクロ波の波長の1/4波長よりも長く設定さ
れることが望ましい。
前記孔208から放射されるマイクロ波エネルギーは指
向性をもって該孔208の向いている側に対してほぼ垂直
方向に放射されるので、その放射方向は少なくとも前記
間隔L3の方にほぼ垂直に向いていることが好ましい。
ガス導入管112、および117には、ほぼ均一にガス放出
が行われる配置及び穴径で孔が開けられている。また、
ガス導入管が前記湾曲形状内に設置される位置はその範
囲内であれば特に制限されることはない。
装置例3 次に、第1図(a)に示した装置において、第3図
(a)に示したマイクロ波アプリケーター手段301を用
いた場合を挙げることができる。
円形導波管302には、開口端303及び一つの細長い方形
の孔304が加工されていて、図中矢印方向よりマイクロ
波が進行して来る。該孔304は用いるマイクロ波の1波
長よりも大きく、円形導波管302の片面のほぼ全面にわ
たって開けられている。開口端303は定在波がたつこと
を避けるために設けてあるが、シールされていても特に
支障はない。この構造とすることによってマイクロ波エ
ネルギーを孔304の全面から放射させることができる
が、特にマイクロ波電源に近い側の孔の端でマイクロ波
エネルギーの集中度は最大となる。従って、連結部305
によって円形導波管302に取り付けた少なくとも1つの
シヤツター306を用いてその集中度を調整することがで
きる。該シヤツター306の好ましい形状としては第3図
(b)乃至(d)に示すごとく短冊状、台形状、及び短
冊又は台形の一辺上を半月状等に切り欠いた形状等のも
のが挙げられる。
連結部305はシヤツター306のマイクロ波電源に近い側
に開けられた溝307、固定用ピン308で構成される。ま
た、前記孔304の周囲にはガラス又はテフロン等で作製
された絶縁体309が配設されている、これらは、シヤツ
ター306が連結部305でのみ導波管302と接触させるため
である。ここで、一部シヤツター306と導波管302との間
に接触子を設けた場合にはこれはアーク接触子となる。
装置例4、5 装置例1、及び2において、マイクロ波アプリケータ
ー201を不図示の遅波回路式のマイクロ波アプリケータ
ーを用いた以外は同様の構成のものを挙げることができ
る。
装置例6 本装置例では、第7図に示したごとく、装置例2で示
した堆積膜形成用のマイクロ波プラズマCVD装置に帯状
部材101の送り出し及び巻き取り用の真空容器701及び70
2をガスゲート721及び722を用いて接続した装置を挙げ
ることができる。
703は帯状部材の送り出し用ボビン、704は帯状部材の
巻き取り用ボビンであり、図中矢印方向に帯状部材が搬
送される。もちろんこれは逆転させて搬送することもで
きる。706、707は張力調整及び帯状部材の位置出しを兼
ねた搬送用ローラーである。712、713は帯状部材の予備
加熱又は冷却用に用いられる温度調整機構である。70
7、708、709は排気量調整用のスロツトルバルブ、710、
711、720は排気管であり、それぞれ不図示の排気ポンプ
に接続されている。714、715は圧力計、また、716、717
はゲートガス導入管、718、719はゲートガス排気管であ
り、不図示の排気ポンプによりゲートガス及び/又は堆
積膜形成用原料ガスが排気される。723は帯状部材101を
側壁とした成膜室である。
装置例7 本装置例では、第8図に示したごとく、装置例12で示
した装置に、更に2台の本発明のマイクロ波プラズマCV
Dによる堆積膜形成用の隔離容器400-a、422-a、400-b、
422-bを両側に接続して、積層型デバイスを作製できる
ように構成したものを挙げることができる。
図中a及びbの符号をつけたものは、基本的には隔離
容器400中で用いられたものと同様の効果を有する機構
である。
801、802,803,804は各々ガスゲート、805,806,807,80
8は各々ゲートガス導入管、809,810,811,812は各々ゲー
トガス排気管である。
装置例8、9 装置例6及び7においてマイクロ波アプリケーター20
1を装置例3で用いたマイクロ波アプリケーター301に変
えた以外は同様の構成としたものを挙げることができ
る。
装置例10、11 装置例6及び7においてマイクロ波アプリケーター20
1を不図示の遅波回路式のマイクロ波アプリケーターを
用いた以外は同様の構成のものを挙げることができる。
装置例12 本装置例では第9図に示したごとく、装置例6で示し
た装置に、更に2台の従来法であるRFプラズマCVD装置
を両側に接続して、積層型デバイスを作製できるように
構成したものを挙げることができる。
ここで、901、902は真空容器、903、904はRF印加用カ
ソード電極、905、906はガス導入管兼ヒーター、907、9
08は基板加熱用ハロゲンランプ、909、910はアノード電
極、911、912は排気管である。
その他の装置例 例えば装置例7において、堆積膜形成用の隔離容器40
0、400-a、400-bで上述した種々のマイクロ波アプリケ
ーターを組み合わせて取り付けた装置。
また、装置例7で示した装置を2連又は3連接続した
装置、及び前述のRFプラズマCVD法による堆積膜形成手
段を混在させて接続した装置等を挙げることができる。
本発明の方法及び装置によって好適に製造される半導
体デバイスの一例として太陽電池が挙げられる。その層
構成として、典型的な例を模式的に示す図を第11図
(A)乃至(D)に示す。
第11図(A)に示す例は、支持体1101上に下部電極11
02、n型半導体層1103、i型半導体層1104、p型半導体
層1105、透過電極1106及び集電電極1107をこの順に堆積
形成した光起電力素子1100である。なお、本光起電力素
子では透明電極1106の側より光の入射が行われることを
前提としている。
第11図(B)に示す例は、透光性の支持体1101上に透
明電極1106、p型半導体層1105、i型半導体層1104、n
型半導体層1103及び下部電極1102をこの順に堆積形成し
た光起電力素子1100′である。本光起電力素子では透光
性の支持体1101の側より光の入射が行なわれることを前
提としている。
第11図(C)に示す例は、バンドギヤツプ及び/又は
層厚の異なる2種の半導体層をi層として用いたpin接
合型光起電力素子1111、1112を2素子積層して構成され
たいわゆるタンデム型光起電力素子1113である。1101は
支持体であり、下部電極1102、n型半導体層1103、i型
半導体層1104、p型半導体層1105、n型半導体層1108、
i型半導体層1109、p型半導体層1110、透明電極1106及
び集電電極1107がこの順に積層形成され、本光起電力素
子では透明電極1106の側より光の入射が行われることを
前提としている。
第11図(D)に示す例は、バンドギヤツプ及び/又は
層厚の異なる3種の半導体層をi層として用いたpin接
合型光起電力素子1120、1121、1123を3素子積層して構
成された。いわゆるトリプル型光起電力素子1124であ
る。
1101は支持体であり、下部電極1102、n型半導体層11
03、i型半導体層1104、p型半導体層1105、n型半導体
層1114、i型半導体層1115、p型半導体層1116、n型半
導体層、i型半導体層1118、p型半導体層1119、透明電
極1106及び集電電極1107がこの順に積層形成され、本光
起電力素子では透明電極1106の側より光の入射が行われ
ることを前提としている。
なお、いずれの光起電力素子においてもn型半導体層
とp型半導体層とは目的に応じて各層の積層順を入れ変
えて使用することもできる。
以下、これらの光起電力素子の構成について説明す
る。
支持体 本発明において用いられる支持体1101は、フレキシブ
ルであって湾曲形状を形成し得る材質のものが好適に用
いられ、導電性のものであっても、また電気絶縁性のも
のであってもよい。さらには、それらは透光性のもので
あっても、また非透光性のものであってもよいが、支持
体1101の側より光入射が行われる場合には、もちろん透
光性であることが必要である。
具体的には、本発明において用いられる前記帯状部材
を挙げることができ、該基板を用いることにより、作製
される太陽電池の軽量化、強度向上、運搬スペースの低
減等が図れる。
電極 本発明の光起電力素子においては、当該素子の構成形
態により適宜の電極が選択使用される。それらの電極と
しては、下部電極、上部電極(透明電極)、集電電極を
挙げることができる。(ただし、ここでいう上部電極と
は光の入射側に設けられたものを示し、下部電極とは半
導体層を挟んで上部電極に対向して設けられたものを示
すこととする。) これらの電極について以下に詳しく説明する。
(1)下部電極 本発明において用いられる下部電極1102としては、上
述した支持体1101の材料が透光性であるか否かによっ
て、光起電力発生用の光を照射する面が異なる故(たと
えば支持体1101が金属等の非透光性の材料である場合に
は、第11図(A)で示したごとく透明電極1106側から光
起電力発生用の光を照射する。)、その設置される場所
が異なる。
具体的には、第11図(A)、(C)および(D)のよ
うな層構成の場合には支持体1101とn型半導体層1103と
の間に設けられる。しかし、支持体1101が導電性である
場合には、該支持体が下部電極を兼ねることができる。
ただし、支持体1101が導電性出会ってもシート抵抗値が
高い場合には、電流取り出し用の低抵抗の電極として、
あるいは支持体面での反射率を高め入射光の有効利用を
図る目的で電極1102を設置してもよい。
第11図(B)の場合には透光性の支持体1101が用いら
れており、支持体1101の側から光が入射されるので、電
流取り出し及び当該電極での光反射用の目的で、下部電
極1102が支持体1101と対向して半導体層を挟んで設けら
れている。
また、支持体1101として電気絶縁性のものを用いる場
合には電流取り出し用の電極として、支持体1101とn型
半導体層1103との間に下部電極1102が設けられる。
電極材料としては、Ag,Au,Pt,Ni、Cr、Cu、Al、Ti、Z
n、Mo、W等の金属又はこれらの合金が挙げられ、これ
等の金属の薄膜を真空蒸着、電子ビーム蒸着、スパツタ
リング等で形成する。また、形成された金属薄膜は光起
電力素子の出力に対して抵抗成分とならぬように配慮さ
れねばならず、シート抵抗値として好ましくは50Ω以
下、より好ましくは10Ω以下であることが望ましい。
下部電極1102とn型半導体層1103との間に、図中には
示されてはいないが、導電性酸化亜鉛等の拡散防止層を
設けても良い。該拡散防止層の効果としては電極1102を
構成する金属元素がn型半導体層中へ拡散するのを防止
するのみならず、若干の抵抗値をもたせることで半導体
層を挟んで設けられた下部電極1102と透明電極1106との
間にピンホール等の欠陥で発生するシヨートを防止する
こと、及び薄膜による多重干渉を発生させ入射された光
を光起電力素子内に閉じ込める等の効果を挙げることが
できる。
(2)上部電極(透明電極) 本発明において用いられる透明電極1106としては太陽
や白色蛍光灯等からの光を半導体層内に効率良く吸収さ
せるために光の透過率が85%以上であることか望まし
く、さらに、電気的には光起電力素子の出力に対して抵
抗成分とならぬようにシート抵抗値は100Ω以下である
ことが望ましい。このような特性を備えた材料としてSn
O2、In2O3、ZnO、CdO、Cd2SnO4、ITO(In2O3+SnO2)な
どの金属酸化物やAu、Al、Cu等の金属を極めて薄く半透
明体に成膜した金属薄膜等が挙げられる。透明電極は第
11図(A)、(C)、(D)においてはp型半導体層11
05層の上に積層され、第11図(B)において基板1101の
上に積層されるものであるため、互いの密着性の良いも
のを選ぶことが必要である。これらの作製方法として
は、抵抗加熱蒸着法、電子ビーム加熱蒸着法、スパツタ
リング法、スプレー法等を用いることができ所望に応じ
て適宜選択される。
(3)集電電極 本発明において用いられる集電電極1107は、透明電極
1106の表面抵抗値を低減させる目的で透明電極1106上に
設けられる。電極材料としてはAg、Cr、Ni、Al、Ag、A
u、Ti、Pt、Cu、Mo、W等の金属またはこれらの合金の
薄膜が挙げられる。これらの薄膜は積層させて用いるこ
とができる。また、半導体層への光入射光量が十分に確
保されるよう、その形状及び面積が適宜設計される。
たとえば、その形状は光起電力素子の受光面に対して
一様に広がり、且つ受光面積に対してその面積は好まし
くは15%以下、より好ましくは10%以下であることが望
ましい。
また、シート抵抗値としては、好ましくは50Ω以下、
より好ましくは10Ω以下であることが望ましい。
i型半導体層 本光起電力素子において好適に用いられるi型半導体
層を構成する半導体材料としては、A-Si:H、A-Si:F、A-
Si:H:F、A-SiC:H、A-SiC:F、A-SiC:H:F、A-SiGe:H、A-S
iGe:F、A-SiGe:H:F、poly-Si:H、poly-Si:F、poly-Si:
H:F等いわゆるIV族及びIV族合金系半導体材料の他、III
-V及びII-VI族のいわゆる化合物半導体材料等が挙げら
れる。
p型半導体層及びn型半導体層 本光起電力素子において好適に用いられるp型又はn
型半導体層を構成する半導体材料としては、前述したi
型半導体層を構成する半導体材料に価電子制御剤をドー
ピングすることによって得られる。
〔実験〕
本発明の装置を用いて、帯状部材上に機能性堆積膜を
均一に形成するための、マイクロ波プラズマの生起条件
及び帯状部材と分離手段との相対的位置関係及び除去手
段としてドライエツチングを用いる場合の放電条件等に
ついて検討するため、以下に述べる実験を行った。
実験例1〜9 装置例1の第1図(a)で示した構成の装置におい
て、まず、除去手段にドライエツチングを用いず成膜室
のみプラズマを生起した場合についての実験を行った。
搬送用リング104、105の側を排気孔とし、不図示の排
気ポンプに接続し、第1表に示す種々の導波管及び孔加
工寸法のマイクロ波アプリケーターを用い、また、第2
−1表に示すマイクロ波プラズマ放電条件にて、プラズ
マの安定性等について実験、評価を行った。評価結果を
第2−2表に示す。なお、この放電実験においては帯状
部材101を静止させた場合及び1.2m/minの搬送スピード
で搬送させた場合とで行ったが、両者において放電の安
定性については特に差異は認められなかった。
実験例10〜19 次に、実験例1〜9で行ったのと同様に除去手段にド
ライエツチングを用いず成膜室のみプラズマを生起した
場合についての別の実験を行った。装置例3で示した構
成の装置において、搬送用リング104、105の側を排気孔
とし、不図示の排気ポンプに接続し、第6表に示す種々
の導波管及び孔、シヤツター加工寸法のものを用い、ま
た、第2表に示すマイクロ波プラズマ放電条件にて、プ
ラズマの安定性等について実験、評価を行った。評価結
果を第7表に示す。なお、この放電実験においては帯状
部材101を静止させた場合及び1.2m/minの搬送スピード
で搬送させた場合とで行ったが、両者において放電の安
定性については特に差異は認められなかった。
実験例20 装置例1(a)で示した構成の装置において、除去手
段としてドライエツチングを用いる場合の放電条件を評
価した。成膜室側は搬送用リング104、105の側を排気孔
とし、不図示の排気ポンプに接続し、No.2の導波管及び
孔加工寸法のマイクロ波アプリケーターを用い、また、
第2表に示すマイクロ波プラズマ放電条件にて、プラズ
マを生起した。また、エツチングの放電条件は第3−1
表に示す条件で行った。圧力と放電パワーを変化させ放
電状態の変化を観測し結果を第3−2表および第4−3
表に示した。なお、この放電実験においては帯状部材10
1を静止させて行った。
実験例21 装置例1(b)で示した構成の装置において、除去手
段としてドライエツチングを用いる場合の放電条件を評
価した。成膜室側の放電条件は実験例20と同様にした。
また、エツチング室のアプリケーターはNo.2を用い、放
電条件は3−1表に示す条件で行った。結果は実験例20
とほぼ同様であった。なお、この放電実験においても帯
状部材101は静止させて行った。
実験例22 装置例1(c)で示した構成の装置において、除去手
段としてドライエツチングを用いる場合の放電条件を評
価した。成膜室側の放電条件は実験例20と同様にした。
また、エツチングの放電条件は第4−1表に示す条件で
行った。放電圧力と放電状態の関係に付いて観測し結果
を第4−2表および第4−3表に示した。なお、この放
電実験においても帯状部材101は静止させて行った。
実験23 装置例1(d)で示した構成の装置において、除去手
段としてブレードを用いる場合の条件に付いて実験を行
った。成膜室側の放電条件は実験例20と同様にした。ま
た、除去手段の条件は第 表に示す条件で行った。こ
の条件に於いて5時間の連続運転を行ったのち分離手段
109の外周面を目視観測したところ膜の付着はわずかで
あった。また、ブレードも損傷を受けていなかった。な
お、この放電実験においても帯状部材101は静止させて
実験を行った。
比較実験例1〜4 実験例2、7、12及び16において、第2表に示したマ
イクロ波プラズマ放電条件のうち、他の条件は変えず第
9表に示すように圧力のみを種々変化させて、その時の
プラズマの状態を安定性、均一性等の観点で評価した。
評価について、最も安定した状態が得られた場合を◎、
やや安定性、均一性に欠けるものの実用上問題のない場
合を○、安定性、均一性に欠け実用上問題のある場合を
△、全く放電をしなかったり、異常放電等があって実用
的でない場合を×としてそれぞれランクづけし、第9表
中にそれらの評価結果を示した。
これらからわかるように、比較的広い圧力範囲におい
て安定して、均一なマイクロ波プラズマが形成されるこ
とがわかる。
なお、これらの結果は前記帯状部材が静止している場
合でも1.5m/minの搬送速度で搬送している時でも特に変
化は認められなかった。
比較実験例5〜8 実験例2、7、12及び16において、第2表に示したマ
イクロ波プラズマ放電条件のうち、他の条件は変えず第
10表に示すようにマイクロ波電力のみを種々変化させ
て、その時のプラズマの状態を安定性、均一性等の観点
で評価し、最も安定した状態が得られた場合を◎、やや
安定性、均一性に欠けるものの実用上問題のない場合を
○、安定性、均一性に欠け実用上問題のある場合を△、
全く放電をしなかったり、異常放電等があって実用的で
ない場合を×としてランクづけし、第10表中にそれらの
評価結果を示した。
これらからわかるように、比較的広いマイクロ波電力
範囲において安定して、均一なマイクロ波プラズマが形
成されることがわかる。
なお、これらの結果は前記帯状部材が静止している場
合でも、1.5m/minの搬送速度で搬送している時でも特に
変化は認められなかった。
比較実験例9〜12 実験例2、7、12及び16において、第2表に示したマ
イクロ波プラズマ放電条件のうち、他の条件は変えずに
第11表に示すようにL1、L2のみを種々変化させて、その
時のプラズマの状態を安定性、均一性等の観点で評価
し、最も安定した状態が得られた場合を◎、やや安定
性、均一性に欠けるものの実用上問題のない場合を○、
安定性、均一性に欠け実用上問題のある場合を△、全く
放電をしなかったり、異常放電等があって実用的でない
場合を×としてランクづけし、第11表中にそれらの評価
結果を示した。
これらからわかるように、L1、L2の少なくとも一方が
マイクロ波の波長の1/4波長よりも大きい場合にはマイ
クロ波プラズマがチラついたり、マイクロ波の漏れが大
きくなるが、いずれも1/4波長以下である場合において
は安定して、均一なマイクロ波プラズマが形成されるこ
とがわかる。
なお、これらの結果は前記帯状部材が静止している場
合でも1.5m/minの搬送速度で搬送している時でも特に変
化は認められなかった。
比較実験例13〜16 実験例2、7、21及び25において、第2表に示したマ
イクロ波プラズマ放電条件のうち、他の条件は変えず第
12表に示すようにL3のみを種々変化させて、その時のプ
ラズマの状態を安定性、均一性等の観点で評価し、最も
安定した状態が得られた場合を◎、やや安定性、均一性
に欠けるものの実用上問題のない場合を○、安定性、均
一性に欠け実用上問題のある場合を△、全く放電をしな
かったり、異常放電等があって実用的でない場合を×と
してランクづけし、第12表中にそれらの評価結果を示し
た。
これらからわかるように、L3がマイクロ波の波長の1/
2波長以下では放電が不安定となるが、1/2波長以上にお
いては安定して、均一なマイクロ波プラズマが形成され
ることがわかる。
ただし、L1、L2を1/4波長よりも大きく且つ、L3が大
きすぎる場合には、マイクロ波の漏れが大きく、放電も
不安定であった。
なお、これらの結果は前記帯状部材が静止している場
合でも、1.5m/minの搬送速度で搬送している時でも特に
変化は認められなかった。
比較実験例17〜20 実験例2、7、21及び25において、第2表に示したマ
イクロ波プラズマ放電条件のうち、他の条件は変えず第
13表に示すように湾曲形状の内直径のみを種々変化させ
て、その時のプラズマの状態を安定性、均一性等の観点
で評価し、最も安定した状態が得られた場合を◎、やや
安定性、均一性に欠けるものの実用上問題のない場合を
○、安定性、均一性に欠け実用上問題のある場合を△、
全く放電をしなかったり、異常放電等があって実用的で
ない場合を×としてランクづけし、第13表中にそれらの
評価結果を示した。
これらからわかるように、比較的大きな内直径まで安
定して、均一なマイクロ波プラズマが形成されることが
わかる。
なお、これらの結果は前記帯状部材が静止している場
合でも、1.5m/minの搬送速度で搬送している時でも特に
変化は認められなかった。
比較実験例21〜24 実験例1において、マイクロ波領域閉じ込め用のパン
チングボードをSUS316L製の薄板の表面にアルミナ溶射
を行ったものに変えた以外は、他の放電条件は変えず、
プラズマの安定性等について同様の評価を行ったとこ
ろ、いずれも特に差異は認められなかった。
実験結果の概要 本発明の方法及び装置において、マイクロ波プラズマ
の安定性、均一性等は、例えばマイクロ波アプリケータ
ーの種類及び形状、成膜時の成膜室内の圧力、マイクロ
波電力、マイクロ波プラズマの閉じ込めの程度、放電空
間の体積及び形状等種々のパラメーターが複雑にからみ
合って維持されているので、単一のパラメーターのみで
最適条件を求めるのは困難であるが、本実験結果より、
おおよそ次のような傾向及び条件範囲が判った。
圧力に関しては、好ましくは1〜3mTorr乃至200〜500
mTorr、より好ましくは3〜10mTorr乃至100〜200mTorr
であることが判った。マイクロ波電力に関しては、好ま
しくは300〜700W乃至3000〜5000W、より好ましくは300
〜700W乃至1500〜3000Wであることが判った。更に、湾
曲形状の内直径に関しては、分離手段の外周壁のマイク
ロ波プラズマ領域に曝される長さの好ましくは5倍程
度、より好ましくは4倍程度の範囲に条件設定されるこ
とによってほぼ安定して、均一なマイクロ波プラズマが
維持されることが判った。
また、マイクロ波プラズマ領域からのマイクロ波エネ
ルギーの漏れ量が大きくなるとプラズマの安定性を欠く
くことが判り、帯状部材の湾曲端及び分離手段のいずれ
かで形成される隙間は好ましくはマイクロ波の1/2波長
以下、より好ましくは1/4波長以下に設定されることが
望ましいことが判った。
以後、これらの条件範囲を参考に製造実験を行うこと
とした。
〔製造例〕
以下、本発明のマイクロ波プラズマCVD装置を用いて
の具体的製造例を示すが、本発明はこれらの製造例によ
って何ら限定されるものではない。
製造例1 装置例12で示した連続式マイクロ波プラズマCVD装置
を用い、アモルフアスシリコン膜の連続堆積を行った。
なお、成膜用マイクロ波アプリケーターはNo.13のタイ
プのものを用いた。また、除去方法は装置例1(a)の
装置を用いた。
まず、基板送り出し機構を有する真空容器701に、十
分に脱脂、洗浄を行ったsus430製BA製帯状基板(幅60cm
×長さ100m×厚さ0.2mm)の巻きつけられたボビン703を
セツトし、該帯状部材101をガスゲート721及び隔離容器
400中の搬送機構を介して、更にガスゲート722を介し、
基板巻き取り機構を有する真空容器702まで通し、たる
みのない程度に張力調整を行った。帯状部材の湾曲形状
等の条件を第18表に示した。
そこで、各真空容器701、702及び隔離容器400および4
22を不図示のロータリポンプで荒引きし、次いで不図示
のメカニカルブースターポンプを起動させ10-3Torr付近
まで真空引きした後、更に温度制御機構106、107を用い
て、基板表面温度を250℃に保持しつつ、不図示の油拡
散ポンプ(バリアン製HS-32)にて5×10-6Torr以下ま
で真空引きした。
十分に脱ガスが行われた時点で、ガス導入管112よ
り、SiH4 600sccm、SiF4 10sccm、H2 50sccmを成膜室72
3内に導入し、前記油拡散ポンプに取り付けられたスロ
ツトバルブの開度を調整して成膜室723内の圧力を9mTor
rに保持した。この時、隔離容器400内の圧力は1.5mTorr
であった。さらに、ガス導入管117より、CF4 100sccm、
O2 15sccmをエツチング室724内に導入し、前記油拡散ポ
ンプに取り付けられたスロツトバルブの開度を調整して
エツチング室724内の圧力を20mTorrに保持した。この
時、隔離容器422内の圧力は1.5mTorrであった。
圧力が安定した所で、分離手段109を10RPMで回転さ
せ、不図示のマイクロ波電源より、実効パワーで1.8kW
のマイクロ波をアプリケーター301より放射させた。直
ちに、導入された原料ガスはプラズマ化し、マイクロ波
プラズマ領域を形成し、該マイクロ波プラズマ領域は搬
送用リング104、105の側面に取り付けられた金網501、5
01′(線径1mm、間隔5mm)から真空容器側に漏れ出るこ
とはなく、また、マイクロ波の盛れも検出されなかっ
た。
さらに、不図示のマイクロ波電源より、実効パワーで
0.8kWのマイクロ波をアプリケーター119より放射させ
た。直ちに、導入されたエツチンガスはプラズマ化し、
マイクロ波プラズマ領域を形成し、該マイクロ波プラズ
マ領域は間隙121から真空容器側に漏れ出ることはな
く、また、マイクロ波の盛れも検出されなかった。
そこで、支持・搬送用ローラー102、103及び支持・搬
送用リング104、105(いずれも駆動機構は不図示)を起
動し、前記帯状部材102の搬送スピードが1.5m/minとな
るように制御した。
なお、ガスゲート721、722にはゲートガス導入管71
6、717よりゲートガスとしてH2ガスを50sccm流し、排気
孔718、718より不図示の油拡散ポンプで排気し、ガスゲ
ート内圧は1mTorrとなるように制御した。
搬送を開始してから5時間、連続して堆積膜の形成を
行った。なお、長尺の帯状部材を用いているため、本製
造例の終了後、引き続き他の堆積膜の形成を実施し、す
べての堆積終了後、前記帯状部材を冷却して取り出し
た。また、成膜中のプラズマは安定していて分離手段外
周面への膜付着は認められなかった。
本製造例において形成された帯状部材上の堆積膜膜厚
分布を幅方向及び長手方向について測定するため長尺の
帯状部材のうち測定する長さに相当する部分を切り出し
堆積速度を算出し成膜時間と堆積速度の関係を求めたと
ころ、幅方向、長さ方向供に5%以内のばらつきであっ
た。また、堆積速度は平均110Å/secであった。また、
その一部を切り出し、FT-IR(パーキン・エルマー社製1
720X)を用い反射法により赤外吸収スペクトルを測定し
たところ、2000cm-1及び630cm-1に吸収が認められA-Si:
H:F膜に特有の吸収パターンであった。また、炭素や酸
素などのエツチングガスに基づくような成分の混入は検
出されなかった。
更に、RHEED(JEM-100SX、日本電子製)により膜の結
晶性を評価したところ、ハローで非晶質であることが判
った。また、金属中水素分析計(EMGA-1100、堀場製作
所製)を用いて膜中水素量を定量した所22±2atm%であ
った。
製造例2 製造例1において実施した堆積膜形成工程にひき続
き、用いた原料ガスを導入を止め、成膜室用マイクロ波
アプリケーターを11とし、除去方法は装置例1(b)の
装置に替えた後、隔離容器4400および422の内圧を5×1
0-6Torr以下まで真空引きした後、ガス導入管112より、
SiH4 150sccm、GeH4 120sccm、SiF4 5sccm、H2 30sccm
を導入し、成膜室723の内圧を15mTorrに保持し、成膜室
に投入するマイクロ波電力を1.0kWとし、エツチング室
に投入するマイクロ波電力を0.5kWとした。これ意外は
同様の堆積膜形成条件でアモルフアスシリコンゲルマニ
ウム膜の連続堆積を行った。
本製造例及び他の製造例終了後、帯状部材を冷却して
取り出し、本製造例において形成された堆積膜の膜厚分
布を製造例1と同様にして幅方向及び長手方向について
測定した所、5%以内に納まっており、堆積速度は平均
48Å/secであった。また、分離手段109の外周面上を目
視観察したが膜の付着は認められなかった。
また、その一部を切り出し、FT-IR(パーキン・エル
マー社製1720X)を用い反射法により赤外吸収スペクト
ルを測定したところ、2000cm-1,1880cm-1及び630cm-1
吸収が認められ、A-SiGe:H:F膜に特有の吸収パターンで
あった。更に、RHEED(JEM-100SX、日本電子製)により
膜の結晶性を評価したところ、ハローで、非晶質である
ことが判った。また、金属中水素分析計(EMGA-1100、
堀場製作所製)を用いて膜中水素量を定量した所16±2a
tm%であった。
製造例3 製造例1において実施した堆積膜形成工程にひき続
き、用いた原料ガスを導入を止め、成膜室用マイクロ波
アプリケーター、除去方法は製造例1と同様にし、隔離
容器400および422の内圧を5×10-6Torr以下まで真空引
きした後、ガス導入管112より、SiH4 280sccm、CH4 40s
ccm、SiF4 5sccm、H2 50sccmを導入し、成膜室723の内
圧を25mTorrに保持した以外は同様の堆積膜形成条件で
アモルフアスシリコンカーバイド膜の連続堆積を行っ
た。
本製造例及び他の製造例終了後、帯状部材を冷却して
取り出し、本製造例において形成された堆積膜の膜厚分
布を幅方向及び長手方向について製造例1と同様に測定
したところ、5%以内に納まっており、堆積速度は平均
54Å/secであった。また、分離手段109の外周面上を目
視観察したが膜の付着は認められなかった。
また、その一部を切り出し、FT-IR(パーキン・エル
マー社製1720X)を用い、反射法により赤外吸収スペク
トルを測定したところ、2080cm-1、1250cm-1、960c
m-1、777cm-1及び660cm-1に吸収が認められ、A-SiC:H:F
膜に特有の吸収パターンであった。更に、RHEED(JEM-1
00SX、日本電子製)により膜の結晶性を評価したとこ
ろ、ハローで、非晶質であることが判った。また、金属
中水素分析計(EMGA-1100、堀場製作所製)を用いて膜
中水素量を定量した所12±2atm%であった。
製造例4 製造例1において実施した堆積膜形成工程にひき続
き、用いた原料ガスを導入を止め、除去方法は装置例1
(c)の装置に替えた後、隔離容器400および422の内圧
を5×10-6Torr以下まで真空引きした後、ガス導入管11
2より、SiH4 250sccm、BF3(3000ppm、H2希釈)50scc
m、SiF4 45sccm、H2 50sccmを導入し、成膜室723の内圧
を20mTorrに保持し、マイクロ波アプリケーターをNo.3
とした。また、ガス導入管119よりCF4 100sccm、O2 20s
ccmを導入し、エツチング室724内の圧力を500mTorrとし
RF電源を接続した。成膜室723に投入するマイクロ波電
力を3.0kWにし、エツチング室724内に投入するRFパワー
を500Wにし、それ以外は同様の堆積膜形成条件でp型の
微結晶シリコン膜の連続堆積を行った。
本製造例及び他の製造例終了後、帯状部材を冷却して
取り出し、本製造例において形成された堆積膜の膜厚分
布を製造例1と同様にして幅方向及び長手方向について
測定した所、5%以内に納まっており、堆積速度は平均
42Å/secであった。
また、分離手段109の外周面上を目視観察したが膜の
付着は認められなかった。
また、その一部を切り出し、FT-IR(パーキン・エル
マー社製1720X)を用い反射法により赤外吸収スペクト
ルを測定したところ、2100cm-1及び630cm-1に吸収が認
められ、μC-Si:H:F膜に特有の吸収パターンであった。
更に、RHEED(JEM-100SX、日本電子製)により膜の結晶
性を評価したところ、リング状で、無配向の多結晶質で
あることが判った。また、金属中水素分析計(EMGA-110
0、堀場製作所製)を用いて膜中水素量を定量した所5
±1atm%であった。
製造例5 製造例1において実施した堆積膜形成工程にひき続
き、用いた原料ガスを導入を止め、除去方法は装置例1
(d)の装置に替えた後、隔離容器400および422の内圧
を5×10-6Torr以下まで真空引きした後、ガス導入管11
2より、SiH4 360sccm、PH3(1%H2希釈)30sccm、SiF4
5sccm、H2 20sccmを導入し、成膜室723の内圧を12mTor
rに保持し、マイクロ波電力を1.2kWとした以外は同様の
堆積膜形成条件でn型のアモルフアスシリコン膜を連続
堆積を行った。
本製造例及び他の製造例終了後、帯状部材を冷却して
取り出し、本製造例において形成された堆積膜の膜厚分
布を製造例1と同様にして幅方向及び長手方向について
測定した所、5%以内に納まっており、堆積速度は平均
65Å/secであった。
また、分離手段109の外周面上を目視観察したが膜の
付着はごくわずかであった。また、ブレードを目視観察
したところ熱や摩擦による破損はごくわずかであった。
また、その一部を切り出し、FT-IR(パーキン・エル
マー社製1720X)を用い反射法により赤外吸収スペクト
ルを測定したところ、2000cm-1及び630cm-1に吸収が認
められ、A-Si:H:F膜に特有の吸収パターンであった。更
に、RHEED(JEM-100SX、日本電子製)により膜の結晶性
を評価したところ、ハローで、非晶質であることが判っ
た。また、金属中水素分析計(EMGA-1100、堀場製作所
製)を用いて膜中水素量を定量したところ20±1atm%で
あった。
製造例6 製造例1において、SUS430BA製帯状基板のかわりに、
PET(ポリエチレンテレフタレート)製帯状部材101(幅
50cm×長さ100m×厚さ0.8mm)を用い、基板表面温度を2
20℃とした以外は、全く同様の操作にてアモルフアスシ
リコン膜の連続堆積を行った。
帯状部材を冷却後取り出し、まず、膜厚分布を製造例
1と同様にして幅方向及び長手方向について測定した所
5%以内に納まっており、堆積速度は平均105Å/secで
あった。
また、分離手段109の外周面上を目視観察したが膜の
付着は認められなかった。
また、その一部を切り出し、FT-IR(パーキン・エル
マー社製1720X)を用い、リフアレンス透過法により赤
外吸収スペクトルを測定したところ、2000cm-1及び630c
m-1に吸収が認められ、A-Si:H:F膜に特有の吸収パター
ンであった。また、2000cm-1付近のSi-Hに帰属される吸
収から膜中水素量を定量したところ、24±2atom%であ
った。
更に、RHEED(JEM-100SX、日本電子製)により膜の結
晶性を評価したところ、ハローで、非晶質であることが
判った。
また、他の20箇所の部分をランダムに切り出し、それ
ぞれについてAl製くし型ギヤツプ電極(幅250μm、長
さ5mm)を抵抗加熱蒸着法にて蒸着し、AM-1光(100mw/c
m2)照射下での光電流値、及び暗中での暗電流値をHP41
40Bを用いて測定し、明導電率σp(S/cm)、及び暗導
電率σd(S/cm)を求めたところ、それぞれ(6.0±
5)×10-5S/cm及び(2.0±0.5)×10-11S/cmの範囲内
に納まっていた。
製造例7 本製造例においては、第10図の断面模式図に示す層構
成のシヨツトキー接合型ダイオードを第7図に示す装置
を用いて、作製した。
また除去手段は製造例1と同様の条件で行った。
ここで、1001は基板、1002は下部電極、1003はn+型
半導体層、1004はノンドープの半導体層、1005は金属
層、1006、1007は電流取り出し用端子である。
まず、製造例1で用いたのと同様のsus430BA製帯状部
材101を連続スパツタ装置にセツトし、Cr(99.98%)電
極をターゲツトとして用いて、1500ÅのCr薄膜を堆積
し、下部電極1002を形成した。
ひき続き、該帯状部材101を装置例12で示した第7図
の連続堆積膜形成装置の真空容器701中の送り出し用ボ
ビン703にセツトし、Cr薄膜の堆積された面を下側に向
けた状態で隔離容器400を介して、真空容器702中の巻き
取り用ボビン704にその端部を巻きつけ、たるみのない
よう張力調整を行った。
なお、本製造例における基板の湾曲形状等の条件は第
13表に示したのと同様とし、マイクロ波アプリケーター
は製造例1と同様のNo.13のタイプのものを用いた。
その後、不図示の排気ポンプにて、各真空容器の排気
管709、710、711を介して、製造例1と同様の荒引き、
高真空引き操作を行った。この時、基板表面温度は250
℃となるよう、温度制御機構106、107により制御した。
十分に脱ガスが行われた時点で、ガス導入管112よ
り、SiH4 350sccm、SiF4 5sccm、PH3/H3(1%H2
釈)60sccm、H2 30sccmを導入し、さらに、ガス導入管1
17より、CF4 100sccm、O2 15sccmをエツチング室724内
に導入し、前記油拡散ポンプに取り付けられたスロツト
バルブ709の開度を調整して成膜室723内の圧力を12mTor
rとし、エツチング室724内の圧力を20mTorrに保持し
た、この時、隔離容器400及び422内の圧力は1.5mTorrで
あった。圧力が安定した所で、不図示のマイクロ波電源
より、実効パワーで2.0kWのマイクロ波を成膜用アプリ
ケーター301より放射され実効パワーで1.0kWのマイクロ
波をエツチング室アプリケーター119より放射させた。
プラズマが生起したと同時に搬送を開始し、65cm/minの
搬送スピードで図中左側から右側方向へ搬送しつつ5分
間の堆積操作を行った。これにより、n+半導体層1003と
してのn+型A-Si:H:F膜が下部電極1002上に形成される。
なお、この間ガスゲート721、722にはゲートガスとし
てはH2を50sccm流し、排気孔718より不図示の排気ポン
プで排気し、ガスゲート内圧は2mTorrとなるように制御
した。
マイクロ波の供給及び原料ガスの導入を止め、また、
帯状部材101の搬送を止めてから隔離容器400、422の内
圧を5×10-6Torr以下まで真空引きした後、再びガス導
入管より、SiH4 350sccm、SiF4 10sccm、H2 50sccmを導
入し、スロツトルバルブ709の開度を調整して、成膜室7
23の内圧を8mTorrに保持し、さらに、ガス導入管117よ
り、CF4 100sccm、O2 15scmmをエツチング室724内に導
入し、前記油拡散ポンプに取り付けられたスロツトルバ
ルブの開度を調整してエツチング室724内の圧力を20mTo
rrに保持した。この時、間隔容器422内の圧力は1.5mTor
rであった。圧力が安定したところで、直ちに不図示の
マイクロ波電源より1.8kWのマイクロ波をアプリケータ
ー301より放射させ、1.0kWのマイクロ波をエツチング室
アプリケーター19より放射させた。プラズマが生起した
のと同時に搬送を開始し、60cm/minの搬送スピードで図
中右側から左側方向へ逆転搬送しつつ、5.5分間の堆積
操作を行った。これにより、n+型A-Si:H:F膜上にノンド
ープの半導体層1004としてのA-Si:H:F膜が積層形成され
る。すべての堆積操作終了後、マイクロ波の供給、原料
ガスの供給を止め、帯状部材101の搬送を止め、十分に
隔離容器400、422内の残留ガスの排気を行い、帯状部材
を冷却後取り出した。
該帯状部材の10箇所をランダムにφ5mmのパーマロイ
製マスクを密着させ、金属層1005としてのAu薄膜を電子
ビーム蒸着法にて80Å蒸着した。続いて、ワイヤボンダ
ーにて電流取り出し用端子1006、1007をボンデイング
し、HP4140Bを用いてダイオード特性を評価した。
その結果、ダイオード因子n=1.1±0.05、±1Vでの
整流比約6桁と良好なダイオード特性を示した。
製造例8 本製造例においては、第11図(A)の断面模式図に示
す層構成のpin型光起電力素子を第8図に示す装置を用
いて作製した。
該光起電力素子は、基板1001上に下部電極1102、n型
半導体層1103、i型半導体層1104、p型半導体層1105、
透明電極1106及び集電電極1107をこの順に堆積形成した
光起電力素子1100である。なお、本光起電力素子では透
明電極1106の側より光の入射が行われることを前提とし
ている。
まず、製造例6で用いたのと同様のPET製帯状部材101
を連続スパツタ装置にセツトし、Ag(99.99%)電極を
ターゲツトとして用いて1000ÅのAg薄膜を、また連続し
てZnO(99.999%)電極をターゲツトとして用いて1μ
mのZnO薄膜をスパツタ蒸着し、下部電極1102を形成し
た。
ひき続き、該下部電極1002の形成された帯状部材101
を第8図で示した連続堆積膜形成装置に、製造例7で行
ったのと同様の要領でセツトした。この時の隔離容器40
0内における基板の湾曲形状等の条件を第19表に示す。
また、隔離容器400-a、400-bにおいては、第20表に示
す堆積膜形成条件でn型A-Si:H:F膜及びp+型μC-Si:H:F
膜の形成を行った。
まず、真空容器でマイクロ波プラズマを生起させ、放
電等が安定したところで帯状部材101を搬送スピード54c
m/minで図中左側から右側方向へ搬送させ、連続して、
n、i、p型半導体層を積層形成した。
帯状部材101の全長に亘って半導体層を積層形成した
後、冷却後取り出し、更に、連続モジユール化装置にて
40cm×80cmの太陽電池モジユールを連続作製した。
作製した太陽電池モジユールについて、AM1.5(100mW
/cm2)光照射下にて特性評価を行ったところ、光電変換
効率で15%以上が得られ、更にモジユール間の特性のバ
ラツキは5%以内に納まっていた。
またAM1.5(100mW/cm2)光の500時間連続照射後の光
電変換効率の初期値に対する変化率を測定したところ10
%以内に納まった。
これらのモジユールを接続して3kWの電力供給システ
ムを作製することができる。
製造例9 本製造例では、製造例8で作製したpin型光起電力素
子において、i型半導体層としてのA-Si:H:F膜のかわり
にA-SiGe:H:F膜を用いた例を示す。
A-SiGe:H:F膜の形成は、搬送速度を40cm/minとした以
外は製造例2で行ったのと同様の操作及び方法で行い、
他の半導体層及びモジユール化工程は製造例8と同様の
操作及び方法で行い、太陽電池モジユールを作製した。
作製した太陽電池モジユールについて、AM1.5(100mW
/cm2)光照射下にて特性評価を行ったところ、光電変換
効率で7.5%以上が得られ、更にモジユール間の特性の
バラツキは5%以内に納まっていた。
また、AM1.5(100mW/cm2)光の500時間連続照射後の
光電変換効率の初期値に対する変化率を測定したところ
10%以内に納まった。これらのモジユールを接続して3k
Wの電力供給システムを作製することができた。
製造例10 本製造例では、製造例8で作製したpin型光起電力素
子において、i型半導体層としてのA-Si:H:F膜のかわり
にA-SiC:H:F膜を用いた例を示す。
A-SiC:H:F膜の形成は、搬送速度を42cm/minとした以
外は製造例3で行ったのと同様の操作及び方法で行い、
他の半導体層及びモジユール化工程は製造例8と同様の
操作及び方法で行い、太陽電池モジユールを作製した。
作製した太陽電池モジユールについて、AM1.5(100mW
/cm2)光照射下にて特性評価を行ったところ、光電変換
効率で6.5%以上が得られ、更にモジユール間の特性の
バラツキは5%以内に納まっていた。
また、AM1.5(100mW/cm2)光の500時間連続照射後の
光電変換効率の初期値に対する変化率を測定したところ
10%以内に納まった。
これらのモジユールを接続して3kWの電力供給システ
ムを作製することができた。
製造例11 本製造例では、第11図(C)に示す層構成の光起電力
素子を作製した。作製にあたっては、第8図に示す装置
において隔離容器400-a、400、400-bと同様の構成の隔
離容器を400-a′、400′、400-b′をこの順でガスゲー
トを介して更に接続させた装置(不図示)を用いた。
なお、下部素子1111は製造例9で、上部素子1112は製
造例8で作製したのと同様の層構成とし、各半導体層の
堆積膜作製条件は第21表に示した。モジユール化工程は
製造例8と同様の操作及び方法で行い、太陽電池モジユ
ールを作製した。
作製した太陽電池モジユールについて、AM1.5(100mW
/cm2)光照射下にて特性評価を行ったところ、光電変換
効率で10.2%以上が得られ、更にモジユール間の特性の
バラツキは5%以内に納まっていた。
また、AM1.5(100mW/cm2)光の500時間連続照射後の
光電変換効率の初期値に対する変化率を測定したところ
9%以内に納まった。
これらのモジユールを接続して3kWの電力供給システ
ムを作製することができた。
製造例12 本製造例では、第11図(C)に示す層構成の光起電力
素子を作製した。作製にあたっては、第8図に示す装置
において隔離容器400-a、400、400-bと同様の構成の隔
離容器を400-a′、400′、400-b′をこの順でガスゲー
トを介して更に接続させた装置(不図示)を用いた。
なお、下部素子1111は製造例8で、上部素子1112は製
造例10で作製したのと同様の層構成とし、各半導体層の
堆積膜作製条件は第22表に示した。モジユール化工程は
製造例8と同様の操作及び方法で行い、太陽電池モジユ
ールを作製した。
作製した太陽電池モジユールについて、AM1.5(100mW
/cm2)光照射下にて特性評価を行ったところ、光電変換
効率で19.3%以上が得られ、更にモジユール間の特性の
バラツキは5%以内に納まっていた。
また、AM1.5(100mW/cm2)光の500時間連続照射後の
光電変換効率の初期値に対する変化率を測定したところ
9%以内に納まった。
これらのモジユールを接続して3kWの電力供給システ
ムを作製することができた。
製造例13 本製造例では、第11図(D)に示す層構成の光起電力
素子を作製した。作製にあたっては、第8図に示す装置
において隔離容器400-a、400、400-bと同様の構成の隔
離容器400-a′、400′、400-b′400-a″、400″、400-
b″をこの順でガスゲートを介して更に接続させた装置
(不図示)を用いた。
なお、下部素子1120は製造例9で、中間素子1121は製
造例8、上部素子1123は製造例10で作製したのと同様の
層構成とし、各半導体層の堆積膜作製条件は第23表に示
した。モジユール化工程は製造例8と同様の操作及び方
法で行い、太陽電池モジユールを作製した。
作製した太陽電池モジユールについて、AM1.5(100mW
/cm2)光照射下にて特性評価を行ったところ、光電変換
効率で1.5%以上が得られ、更にモジユール間の特性の
バラツキは5%以内に納まっていた。
また、AM1.5(100mW/cm2)光の500時間連続照射後の
光電変換効率の初期値に対する変化率を測定したところ
15%以内に納まった。
これらのモジユールを接続して3kWの電力供給システ
ムを作製することができた。
〔発明の効果の概要〕 本発明の方法によれば、成膜空間の側壁を構成する帯
状部材を連続的に移動せしめると共に、前記成膜空間の
側壁を構成する帯状部材の幅方向に、マイクロ波の進行
方向に対して垂直な一方向に指向性をもたせて均一にマ
イクロ波エネルギーを放射又は伝達せしめるマイクロ波
アプリケーター手段を具備させ、前記成膜空間内にマイ
クロ波プラズマを閉じ込めることによって、大面積の機
能性堆積膜を連続して、均一性良く形成することができ
る。
本発明の方法及び装置により、マイクロ波プラズマを
前記成膜空間内に閉じ込めることにより、マイクロ波プ
ラズマの安定性、再現性が向上すると共に堆積膜形成用
原料ガスの利用効率を飛躍的に高めることができる。更
に、前記帯状部材を連続して搬送させることによって、
湾曲の形状、長さ、及び搬送スピードを種々変化させる
ことによって任意の膜厚の堆積膜を大面積に亘り均一性
よく、連続して堆積形成できる。
本発明の方法及び装置によれば、比較的幅広で、且つ
長尺の帯状部材の表面上に連続して均一性良く機能性堆
積膜を形成できる。従って、特に大面積太陽電池の量産
機として好適に用いることができる。
また、放電を止めることなく、連続して堆積膜が形成
できるため、積層型デバイス等を作製するときには良好
な界面特性が得られる。
また、低圧下での堆積膜形成が可能となり、ポリシラ
ン粉の発生を抑えられ、また、活性種のポリマリゼーシ
ヨン等も抑えられるので欠陥の減少及び、膜特性の向
上、膜特性の安定性の向上等が図れる。
従って、移動率、歩留まりの向上が図れ、安価で高効
率の太陽電池を量産化することが可能となる。
更に、本発明の方法及び装置によって作製された太陽
電池は光電変換効率が高く、且つ、長期に亘って特性劣
化の少ないものとなる。
【図面の簡単な説明】
第1図は本発明のマイクロ波プラズマCVD装置の模式的
概略図である。第2図及び第3図(a)乃至(d)は本
発明のマイクロ波アプリケーター手段の概略図である。
第4図は本発明のマイクロ波プラズマCVD装置の横断面
の模式的概略図である。第5図は本発明における帯状部
材の搬送機構の側断面図を模式的に示した図である。第
6図は本発明におけるガスゲート手段の圧力勾配を模式
的に示した図である。第7図乃至第9図は本発明の連続
的マイクロ波プラズマCVD装置の一例の全体概略図であ
る。第10図は本発明において作製されたシヨツトキー接
合型ダイオードの断面模式図である。第11図(A)乃至
(D)は本発明において作製されたpin型光起電力素子
(シングル、タンデム、トリプル)の断面模式図であ
る。第12図(1)乃至(10)は帯状部材の処理方法を説
明するための図である。 第1乃至第12図について、 101……帯状部材 102、103……支持・搬送用ローラー 104、105……支持・搬送用リング 106、107……温度制御機構 108……マイクロ波アプリケーター 109……分離手段 110、416……金属筒 111……金網 112、117……ガス導入管 113……マイクロ波プラズマ領域 114、115……マイクロ波漏洩防止用金網 116……エツチング室 118……マイクロ波透過部材 119、201、301……マイクロ波アプリケーター 121……間隙 122……RF電極 123……ブレード 202、302……円形導波管 203……末端部 204、205、206、207、208、304……孔 303……開口端 305……連結部 306……シヤツター 307……溝 308……固定用ピン 309……絶縁体 400、422……隔離容器 401、402……固定用フランジ 403……方形、円形変換用導波管 404、411……連結フランジ 405、412……開口部 406、407、413、414……Oリング 408、415……冷却用溝 409……開口端部 410、417……アース用フインガー 418……連結板 419……排気孔 420……接続フランジ 421……方形導波管 424……ギア 425……モーター 501、501′502、502′……金網 701、702、901、902……真空容器 703……送り出し用ボビン 704……巻き取り用ボビン 705、706……搬送用ローラー 707、708、709……スロツトルバブル 710、711、718、719、720……排気孔 712、713……温度調整機構 714、715……圧力計 716、717、805、806、807、808……ゲートガス導入管 721、722、801、802、803、804……ガスゲート 723……成膜室 724……エツチング室 809、810、811、812……ゲートガス排気管 903、904……カソード電極 905、906……ガス導入管 907、908……ハロゲンランプ 909、910……アノード電極 911、912……排気管 1001、1101……支持体 1002、1102……下部電極 1003、1103、1108、1114、1117……n型半導体層 1004、1104、1109、1115、1118……i型半導体層 1005……金属層 1006、1007……電流取り出し用端子 1100、1100′、1111、1112、1120、1121、1123……pin
接合型光起電力素子 1105、1110、1116、1119……p型半導体層 1106……上部電極 1107……集電電極 1113……タンデム型光起電力素子 1124……トリプル型光起電力素子 1201a……帯状部材処理室(A) 1201b……帯状部材処理室(B) 1202、1203、1204、1205、1206……帯状部材 1207a、1207b……ローラー 1208a、1208b……切断刃 1209a、1209b……溶接治具 1210、1211、1212、1213……接続手段

Claims (27)

    (57)【特許請求の範囲】
  1. 【請求項1】長手方向に帯状部材を移動せしめ、その中
    途で前記帯状部材上を側壁とする成膜空間を形成し、 該形成された成膜空間内にガス供給手段を介して堆積膜
    形成用原料ガスを導入し、 同時に、マイクロ波エネルギーをマイクロ波の進行方向
    に対して垂直な一方向に均一に放射又は伝達させるよう
    にしたマイクロ波アプリケーター手段を設け、該アプリ
    ケーター手段と前記成膜空間との間に設けられたマイク
    ロ波を透過する分離手段を介して、該マイクロ波エネル
    ギーを該成膜空間内の該帯状部材に向けて放射又は伝達
    させてマイクロ波プラズマを該成膜空間内に生起せし
    め、 該マイクロ波プラズマに曝される前記側壁を構成する該
    帯状部材上に堆積膜を形成すると共に、前記分離手段に
    隣接して設けられた化学的又は機械的堆積膜除去手段に
    より、前記分離手段上に堆積する堆積膜を堆積膜形成中
    又は形成後に除去することを特徴とするマイクロ波プラ
    ズマCVD法による堆積膜形成方法。
  2. 【請求項2】前記帯状部材の中途において、湾曲開始端
    形成手段と湾曲終了端形成手段とを用いて、前記湾曲開
    始端形成手段と前記湾曲終了端形成手段との間に前記帯
    状部材の長手方向に間隙を残して該帯状部材を湾曲させ
    て前記成膜空間の側壁を形成する請求項1に記載の堆積
    膜形成方法。
  3. 【請求項3】前記湾曲開始端形成手段と前記湾曲終了端
    形成手段との間に前記帯状部材の長手方向に残された間
    隙よりマイクロ波エネルギーを前記成膜空間内に放射又
    は伝達させる請求項2に記載の堆積膜形成方法。
  4. 【請求項4】前記分離手段には接触させない範囲で、前
    記マイクロ波アプリケーター手段を前記帯状部材の幅方
    向とほぼ平行となるように近接させて配設し、前記成膜
    空間内にマイクロ波エネルギーを放射又は伝達させる請
    求項1に記載の堆積膜形成方法。
  5. 【請求項5】前記マイクロ波アプリケーター手段から
    は、前記帯状部材の幅方向とほぼ同じ長さに均一なマイ
    クロ波エネルギーを放射又は伝達させる請求項4に記載
    の堆積膜形成方法。
  6. 【請求項6】前記マイクロ波アプリケーター手段を、前
    記分離手段を介して、前記成膜空間内に生起するマイク
    ロ波プラズマから分離させる請求項1に記載の堆積膜形
    成方法。
  7. 【請求項7】前記成膜空間内に放射又は伝達されたマイ
    クロ波エネルギーが、前記成膜空間外へ漏洩しないよう
    にされている請求項1に記載の堆積膜形成方法。
  8. 【請求項8】前記分離手段に隣接して設けられたエッチ
    ング室にエッチングガスを導入し、放電エネルギーによ
    りエッチングガスのプラズマを生成し前記分離手段上に
    堆積された堆積膜を除去する請求項1に記載の堆積膜形
    成方法。
  9. 【請求項9】前記分離手段に接触して設けられたブレー
    ドにより前記分離手段上に堆積する膜を除去する請求項
    1に記載の堆積膜形成方法。
  10. 【請求項10】長手方向に帯状部材を移動せしめ、その
    中途で前記帯状部材上に堆積膜を形成する堆積膜形成装
    置であって、 該帯状部材を支持するため長手方向にそれ等の間に所定
    の空間を空けて互いに平行に配されているローラーの組
    によって送り出し機構から巻き取り機構に長手方向に移
    動する途中に設けられ、該帯状部材が壁として機能して
    形成される成膜空間を形成するため該帯状部材を支持す
    る成膜空間形成手段と、 マイクロ波の進行方向に対して垂直な一方向に指向性を
    持たせて該成膜空間内に配される該帯状部材に向けて均
    一にマイクロ波エネルギーを導入して前記成膜空間内に
    マイクロ波プラズマを発生するため、該成膜空間に接続
    されたマイクロ波アプリケーター手段と、 前記マイクロ波エネルギーを、前記成膜空間内に通過せ
    しめ、且つ、前記成膜空間内に生起された該マイクロ波
    プラズマから前記アプリケーター手段を分離するための
    分離手段と、 前記分離手段に隣接して設けられる、前記分離手段上に
    堆積する堆積膜を化学的又は機械的方法により除去する
    除去手段と、 前記成膜空間内部を排気するための排気手段と、 前記成膜空間内に堆積膜形成原料ガスを導入するための
    ガス供給手段と、 前記帯状部材を加熱又は冷却するための温度制御手段
    と、 とを有することを特徴とする堆積膜形成装置。
  11. 【請求項11】前記ローラーは前記帯状部材を湾曲させ
    る湾曲部形成手段を構成し、該湾曲部形成手段を、少な
    くとも一組以上の、湾曲開始端形成手段と湾曲終了端形
    成手段とで構成し、前記湾曲開始端形成手段と前記湾曲
    終了端形成手段との間に前記成膜空間が設けられる請求
    項10に記載の堆積膜形成装置。
  12. 【請求項12】前記ローラーの組は少なくとも一対の支
    持・搬送用ローラーを有し、該ローラーは湾曲部形成手
    段を構成するとともに、該湾曲部形成手段は支持・搬送
    用リングを有する請求項11に記載の堆積膜形成装置。
  13. 【請求項13】前記成膜空間形成手段は前記ローラーの
    組と該ローラーの間に配された支持搬送リングからなる
    請求項10に記載の堆積膜形成装置。
  14. 【請求項14】前記分離手段を、前記湾曲開始端形成手
    段と前記湾曲終了端形成手段との間に残された間隙にほ
    ぼ平行に近接させ、且つ、前記成膜室の外側に配設した
    請求項11に記載の堆積膜形成装置。
  15. 【請求項15】前記分離手段がほぼ円筒形である請求項
    10に記載の堆積膜形成装置。
  16. 【請求項16】前記分離手段がほぼ半円筒形である請求
    項10に記載の堆積膜形成装置。
  17. 【請求項17】前記マイクロ波アプリケーター手段を、
    前記分離手段の周壁から隔てて、且つ前記分離手段の内
    側に包含されるように配設した請求項15に記載の堆積膜
    形成装置。
  18. 【請求項18】前記分離手段には、冷却手段が設けられ
    ている請求項10に記載の堆積膜形成装置。
  19. 【請求項19】前記冷却手段は、前記分離手段の内周面
    に沿って流れる空気流である請求項18に記載の堆積膜形
    成装置。
  20. 【請求項20】前記分離手段には、冷却手段が設けら
    れ、該冷却手段は、前記分離手段の内部に配設され前記
    分離手段との間に冷却媒体を流すことが出来る導管構造
    とすべく、前記分離手段と同心円状に構成される請求項
    15に記載の堆積膜形成装置。
  21. 【請求項21】前記マイクロ波アプリケーター手段はマ
    イクロ波伝送用導波管であり、該導波管には、その長手
    方向にほぼ均一にマイクロ波エネルギーをマイクロ波の
    進行方向に対して垂直な一方向に指向性を持たせて均一
    に放射するために、実質的に方形の孔が設けられている
    請求項10に記載の堆積膜形成装置。
  22. 【請求項22】前記方形の孔は、前記導波管の片面に少
    なくとも1つ以上あけられており、この孔よりマイクロ
    波が放射される構造とする請求項21に記載の堆積膜形成
    装置。
  23. 【請求項23】前記方形の孔は、前記導波管の長手方向
    に間隔を隔てて複数配設されている請求項22に記載の堆
    積膜形成装置。
  24. 【請求項24】前記方形の孔は、マイクロ波の1波長よ
    りも大きく且つ成膜空間に対応した空間すべてにわたっ
    て設けられた長方形とされている請求項21に記載の堆積
    膜形成装置。
  25. 【請求項25】前記方形の孔に対応してシャッター手段
    を有する請求項23に記載の堆積膜形成装置。
  26. 【請求項26】エッチングガスを導入し、放電エネルギ
    ーにより前記エッチングガスのプラズマを生起し、前記
    分離手段上に堆積した堆積膜を除去するためのエッチン
    グ室を前記分離手段に隣接して設けた請求項10に記載の
    堆積膜形成装置。
  27. 【請求項27】前記分離手段上に堆積した堆積膜を除去
    するためのブレードを前記分離手段に接触して設けた請
    求項10に記載の堆積膜形成装置。
JP33383390A 1990-11-30 1990-11-30 堆積膜形成方法及び堆積膜形成装置 Expired - Fee Related JP2810533B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33383390A JP2810533B2 (ja) 1990-11-30 1990-11-30 堆積膜形成方法及び堆積膜形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33383390A JP2810533B2 (ja) 1990-11-30 1990-11-30 堆積膜形成方法及び堆積膜形成装置

Publications (2)

Publication Number Publication Date
JPH04202668A JPH04202668A (ja) 1992-07-23
JP2810533B2 true JP2810533B2 (ja) 1998-10-15

Family

ID=18270454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33383390A Expired - Fee Related JP2810533B2 (ja) 1990-11-30 1990-11-30 堆積膜形成方法及び堆積膜形成装置

Country Status (1)

Country Link
JP (1) JP2810533B2 (ja)

Also Published As

Publication number Publication date
JPH04202668A (ja) 1992-07-23

Similar Documents

Publication Publication Date Title
JP2714247B2 (ja) マイクロ波プラズマcvd法による大面積の機能性堆積膜を連続的に形成する方法及び装置
JP2824808B2 (ja) マイクロ波プラズマcvd法による大面積の機能性堆積膜を連続的に形成する装置
EP0406690B1 (en) Process for continuously forming a large area functional deposited film by microwave PCVD method and an apparatus suitable for practicing the same
US8389389B2 (en) Semiconductor layer manufacturing method, semiconductor layer manufacturing apparatus, and semiconductor device manufactured using such method and apparatus
JP3101330B2 (ja) マイクロ波プラズマcvd法による大面積の機能性堆積膜を連続的に形成する方法及び装置
JP2810532B2 (ja) 堆積膜形成方法及び堆積膜形成装置
JP2722114B2 (ja) マイクロ波プラズマcvd法により大面積の機能性堆積膜を連続的に形成する方法及び装置
JP2722115B2 (ja) マイクロ波プラズマcvd法により大面積の機能性堆積膜を連続的に形成する方法及び装置
JP2810529B2 (ja) 堆積膜形成方法及び堆積膜形成装置
JP2810533B2 (ja) 堆積膜形成方法及び堆積膜形成装置
JP3235896B2 (ja) マイクロ波プラズマcvd法により大面積の機能性堆積 膜を連続的に形成する方法及び装置
JP3255903B2 (ja) 堆積膜形成方法および堆積膜形成装置
JP3181121B2 (ja) 堆積膜形成方法
JP2819030B2 (ja) マイクロ波プラズマcvd法により大面積の機能性堆積膜を連続的に形成する方法及び装置
JP2908629B2 (ja) マイクロ波プラズマcvd法及びロール・ツー・ロール法を用いた堆積膜形成方法
JP2810531B2 (ja) 堆積膜形成方法及び堆積膜形成装置
JP2962840B2 (ja) マイクロ波プラズマcvd法により大面積の機能性堆積膜を連続的に形成する方法及び装置
JP3554314B2 (ja) 堆積膜形成方法
JP2819031B2 (ja) マイクロ波プラズマcvd法により大面積の機能性堆積膜を連続的に形成する方法及び装置
JP3262899B2 (ja) マイクロ波プラズマcvd法により大面積の機能性堆積膜を連続的に形成する方法及び装置
JPH06216039A (ja) マイクロ波プラズマcvd装置
JPH06192839A (ja) 堆積膜形成方法および堆積膜形成装置
JPH0372083A (ja) マイクロ波プラズマcvd法により大面積の機能性堆積膜を連続的に形成する方法及び装置
JP3483548B2 (ja) 堆積膜形成方法および堆積膜形成装置
JPH06244118A (ja) マイクロ波プラズマcvd法により大面積の機能性堆積 膜を連続的に形成する方法及び装置

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees