JP2808900B2 - Ice storage device - Google Patents

Ice storage device

Info

Publication number
JP2808900B2
JP2808900B2 JP3019713A JP1971391A JP2808900B2 JP 2808900 B2 JP2808900 B2 JP 2808900B2 JP 3019713 A JP3019713 A JP 3019713A JP 1971391 A JP1971391 A JP 1971391A JP 2808900 B2 JP2808900 B2 JP 2808900B2
Authority
JP
Japan
Prior art keywords
aqueous solution
evaporator
ice
water
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3019713A
Other languages
Japanese (ja)
Other versions
JPH04263722A (en
Inventor
嘉裕 隅田
等 飯島
全 土井
一成 中尾
慎一 若本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3019713A priority Critical patent/JP2808900B2/en
Publication of JPH04263722A publication Critical patent/JPH04263722A/en
Application granted granted Critical
Publication of JP2808900B2 publication Critical patent/JP2808900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、氷蓄熱装置に関し、
例えばビル等の空調や、氷温にて冷却,冷蔵される食品
の生産や加工に用いられるものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage device,
For example, the present invention relates to air conditioners for buildings and the like, and products used for production and processing of foods cooled and refrigerated at ice temperature.

【0002】[0002]

【従来の技術】図5は例えば特願平1−229519号
明細書に記載された従来の氷蓄熱装置を示す構成図であ
る。図において、1は冷凍機で、圧縮機2、凝縮器3、
第1流量制御弁4、蒸発器5を主要構成機器として備え
ている。6は氷と水を蓄える蓄熱槽、7は過冷却を安定
して大きくとれるような添加物、例えばカリウム塩また
はナトリウム塩を添加した水溶液、8は水溶液7に浮遊
した氷、9は過冷却解除手段であり、例えば所定の大き
さの氷塊で過冷却水溶液の出口近傍に設けられている。
10は水溶液7中の氷8をろ過する氷除去手段であるフ
ィルタ−、11は水溶液7を循環させる循環ポンプ、1
2は一方を蓄熱槽6に接続し、フィルタ−10、循環ポ
ンプ11、蒸発器5を順次接続して、蒸発器5によって
冷却された水溶液7を蓄熱槽6へ導く循環路を構成する
水配管である。なお、水溶液7は添加物を加えず、単に
水のみを使用する場合もある。
2. Description of the Related Art FIG. 5 is a block diagram showing a conventional ice heat storage device described in, for example, Japanese Patent Application No. 1-229519. In the figure, 1 is a refrigerator, a compressor 2, a condenser 3,
A first flow control valve 4 and an evaporator 5 are provided as main components. 6 is a heat storage tank for storing ice and water, 7 is an aqueous solution containing a potassium salt or a sodium salt added to stabilize supercooling, for example, potassium salt or sodium salt, 8 is ice suspended in the aqueous solution 7, and 9 is supercooling release. For example, it is an ice block of a predetermined size and provided near the outlet of the supercooled aqueous solution.
10 is a filter which is an ice removing means for filtering ice 8 in the aqueous solution 7, 11 is a circulation pump for circulating the aqueous solution 7, 1
2 is a water pipe that connects one side to the heat storage tank 6 and sequentially connects the filter 10, the circulation pump 11, and the evaporator 5 to form a circulation path that leads the aqueous solution 7 cooled by the evaporator 5 to the heat storage tank 6. It is. In addition, the aqueous solution 7 may use only water without adding additives.

【0003】次に動作について説明する。水溶液7は冷
凍機1の蒸発器5により氷点以下数度(約ー2℃程度)
まで過冷却される。この水溶液7は配管12を通って蓄
熱槽6上部に設けた所定の大きさの氷塊9により過冷却
状態が破られ、過冷却熱量に相当する小片の氷8とな
る。この氷8は、氷とならなかった残りの水溶液7と共
に蓄熱槽6に流入し、蓄熱槽6内で氷点温度の水溶液7
の上部に浮遊する。蓄熱槽6の下部の水溶液7はフィル
タ−10を通り、循環ポンプ11によって冷凍機1に送
水されてサイクルを構成している。
Next, the operation will be described. The aqueous solution 7 is cooled to a few degrees below the freezing point by the evaporator 5 of the refrigerator 1 (about −2 ° C.)
Supercooled until The supercooled state of the aqueous solution 7 is broken by an ice block 9 having a predetermined size provided in the upper part of the heat storage tank 6 through the pipe 12, and becomes small pieces of ice 8 corresponding to the amount of supercooled heat. The ice 8 flows into the heat storage tank 6 together with the remaining aqueous solution 7 that has not become ice, and the aqueous solution 7 having a freezing point temperature in the heat storage tank 6.
Floating on top of The aqueous solution 7 at the lower part of the heat storage tank 6 passes through the filter 10 and is sent to the refrigerator 1 by the circulation pump 11 to form a cycle.

【0004】図6はこの冷凍機1の動作を示す圧力−エ
ンタルピ−線図である。グラフAは飽和線を表わし、グ
ラフBはこの冷凍機1の動作を示している。動作の状態
は矢印の方向に変化する。冷凍機1は凝縮器3出口の冷
媒が飽和液(点C)、蒸発器5出口の冷媒が飽和蒸気
(点D)となるように第1流量制御弁4により制御され
ている。直線Eの部分が蒸発器5での変化である。
FIG. 6 is a pressure-enthalpy diagram showing the operation of the refrigerator 1. Graph A shows the saturation line, and graph B shows the operation of the refrigerator 1. The state of operation changes in the direction of the arrow. The refrigerator 1 is controlled by the first flow control valve 4 so that the refrigerant at the outlet of the condenser 3 becomes a saturated liquid (point C) and the refrigerant at the outlet of the evaporator 5 becomes saturated vapor (point D). The portion of the straight line E is a change in the evaporator 5.

【0005】[0005]

【発明が解決しようとする課題】従来の氷蓄熱装置は以
上のように構成されており、水溶液中の氷8が冷凍機の
蒸発器5に流入し、これが核となって氷が蒸発器5内に
生成して装置を破壊するということを防止するために、
氷のろ過器10を蒸発器5入口側の水配管12に設けて
いる。ところが、これでも以下のような問題点がある。 (1)氷の結晶が数十μm〜数百μmと小さく、この氷
を捕捉するために氷ろ過器のフィルタ−をかなり細かい
ものとする必要があるが、フィルタ−を細かくすると循
環水の流動抵抗が大きくなって循環ポンプの動力が多く
なる。 (2)ろ過器のフィルタ−の目詰まりが発生し、フィル
タ−の目詰まりに対するメンテナンスが必要である。
The conventional ice heat storage device is configured as described above, and ice 8 in the aqueous solution flows into the evaporator 5 of the refrigerator, and the ice becomes the nucleus to form the ice. In order to prevent it from being generated inside and destroying the device,
An ice filter 10 is provided in a water pipe 12 on the inlet side of the evaporator 5. However, this still has the following problems. (1) Ice crystals are as small as several tens μm to several hundred μm, and it is necessary to make the filter of the ice filter very fine in order to capture the ice. However, if the filter is made fine, the flow of circulating water will increase. The resistance increases and the power of the circulation pump increases. (2) Clogging of the filter of the filter occurs, and maintenance for clogging of the filter is required.

【0006】この発明は、以上のような問題点を解消す
るためになされたもので、水溶液中の氷8が冷凍機の蒸
発器5に流入するのを防止し、安定して効率の高い運転
の行なえる氷蓄熱装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and prevents ice 8 in an aqueous solution from flowing into an evaporator 5 of a refrigerator, thereby achieving stable and efficient operation. It is an object of the present invention to obtain an ice thermal storage device that can perform the above.

【0007】[0007]

【課題を解決するための手段】この発明に係わる氷蓄熱
装置は、圧縮機、凝縮器、第1流量制御弁、及び蒸発器
を順次接続して構成され、水または水に添加物を添加し
た水溶液を過冷却する冷凍機、この冷凍機により過冷却
された水または水溶液の過冷却を解除し氷を生成させる
過冷却解除手段、この過冷却解除手段により生成された
氷や過冷却水を蓄える蓄熱槽、この蓄熱槽内の水または
水溶液を蒸発器へ送給して循環させる循環ポンプ、並び
にこれらを順に接続し水または水溶液が循環する循環路
を備える氷蓄熱装置において、第1流量制御弁と蒸発器
の間に設けた熱交換器、蒸発器と熱交換器の間に設けた
第2流量制御弁、並びに蓄熱槽から蒸発器に送給される
水または水溶液中の氷の存在を検知する検知手段を備
え、水または水溶液を蓄熱槽から熱交換器、蒸発器に順
に循環させるように構成し、熱交換器を、この熱交換器
入り口における水または水溶液の温度に応じて蒸発器あ
るいは凝縮器として動作させるものである。
An ice heat storage device according to the present invention is constituted by sequentially connecting a compressor, a condenser, a first flow control valve, and an evaporator, wherein water or an additive is added to water. A refrigerator for supercooling the aqueous solution, a supercooling release unit for releasing the supercooled water or the aqueous solution by this refrigerator and generating ice, and storing the ice and supercooled water generated by the supercooling release unit. In a heat storage tank, a circulating pump that feeds and circulates water or an aqueous solution in the heat storage tank to an evaporator, and an ice heat storage device including a circulation path that connects these in order and circulates the water or the aqueous solution, a first flow control valve is provided. Heat exchanger provided between the evaporator and the second flow control valve provided between the evaporator and the heat exchanger, and the presence of ice in the water or aqueous solution fed from the heat storage tank to the evaporator Water or aqueous solution Heat exchanger from the thermal storage tank, and configured to circulate sequentially to the evaporator, the heat exchanger, the heat exchanger
Depending on the temperature of the water or aqueous solution at the entrance, the evaporator
Alternatively, it is operated as a condenser .

【0008】[0008]

【作用】この発明による氷蓄熱装置の水または水溶液
は、冷凍機の蒸発器内で氷点下数度の過冷却状態まで冷
却される。この過冷却水溶液は、蓄熱槽上部で過冷却解
除手段により過冷却状態が解除され、過冷却熱量分に相
当する氷を生成する。氷とならなかった水または水溶液
は蓄熱槽から循環ポンプにより冷凍機の熱交換器に送水
され、水または水溶液温度より高温(0℃以上)の冷媒
と熱交換し、水または水溶液の温度が+0.5℃程度に
加熱された後、蒸発器に流入し冷却される。蓄熱槽内に
は氷が水または水溶液に浮遊しながら蓄積される。水ま
たは水溶液中の氷が冷凍機の蒸発器に流入するのを防止
する手段として、冷凍機の第1流量制御弁と蒸発器の間
に熱交換器と第2流量制御弁を設け、さらに蓄熱槽から
蒸発器に送給される水または水溶液中の氷の存在を検知
する検知手段を設けて熱交換器の運用状態を制御できる
ように構成している。
The water or aqueous solution of the ice heat storage device according to the present invention is cooled to a supercooled state several degrees below freezing in the evaporator of the refrigerator. The supercooled aqueous solution is released from the supercooled state by the supercooled release means in the upper part of the heat storage tank, and generates ice corresponding to the amount of supercooled heat. The water or aqueous solution that did not become ice is sent from the heat storage tank to the heat exchanger of the refrigerator by a circulating pump, and exchanges heat with the refrigerant having a temperature higher than the temperature of the water or the aqueous solution (0 ° C. or higher). After being heated to about 0.5 ° C., it flows into the evaporator and is cooled. Ice accumulates in the heat storage tank while floating in water or an aqueous solution. As means for preventing ice in the water or the aqueous solution from flowing into the evaporator of the refrigerator, a heat exchanger and a second flow control valve are provided between the first flow control valve and the evaporator of the refrigerator. Detecting means for detecting the presence of ice in the water or the aqueous solution fed from the tank to the evaporator is provided so that the operation state of the heat exchanger can be controlled.

【0009】[0009]

【実施例】実施例1.以下、この発明の一実施例を図に
ついて説明する。図1はこの発明の一実施例による氷蓄
熱装置を示す構成図である。図において、22、23は
第1流量制御弁4と蒸発器5との間に設けられた熱交換
器、第2流量制御弁である。24、25は熱交換器22
の入口と出口とにそれぞれ設けられ水溶液の温度を検知
する第1と第2の温度センサ−である。この温度センサ
−24,25により蓄熱槽6から蒸発器5に送給される
水または水溶液中の氷の存在を検知することができる。
なお、その他の構成については従来と同様であるため説
明を省略する。
[Embodiment 1] An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing an ice heat storage device according to one embodiment of the present invention. In the figure, 22 and 23 are a heat exchanger and a second flow control valve provided between the first flow control valve 4 and the evaporator 5. 24 and 25 are heat exchangers 22
A first temperature sensor and a second temperature sensor which are provided at an inlet and an outlet, respectively, for detecting the temperature of the aqueous solution. The presence of ice in the water or the aqueous solution fed from the heat storage tank 6 to the evaporator 5 can be detected by the temperature sensors 24 and 25.
Note that the other configuration is the same as the conventional one, and thus the description is omitted.

【0010】次に動作について説明する。水溶液の循環
系の動作は、従来の装置とまったく同じで冷凍機1のみ
の動作が異なるものであるため、冷凍機1のみの動作に
ついて説明する。冷凍機1は熱交換器22の入口に設け
られた第1の温度センサ−24によって検知される水溶
液の温度が0℃以上の場合の第1の運転モ−ドと、水溶
液の温度が0℃に達した場合の第2の運転モ−ドとがあ
り、それぞれの運転モ−ドについて以下説明する。
Next, the operation will be described. The operation of the circulation system of the aqueous solution is exactly the same as that of the conventional apparatus, and the operation of only the refrigerator 1 is different. Therefore, the operation of only the refrigerator 1 will be described. The refrigerator 1 has a first operation mode when the temperature of the aqueous solution detected by the first temperature sensor 24 provided at the inlet of the heat exchanger 22 is 0 ° C. or more, and the temperature of the aqueous solution is 0 ° C. There is a second operation mode in which the operation mode has been reached. Each operation mode will be described below.

【0011】第1の運転モ−ドは、第1温度センサ−2
4で検出した配管12内の水溶液の温度が0℃以上の場
合の動作である。例えば氷蓄熱装置の起動時などにこの
モ−ドとなる。図2は第1の運転モード時の冷凍機の動
作を表す圧力ーエンタルピー線図である。このモ−ドで
は、第2流量制御弁23を全開とし、圧縮機2から吐出
されたガス冷媒を凝縮器3で冷却液化して第1流量制御
弁4で低圧まで減圧する。この低圧となった冷媒は順次
熱交換器22と蒸発器5に流入する。ここで冷媒は水溶
液と熱交換して水溶液を冷却し、ガス状態となって再び
圧縮機2に吸入される。即ち、図2の区間Fに示すよう
に、熱交換器22は蒸発器として動作して水溶液の冷却
に寄与する。水または水溶液は熱交換器22及び蒸発器
5により氷点下数度まで冷却されて蓄熱槽6に戻る。
The first operation mode is a first temperature sensor-2.
This operation is performed when the temperature of the aqueous solution in the pipe 12 detected in step 4 is 0 ° C. or higher. For example, this mode is set when the ice heat storage device is started. FIG. 2 is a pressure-enthalpy diagram showing the operation of the refrigerator in the first operation mode. In this mode, the second flow control valve 23 is fully opened, and the gas refrigerant discharged from the compressor 2 is cooled and liquefied by the condenser 3 and reduced to a low pressure by the first flow control valve 4. The low-pressure refrigerant flows into the heat exchanger 22 and the evaporator 5 sequentially. Here, the refrigerant exchanges heat with the aqueous solution to cool the aqueous solution, becomes a gas state, and is sucked into the compressor 2 again. That is, as shown in the section F of FIG. 2, the heat exchanger 22 operates as an evaporator and contributes to cooling of the aqueous solution. The water or the aqueous solution is cooled to several degrees below freezing by the heat exchanger 22 and the evaporator 5 and returns to the heat storage tank 6.

【0012】第1の運転モ−ドでの運転により水溶液の
温度が低下し、水溶液中に氷の核が混入するようになる
と、熱交換器22の水溶液入口部に設けられた第1温度
センサ−24で水溶液の温度が0℃に達したと検出され
る。この時、第2の運転モ−ドとなる。図3は第2の運
転モード時の冷凍機1の動作を表わす圧力ーエンタルピ
ー線図である。このモ−ドでは第2流量制御弁23を絞
り、熱交換器22を凝縮器として動作させる。圧縮機2
から吐出された冷媒ガスは、凝縮器3で冷却液化し飽和
液となる。この液冷媒は、第1流量制御弁4により中間
圧に減圧され熱交換器22に流入し、水または水溶液と
熱交換して加熱する。この冷媒は第2流量制御弁23に
より低圧まで減圧され蒸発器5に流入し、水または水溶
液と熱交換して水溶液を冷却し、圧縮機2に吸入され
る。この時、第1流量制御弁4は蒸発器5の出口冷媒が
若干過熱するように制御され、第2流量制御弁23は熱
交換器22の出口に設けられた第2の温度センサ−25
によって検知される水溶液の温度が+0.5℃程度とな
るように制御される。従って、第2の運転モードでは循
環ポンプ11によって蓄熱槽6から送水された0℃の水
溶液7は熱交換器22により氷の核が十分溶解する+
0.5℃程度に加熱された後、蒸発器5により過冷却状
態まで冷却されて蓄熱槽6に戻る。
When the temperature of the aqueous solution is lowered by the operation in the first operation mode and ice nuclei enter the aqueous solution, a first temperature sensor provided at the aqueous solution inlet of the heat exchanger 22 is provided. At −24, it is detected that the temperature of the aqueous solution has reached 0 ° C. At this time, the second operation mode is set. FIG. 3 is a pressure-enthalpy diagram showing the operation of the refrigerator 1 in the second operation mode. In this mode, the second flow control valve 23 is throttled, and the heat exchanger 22 is operated as a condenser. Compressor 2
Is cooled and liquefied in the condenser 3 to become a saturated liquid. This liquid refrigerant is reduced in pressure to an intermediate pressure by the first flow control valve 4 and flows into the heat exchanger 22, where it exchanges heat with water or an aqueous solution and heats. This refrigerant is reduced in pressure to a low pressure by the second flow control valve 23, flows into the evaporator 5, cools the aqueous solution by exchanging heat with water or the aqueous solution, and is sucked into the compressor 2. At this time, the first flow control valve 4 is controlled so that the refrigerant at the outlet of the evaporator 5 is slightly overheated, and the second flow control valve 23 is controlled by the second temperature sensor 25 provided at the outlet of the heat exchanger 22.
The temperature of the aqueous solution detected is controlled so as to be about + 0.5 ° C. Therefore, in the second operation mode, the aqueous solution 7 at 0 ° C. sent from the heat storage tank 6 by the circulation pump 11 is sufficiently melted by the heat exchanger 22 so that the ice core is melted.
After being heated to about 0.5 ° C., it is cooled to a supercooled state by the evaporator 5 and returns to the heat storage tank 6.

【0013】このように構成することにより、氷の結晶
核8が蒸発器5に流入して凍結することがなく、安定し
て連続運転を行なうことができる。さらに、冷凍機1の
冷媒の熱により水または水溶液の加熱をしているため、
蒸発器5の冷却能力が増加すると共に、ろ過器が不要と
なり循環ポンプ11の動力の低減が図れ、効率の高い運
転が可能となる。
With this configuration, the crystal nuclei 8 of ice do not flow into the evaporator 5 and are frozen, so that stable continuous operation can be performed. Furthermore, since the water or the aqueous solution is heated by the heat of the refrigerant of the refrigerator 1,
As the cooling capacity of the evaporator 5 increases, a filter is not required, the power of the circulation pump 11 can be reduced, and highly efficient operation can be performed.

【0014】実施例2.実施例1では第1の運転モード
の時、第2流量制御弁23を全開としたが、この実施例
では図4に示すように第2流量制御弁23と並列に開閉
弁30を設け、第1の運転モードの時にはこの開閉弁3
0を開き、第2の運転モードの時には開閉弁30を閉じ
るように制御してもよい。この開閉弁30を設けること
により、第2流量制御弁23前後の圧力差を低減するこ
とができる。
Embodiment 2 FIG. In the first embodiment, in the first operation mode, the second flow control valve 23 is fully opened. However, in this embodiment, an on-off valve 30 is provided in parallel with the second flow control valve 23 as shown in FIG. In the operation mode 1, the on-off valve 3
0 may be controlled so that the on-off valve 30 is closed in the second operation mode. By providing the on-off valve 30, the pressure difference between before and after the second flow control valve 23 can be reduced.

【0015】なお、上記実施例では、熱交換器22を循
環ポンプ11と蒸発器5との間に設置したものについて
説明したが、蓄熱槽6と循環ポンプ11との間に設けて
も同様の効果がある。
In the above embodiment, the heat exchanger 22 is provided between the circulating pump 11 and the evaporator 5, but the heat exchanger 22 may be provided between the heat storage tank 6 and the circulating pump 11. effective.

【0016】また、上記実施例では、第2の運転モード
時に第1流量制御弁4を蒸発器5の出口冷媒が若干過熱
するように制御するものについて説明したが、凝縮器3
の出口冷媒が若干過冷却するように制御してもよい。
In the above embodiment, the first flow control valve 4 is controlled in the second operation mode so that the refrigerant at the outlet of the evaporator 5 is slightly heated.
May be controlled so that the outlet refrigerant at the outlet is slightly supercooled.

【0017】また、上記実施例では、第2の運転モード
時に第1流量制御弁4を蒸発器5の出口冷媒が若干過熱
するように制御し、第2流量制御弁23を熱交換器22
の出口に設けられた第2の温度センサ−25によって検
知される水溶液の温度が+0.5℃程度となるように制
御するものについて説明したが、第2流量制御弁23を
蒸発器5の出口冷媒が若干過熱するように制御し、第1
流量制御弁4を熱交換器22の出口に設けられた第2の
温度センサ−25によって検知される水溶液の温度が+
0.5℃程度となるように制御してもよい。
In the above-described embodiment, the first flow control valve 4 is controlled so that the refrigerant at the outlet of the evaporator 5 is slightly heated in the second operation mode, and the second flow control valve 23 is connected to the heat exchanger 22.
In the above description, the control is performed such that the temperature of the aqueous solution detected by the second temperature sensor 25 provided at the outlet of the evaporator 5 is about + 0.5 ° C. Control the refrigerant to overheat slightly,
When the temperature of the aqueous solution detected by the second temperature sensor 25 provided at the outlet of the heat exchanger 22 is +
The temperature may be controlled to be about 0.5 ° C.

【0018】また、上記実施例では、熱交換器22入口
に第1の温度センサ−24を設けるものについて説明し
たが光の透過量等を検知して氷の核を検知してもよい。
In the above embodiment, the first temperature sensor 24 is provided at the inlet of the heat exchanger 22. However, the core of the ice may be detected by detecting the amount of transmitted light or the like.

【0019】さらに、上記実施例では過冷却解除手段は
過冷却水溶液の出口近傍に設けられた所定の大きさの氷
塊として説明したが、ステンレス鋼などの金属製の板状
の物などでもよい。
Further, in the above-described embodiment, the supercooling releasing means has been described as an ice block of a predetermined size provided near the outlet of the supercooled aqueous solution, but may be a metal plate-like material such as stainless steel.

【0020】[0020]

【発明の効果】以上のように、この発明によれば、圧縮
機、凝縮器、第1流量制御弁、及び蒸発器を順次接続し
て構成され、水または水に添加物を添加した水溶液を過
冷却する冷凍機、この冷凍機により過冷却された水また
は水溶液の過冷却を解除し氷を生成させる過冷却解除手
段、この過冷却解除手段により生成された氷や過冷却水
を蓄える蓄熱槽、この蓄熱槽内の水または水溶液を蒸発
器へ送給して循環させる循環ポンプ、並びにこれらを順
に接続し水または水溶液が循環する循環路を備える氷蓄
熱装置において、第1流量制御弁と蒸発器の間に設けた
熱交換器、蒸発器と熱交換器の間に設けた第2流量制御
弁、並びに蓄熱槽から蒸発器に送給される水または水溶
液中の氷の存在を検知する検知手段を備え、水または水
溶液を蓄熱槽から熱交換器、蒸発器に順に循環させるよ
うに構成し、熱交換器を、この熱交換器入り口における
水または水溶液の温度に応じて蒸発器あるいは凝縮器と
して動作させることにより、第1の運転モードの場合に
は熱交換器が蒸発器として動作し、蓄熱槽の水または水
溶液を冷却して効率の高い運転が行えるとともに、第2
の運転モードの場合には、熱交換器が凝縮器とし、動作
して氷の結晶核が蒸発器に流入するのを防止し、安定し
た運転が行える氷蓄熱装置が得られる効果がある。
As described above, according to the present invention, a compressor, a condenser, a first flow control valve, and an evaporator are sequentially connected, and water or an aqueous solution obtained by adding an additive to water is used. A supercooling refrigerator, a supercooling release unit that releases supercooling of water or an aqueous solution supercooled by the refrigerator and generates ice, and a heat storage tank that stores the ice and supercooled water generated by the supercooling release unit. A circulating pump that feeds and circulates water or an aqueous solution in the heat storage tank to an evaporator, and an ice heat storage device that connects these in order and has a circulating path through which the water or the aqueous solution circulates; A heat exchanger provided between the heat exchangers, a second flow control valve provided between the evaporator and the heat exchanger, and detection for detecting the presence of ice in water or an aqueous solution fed from the heat storage tank to the evaporator. Equipped with a means to transfer water or aqueous solution from the heat storage tank Exchanger, and configured to circulate sequentially to the evaporator, a heat exchanger, in the heat exchanger inlet
Evaporator or condenser depending on the temperature of water or aqueous solution
By operating in the first operation mode,
Means that the heat exchanger operates as an evaporator and the water or water in the heat storage tank is
The solution can be cooled for efficient operation and the second
Operating mode, the heat exchanger is used as a condenser
To prevent ice nuclei from flowing into the evaporator
There is an effect that an ice heat storage device that can perform an inexpensive operation can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1による氷蓄熱装置を示す構
成図である。
FIG. 1 is a configuration diagram showing an ice heat storage device according to Embodiment 1 of the present invention.

【図2】この発明の実施例1の第1の運転モード時の冷
凍機の動作を表す圧力ーエンタルピー線図である。
FIG. 2 is a pressure-enthalpy diagram illustrating an operation of the refrigerator in a first operation mode according to the first embodiment of the present invention.

【図3】この発明の実施例1の第2の運転モード時の冷
凍機の動作を表す圧力ーエンタルピー線図である。
FIG. 3 is a pressure-enthalpy diagram illustrating an operation of the refrigerator in a second operation mode according to the first embodiment of the present invention.

【図4】この発明の実施例2による氷蓄熱装置を示す構
成図である。
FIG. 4 is a configuration diagram showing an ice heat storage device according to Embodiment 2 of the present invention.

【図5】従来の氷蓄熱装置を示す構成図である。FIG. 5 is a configuration diagram showing a conventional ice heat storage device.

【図6】従来の氷蓄熱装置の冷凍機の動作を表す圧力ー
エンタルピー線図である。
FIG. 6 is a pressure-enthalpy diagram showing the operation of the refrigerator of the conventional ice heat storage device.

【符号の説明】 1 冷凍機 2 圧縮機 3 凝縮器 4 第1流量制御弁 5 蒸発器 6 蓄熱槽 7 水溶液 8 氷 9 過冷却解除手段 11 循環ポンプ 22 熱交換器 23 第2流量制御弁 24 氷検出手段[Description of Signs] 1 Refrigerator 2 Compressor 3 Condenser 4 First flow control valve 5 Evaporator 6 Heat storage tank 7 Aqueous solution 8 Ice 9 Subcooling release means 11 Circulation pump 22 Heat exchanger 23 Second flow control valve 24 Ice Detection means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中尾 一成 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 中央研究所内 (72)発明者 若本 慎一 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 中央研究所内 (56)参考文献 特開 平4−222372(JP,A) (58)調査した分野(Int.Cl.6,DB名) F24F 5/00 102──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kazunari Nakao 8-1-1 Tsukaguchi Honcho, Amagasaki City Mitsubishi Electric Corporation Central Research Laboratory (72) Inventor Shinichi Wakamoto 8-1-1 Tsukaguchi Honcho Amagasaki City No. Mitsubishi Electric Corporation Central Research Laboratory (56) References JP-A-4-222372 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F24F 5/00 102

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、凝縮器、第1流量制御弁、及び
蒸発器を順次接続して構成され、水または水に添加物を
添加した水溶液を過冷却する冷凍機、この冷凍機により
過冷却された上記水または水溶液の過冷却を解除し氷を
生成させる過冷却解除手段、この過冷却解除手段により
生成された氷や過冷却水を蓄える蓄熱槽、この蓄熱槽内
の水または水溶液を上記蒸発器へ送給して循環させる循
環ポンプ、並びにこれらを順に接続し上記水または水溶
液が循環する循環路を備える氷蓄熱装置において、上記
第1流量制御弁と上記蒸発器の間に設けた熱交換器、上
記蒸発器と上記熱交換器の間に設けた第2流量制御弁、
並びに上記蓄熱槽から上記蒸発器に送給される上記水ま
たは水溶液中の氷の存在を検知する検知手段を備え、上
記水または水溶液を上記蓄熱槽から上記熱交換器、上記
蒸発器に順に循環させるように構成し、上記熱交換器
を、この熱交換器入り口における上記水または水溶液の
温度に応じて蒸発器あるいは凝縮器として動作させる
とを特徴とする氷蓄熱装置。
1. A refrigerator configured to sequentially connect a compressor, a condenser, a first flow control valve, and an evaporator, and supercools water or an aqueous solution obtained by adding an additive to water. Supercooling release means for releasing supercooling of the cooled water or aqueous solution to generate ice, a heat storage tank for storing ice or supercooled water generated by the supercooling release means, and water or an aqueous solution in the heat storage tank. in the ice thermal storage apparatus including the evaporator feed to circulating pump for circulating the, as well as the circulation path connected to the water or aqueous solution is circulated them sequentially, the <br/> first flow control valve and the evaporator A heat exchanger provided therebetween, a second flow control valve provided between the evaporator and the heat exchanger,
And detecting means for detecting the presence of ice in the water or the aqueous solution fed from the heat storage tank to the evaporator, and circulating the water or the aqueous solution from the heat storage tank to the heat exchanger and the evaporator in this order. The heat exchanger is configured to
At the inlet of the heat exchanger.
An ice heat storage device that operates as an evaporator or a condenser according to a temperature .
JP3019713A 1991-02-13 1991-02-13 Ice storage device Expired - Fee Related JP2808900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3019713A JP2808900B2 (en) 1991-02-13 1991-02-13 Ice storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3019713A JP2808900B2 (en) 1991-02-13 1991-02-13 Ice storage device

Publications (2)

Publication Number Publication Date
JPH04263722A JPH04263722A (en) 1992-09-18
JP2808900B2 true JP2808900B2 (en) 1998-10-08

Family

ID=12006932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3019713A Expired - Fee Related JP2808900B2 (en) 1991-02-13 1991-02-13 Ice storage device

Country Status (1)

Country Link
JP (1) JP2808900B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3097161B2 (en) * 1990-04-18 2000-10-10 ダイキン工業株式会社 Thermal storage type air conditioner

Also Published As

Publication number Publication date
JPH04263722A (en) 1992-09-18

Similar Documents

Publication Publication Date Title
US5921092A (en) Fluid defrost system and method for secondary refrigeration systems
US3301002A (en) Conditioning apparatus
JP4053540B2 (en) Refrigeration system for cooling the mix
JP2808900B2 (en) Ice storage device
US5207072A (en) Unloading structure for compressor of refrigeration system
JP2002181420A (en) Compression refrigerating apparatus
JP2827524B2 (en) Ice storage device
JP3097161B2 (en) Thermal storage type air conditioner
JP2768020B2 (en) Ice storage device
JP2768019B2 (en) Ice storage device
JP3080802B2 (en) Subcooled ice thermal storage device
JP3516314B2 (en) Ice heat storage device using supercooled water
JP2921632B2 (en) Cold water supply method and equipment for cooling air conditioning of nuclear power plants
JPS59217460A (en) Refrigeration cycle of air conditioner
JP2846146B2 (en) Ice heat storage device using supercooling
JP2597057B2 (en) Subcooled ice heat storage device
JP3350650B2 (en) Liquid concentration device and liquid concentration method
JPH0617757B2 (en) Freezing detection method for low temperature cold water production equipment
JP2006112652A (en) Ice making method and device for heat storage
JP2566078B2 (en) Ice heat storage device
JP3132908B2 (en) Ice storage device
JP2002115873A (en) Heat exchange system
JPS58168851A (en) Method of defrosting air heat source heat pump
JP2007132618A (en) Refrigerating circuit
JPS6078260A (en) Heat pump

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070731

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees