JP2002115873A - Heat exchange system - Google Patents

Heat exchange system

Info

Publication number
JP2002115873A
JP2002115873A JP2000310616A JP2000310616A JP2002115873A JP 2002115873 A JP2002115873 A JP 2002115873A JP 2000310616 A JP2000310616 A JP 2000310616A JP 2000310616 A JP2000310616 A JP 2000310616A JP 2002115873 A JP2002115873 A JP 2002115873A
Authority
JP
Japan
Prior art keywords
water
refrigerant
heat
heat exchange
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000310616A
Other languages
Japanese (ja)
Inventor
Kenichi Sano
健一 佐野
Kyosuke Matsui
亨介 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2000310616A priority Critical patent/JP2002115873A/en
Publication of JP2002115873A publication Critical patent/JP2002115873A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchange system capable of increasing a temperature difference even when a underground heat source is used, using it for a high purity water using potable water, using in a large quantity at a low cost and obtaining a refrigerant having good thermal efficiency with the high purity water used as the refrigerant. SOLUTION: The heat exchange system heat exchanges by the refrigerant flowing to a circuit between heat exchangers for conducting a thermal work by using the heat source such as a geothermal heat or the like or/and a circuit between the exchanger and an air conditioner. The refrigerant is made in high purity so that the refrigerant can flow even by supercooling a fluid used as the refrigerant. The refrigerant is supplied to the circuit in high purity by treating the potable water to high purity by a high purity treating means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高純度水を冷媒と
した熱交換システムに係わり、特に、地熱等の熱源を用
いて融雪処理作業を行うのに好適な熱交換システムに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchange system using high-purity water as a refrigerant, and more particularly to a heat exchange system suitable for performing a snow melting operation using a heat source such as geothermal heat.

【0002】[0002]

【従来の技術】従来、地中の地熱を用いてフロンガスあ
るいは不凍液を暖めて熱交換器に送り、室内の冷暖房あ
るいは融雪等の熱作業を経済的に行うことは知られてい
る。その一例として、地中熱を用いたヒートポンプ型空
調設備である特開平5−118700号公報が提案され
ている。同公報によれば、ヒートポンプ型空調設備は、
地中91に地中熱交換器93を埋設し、この地中熱交換
器93に圧縮機95、室内熱交換器97、膨張弁99の
順に配管101で接続する。この地中熱交換器93は、
外管103と内管105とからなる二重管式の熱交換器
93として構成し、内管105に上方から流入したフロ
ンガス等の冷媒は内管の下から出て外管103と内管1
05との間を上昇し、地熱を吸収してガス化する。そし
て、圧縮機95で加圧されて室内熱交換器97で放熱し
て暖房する。放熱した冷媒は膨張弁99を通って内管1
05に戻る。冷房においては、圧縮機95で圧縮され、
外管103内を下降して地中91に放熱して液化し、内
管105を上昇する。そして膨張弁99により断熱的に
絞られ、室内熱交換器97に入り室内を冷却して気化し
圧縮機95に戻る。このように、地中91に地中熱交換
器93を埋設するとともに、地中交換器93に圧縮機9
5、室内熱交換器97、膨張弁99を順次接続すること
により、熱交換性能を向上し、採熱量を大きくしてい
る。
2. Description of the Related Art It is conventionally known that underground geothermal heat is used to warm Freon gas or antifreeze and send it to a heat exchanger to economically perform indoor heating and cooling or snow melting. As one example, Japanese Patent Laid-Open No. 5-118700, which is a heat pump type air conditioner using underground heat, has been proposed. According to the publication, a heat pump type air conditioner is
An underground heat exchanger 93 is buried in the underground 91, and a compressor 95, an indoor heat exchanger 97, and an expansion valve 99 are connected to the underground heat exchanger 93 in this order through a pipe 101. This underground heat exchanger 93
A double-tube heat exchanger 93 composed of an outer tube 103 and an inner tube 105 is provided. A refrigerant such as CFC gas flowing into the inner tube 105 from above flows out from under the inner tube and passes through the outer tube 103 and the inner tube 1.
It rises between 05 and absorbs geothermal heat and gasifies. Then, the air is pressurized by the compressor 95 and radiated by the indoor heat exchanger 97 to be heated. The radiated refrigerant passes through the expansion valve 99 and passes through the inner pipe 1.
Return to 05. In cooling, it is compressed by the compressor 95,
It descends inside the outer tube 103, radiates heat to the underground 91 and liquefies, and moves up the inner tube 105. Then, it is adiabatically throttled by the expansion valve 99, enters the indoor heat exchanger 97, cools the room, evaporates, and returns to the compressor 95. In this way, the underground heat exchanger 93 is buried in the underground 91, and the compressor 9 is installed in the underground exchanger 93.
5. By sequentially connecting the indoor heat exchanger 97 and the expansion valve 99, the heat exchange performance is improved and the amount of heat taken is increased.

【0003】上記例では冷媒として相変化をなすフロン
ガスを用いているが、冷媒として相変化をなさない不凍
液を用いて地中熱交換器よりの採熱量を大きくしている
ものもある。
[0003] In the above-mentioned example, a refrigerant that changes phase is used as the refrigerant. However, there is also a refrigerant that uses an antifreeze liquid that does not change phase to increase the amount of heat taken from the underground heat exchanger.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
特開平5−118700号公報においては、冷媒として
フロンガスを用いる例が記載されているが、フロンガス
を用いる場合には環境破壊の問題から現在では使用が禁
止されており、また、不凍液においても毒性があるもの
はフロンガスと同様に環境破壊の問題がある。更に、毒
性のない不凍液を冷媒として用いたものもあるが、これ
は高価であり多量に用いる地中熱を用いる場合等におい
ては、価格がアップしてしまい使用が困難であるという
問題がある。このため、安価で多量用いることができ、
熱効率のよい冷媒を使用できる熱交換システムの開発が
望まれている。
However, the above-mentioned Japanese Patent Application Laid-Open No. 5-118700 discloses an example in which chlorofluorocarbon gas is used as a refrigerant. The use of antifreeze, which is toxic, has a problem of environmental destruction, as does freon gas. In addition, some non-toxic antifreeze liquids are used as refrigerants. However, they are expensive, and in the case of using a large amount of underground heat, there is a problem that the price increases and it is difficult to use. Therefore, it can be used inexpensively and in large quantities,
There is a demand for the development of a heat exchange system that can use a refrigerant having high thermal efficiency.

【0005】本発明は、上記従来の問題点に着目し、高
純度水を冷媒とした熱交換システム方法および熱交換器
に係わり、特に、地中の熱源を用いるような場合でも温
度差を大きくでき、かつ、水道水を用いた高純度水に使
用できるので安価で多量に用いることができるととも
に、熱効率のよい冷媒を得ることができる高純度水を冷
媒とした熱交換システムを提供することを目的としてい
る。
The present invention focuses on the above conventional problems and relates to a heat exchange system method and a heat exchanger using high-purity water as a refrigerant. In particular, the present invention provides a large temperature difference even when an underground heat source is used. It is possible to provide a heat exchange system using high-purity water as a refrigerant, which can be used for high-purity water using tap water, can be used inexpensively and in large quantities, and can obtain a refrigerant with high thermal efficiency. The purpose is.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る熱交換システムは、冷媒の相変化を伴
う1次熱交換回路との間で熱の授受をなす相変化を伴わ
ない冷媒を用いた2次熱交換回路を有する熱交換システ
ムにおいて、前記2次熱交換回路に純水化処理手段を介
装したバイパス回路を設け、当該バイパス回路に2次冷
媒の水を通流させて純水となし、前記2次熱交換回路に
2次冷媒として純水を循環させるようにしたことを特徴
としている。この場合において、前記バイパス回路への
流路切替手段を備え、2次冷媒の電気伝導度検出センサ
を設け、当該検出手段による検出値が設定値以上となっ
た場合に前記流路切替手段を操作して2次冷媒をバイパ
ス回路に通流させる制御手段を備えて構成することがで
きる。また、前記バイパス回路に水道水管路を接続した
構成とするとよい。
In order to achieve the above object, a heat exchange system according to the present invention involves a phase change that transfers heat to and from a primary heat exchange circuit involving a phase change of a refrigerant. In a heat exchange system having a secondary heat exchange circuit using no refrigerant, a bypass circuit having a deionized water treatment means provided in the secondary heat exchange circuit, and water of the secondary refrigerant flows through the bypass circuit Then, pure water is circulated to the secondary heat exchange circuit to circulate pure water as a secondary refrigerant. In this case, a flow path switching unit to the bypass circuit is provided, a secondary refrigerant electric conductivity detection sensor is provided, and the flow path switching unit is operated when a detection value by the detection unit becomes equal to or more than a set value. Then, a control means for flowing the secondary refrigerant to the bypass circuit can be provided. Further, it is preferable that a tap water pipe is connected to the bypass circuit.

【0007】また、本発明の他の構成として、2次熱交
換回路の採熱側冷媒循環経路に2次冷媒としての水から
運転中に発生するスケールやイオンを除去して純水化処
理する手段を設け、一次熱交換器の1次冷媒と熱交換可
能とした構成としてもよい。
Further, as another configuration of the present invention, scale and ions generated during operation are removed from water as a secondary refrigerant in a refrigerant circulation path on the heat collecting side of the secondary heat exchange circuit to perform a pure water treatment. Means may be provided to enable heat exchange with the primary refrigerant of the primary heat exchanger.

【0008】[0008]

【作用】上記構成によれば、熱源と熱交換機との間の回
路、あるいは/および、熱交換器と空調機との間の回路
に、冷媒として過冷却にしても流動する高純度水を用い
た熱交換システムを構築することができる。このため、
熱交換する冷媒の熱源での温度差を大きくでき、相変化
を伴う1次冷媒を用いたヒートポンプシステムとの熱交
換効率を向上させることができる。冷媒には、水道水等
の水が純水化処理手段に供給され、ここで水から夾雑物
を除去して高純度水にした後、高純度加圧水用配管およ
び本回路の戻り配管から純水度を計測するセンサを経
て、熱交換器に送られる。熱交換器では、純水度センサ
で所定値以上と判定された場合には、冷却用コイルの中
を流れ過冷却されて、例えば約−5℃に冷却される。過
冷却された高純度水は、冷水コイルに接続した冷温水用
配管を介して、地中に埋設した地中熱交換器に送られ
る。このとき、高純度水は、約0℃以下の過冷却になっ
ても凍ることが無く流動性を保って地中熱交換器に送ら
れる。これにより、高純度水は約−5℃以上に過冷却し
ても流動可能であり、地中熱等の熱源との温度差が大き
くとれるため、熱交換する冷媒の熱の吸収が良くなり、
熱効率を良くすることができる。地中熱交換器に送られ
た高純度水は、循環ポンプから三方弁等の切替手段およ
び純水度計測センサを経て熱交換器に戻される。この熱
源側の蒸発器の回路を高純度水が循環中に、純水度計測
センサで所定値以下と判定された場合には、純水度計測
センサは制御手段にその結果を送信する。制御手段は、
三方弁に指令を出力して流路をバイパス回路に切り替え
る。これにより、純度の低下した純水は戻り配管から純
水化処理手段に供給されて浄化され、浄化された高純度
水が高純度加圧水用配管を経て本回路の戻り配管に戻さ
れる。このため、浄化された高純度水が熱交換器に送る
ことができるようになり、絶えず高純度水は約−5℃に
過冷却されても凍らないで循環することができ、地中熱
源との温度差が大きくできて採熱効率を良くすることが
出来る。
According to the above arrangement, high-purity water that flows even if it is supercooled is used as a refrigerant in a circuit between a heat source and a heat exchanger and / or a circuit between a heat exchanger and an air conditioner. A heat exchange system. For this reason,
The temperature difference between the heat sources of the refrigerant to be heat-exchanged can be increased, and the heat exchange efficiency with the heat pump system using the primary refrigerant with a phase change can be improved. As the refrigerant, water such as tap water is supplied to a pure water treatment means, where impurities are removed from the water to make high-purity water, and then purified water is supplied from a high-purity pressurized water pipe and a return pipe of the circuit. It is sent to a heat exchanger via a sensor that measures the temperature. In the heat exchanger, when it is determined by the pure water sensor that the value is equal to or more than a predetermined value, it flows through the cooling coil, is supercooled, and is cooled to, for example, about -5 ° C. The supercooled high-purity water is sent to an underground heat exchanger buried underground through a cold / hot water pipe connected to a cold water coil. At this time, the high-purity water is sent to the underground heat exchanger while maintaining the fluidity without freezing even if it is supercooled to about 0 ° C. or less. Thereby, high-purity water can flow even if it is supercooled to about −5 ° C. or more, and a large temperature difference from a heat source such as underground heat can be taken.
Thermal efficiency can be improved. The high-purity water sent to the underground heat exchanger is returned from the circulation pump to the heat exchanger via switching means such as a three-way valve and a pure water measurement sensor. When high purity water is circulating in the circuit of the evaporator on the heat source side, if the pure water measurement sensor determines that the value is equal to or less than a predetermined value, the pure water measurement sensor transmits the result to the control means. The control means
A command is output to the three-way valve to switch the flow path to the bypass circuit. As a result, the purified water having a reduced purity is supplied from the return pipe to the pure water treatment means to be purified, and the purified high-purity water is returned to the return pipe of the present circuit via the high-purity pressurized water pipe. As a result, purified high-purity water can be sent to the heat exchanger, and the high-purity water can circulate without freezing even if it is supercooled to about −5 ° C. The temperature difference can be increased and the heat collection efficiency can be improved.

【0009】[0009]

【発明の実施の形態】以下に、本発明に係る高純度水を
冷媒とした熱交換システムの好ましい実施の形態を添付
図面に従って詳細に説明する。図1は本発明の実施形態
に係る高純度水を冷媒とした熱交換システムの全体構成
概念図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a heat exchange system using high-purity water as a refrigerant according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is an overall configuration conceptual diagram of a heat exchange system using high-purity water as a refrigerant according to an embodiment of the present invention.

【0010】図1において、熱交換システム1は、例え
ば、従来と同様のヒートポンプ3の中に、熱源側の蒸発
器5と、空調設備側の凝縮器7とが配設されて熱交換を
行っている。ヒートポンプ3は冷媒の相変化により熱交
換するいわゆる1次熱交換系であり、このヒートポンプ
3の構成は任意に設定できる。このヒートポンプ3にお
ける蒸発器5と凝縮器7とは、冷房と暖房の時では入れ
替わるために以下では、先ず暖房の場合について説明す
る。蒸発器5には、新たな加圧水あるいは補給用加圧水
を供給する加圧水用配管11に純水化処理装置13が接
続されている。加圧水用配管11は図示しない水道管に
接続されており、加圧された水道水が純水化処理装置1
3に必要に応じて供給されている。純水化処理装置13
は、供給された水道水等の水から大きい夾雑物を除去す
るメッシュの荒い前処理フィルター15と、大きい夾雑
物が除去された水から細かいイオンあるいはスケール等
の非常に小さい夾雑物を除去するイオン交換樹脂17
と、イオン交換樹脂17の下流に配置されてイオン交換
樹脂17で除去されなかった夾雑物を除去するメッシュ
の非常に細かい後処理フィルター19とからなってお
り、供給された水道水等の水を高純度水にしている。純
水化処理装置13により水道水を高純度水にしているた
め、安価に純水化が可能で、多量に使用してもコストア
ップになることがなくなる。この純水化処理装置13の
イオン交換樹脂17は、限外濾過膜、逆浸透膜、あるい
は、水を蒸発させた蒸気を通過させるPV膜等で形成し
ても良い。この純水化処理装置13が設けられることに
より、運転中に発生するイオンやスケールを常時取り除
けるようにしており、絶えず高純度が保たれるため過冷
却にされても凍ることがなく、流動性が保たれる。
In FIG. 1, a heat exchange system 1 performs heat exchange by disposing an evaporator 5 on a heat source side and a condenser 7 on an air conditioner side in a heat pump 3 similar to a conventional one. ing. The heat pump 3 is a so-called primary heat exchange system that exchanges heat by phase change of the refrigerant, and the configuration of the heat pump 3 can be set arbitrarily. Since the evaporator 5 and the condenser 7 in the heat pump 3 are switched during cooling and heating, the case of heating will be described first. The dewatering apparatus 13 is connected to the evaporator 5 through a pressurized water pipe 11 for supplying new pressurized water or supplementary pressurized water. The pressurized water pipe 11 is connected to a not-shown water pipe, and the pressurized tap water is supplied to the pure water treatment apparatus 1.
3 as needed. Purification equipment 13
Is a coarse mesh pretreatment filter 15 for removing large contaminants from supplied tap water and the like, and an ion for removing very small contaminants such as fine ions or scales from water from which large contaminants have been removed. Exchange resin 17
And a very fine post-processing filter 19 that is disposed downstream of the ion exchange resin 17 and removes impurities that have not been removed by the ion exchange resin 17. High purity water. Since the tap water is made into high-purity water by the pure water treatment device 13, it can be purified at low cost, and the cost does not increase even when used in large quantities. The ion exchange resin 17 of the pure water treatment apparatus 13 may be formed of an ultrafiltration membrane, a reverse osmosis membrane, or a PV membrane that allows steam obtained by evaporating water to pass therethrough. The provision of the water purification apparatus 13 enables the removal of ions and scales generated during operation at all times. Since the high purity is constantly maintained, the pure water treatment apparatus 13 does not freeze even if it is supercooled. Is kept.

【0011】純水化処理装置13には高純度加圧水用配
管11aが接続されており、高純度加圧水用配管11a
は熱交換システム1の本回路の戻り配管21に接続(P
a点)されている。これにより、純水化処理装置13に
より浄化された高純度水は高純度加圧水用配管11aか
ら本回路の戻り配管21に送られる。戻り配管21は、
ヒートポンプ3、例えば、水冷式ヒートポンプチラー2
3に接続されており、水冷式ヒートポンプチラー23に
本回路の戻りの高純度水、あるいは、純水化処理装置1
3により浄化された補給用高純度水を供給している。こ
のヒートポンプ3は、水冷式ヒートポンプチラー23、
吸収式冷水器、ガスヒートポンプ、圧縮機、あるいは、
他の方式の熱交換器を用いても良い。
A high-purity pressurized water pipe 11a is connected to the pure water treatment apparatus 13, and the high-purity pressurized water pipe 11a is connected to the high-purity pressurized water pipe 11a.
Is connected to the return pipe 21 of this circuit of the heat exchange system 1 (P
point a). Thus, the high-purity water purified by the pure water treatment apparatus 13 is sent from the high-purity pressurized water pipe 11a to the return pipe 21 of the present circuit. The return pipe 21 is
Heat pump 3, for example, water-cooled heat pump chiller 2
3 and a high-purity water or a pure water treatment apparatus 1 which is returned to the circuit by a water-cooled heat pump chiller 23.
3 supplies high-purity water for replenishment purified. The heat pump 3 includes a water-cooled heat pump chiller 23,
Absorption water coolers, gas heat pumps, compressors, or
Other types of heat exchangers may be used.

【0012】また、戻り配管21には、高純度加圧水用
配管11aの接続点Paと水冷式ヒートポンプチラー2
3との間に、戻りあるいは補給用の高純度水の純度を測
定する純水度センサ25が配設されている。純水度セン
サ25で測定された高純度水の純度は、制御部27に送
信されている。純水度センサ25は、例えば、流れる媒
体の電気伝導度を測定し、その抵抗値に応じて冷媒の純
度を検出している。例えば、電気伝導度の抵抗値が所定
値以上になったときに、所定の高純度水が得られたもの
としている。制御部27では、純水度センサ25から送
信された高純度水の純度を判定し、その電気伝導度の抵
抗が所定値以下になったときに後述する三方弁53に指
令を出力している。
The return pipe 21 has a connection point Pa of the high-purity pressurized water pipe 11a and the water-cooled heat pump chiller 2.
A pure water sensor 25 for measuring the purity of the high-purity water for return or replenishment is provided between them. The purity of the high-purity water measured by the pure water sensor 25 is transmitted to the control unit 27. The pure water sensor 25 measures, for example, the electrical conductivity of the flowing medium and detects the purity of the refrigerant according to the resistance value. For example, it is assumed that a predetermined high-purity water is obtained when the resistance value of the electric conductivity becomes equal to or more than a predetermined value. The control unit 27 determines the purity of the high-purity water transmitted from the pure water degree sensor 25, and outputs a command to a three-way valve 53, which will be described later, when the resistance of the electric conductivity falls below a predetermined value. .

【0013】水冷式ヒートポンプチラー23は、内部に
冷水用コイル31が配設されており、この冷水用コイル
31は一方では戻り配管21に、また、他方では冷温水
用配管33に接続されている。水冷式ヒートポンプチラ
ー23では、滴下トレー35から冷水を滴下して冷水用
コイル31の内部を流れる高純度水を冷却している。ま
た、冷水用コイル31を冷却した冷水は温度が上昇し
て、反対側に配置された凝縮用コイル41の中を流れる
冷媒を上昇させている。
The water-cooled heat pump chiller 23 has a coil 31 for cold water disposed inside, and the coil 31 for cold water is connected to the return pipe 21 on the one hand and to the pipe 33 for cold / hot water on the other hand. . In the water-cooled heat pump chiller 23, high-purity water flowing inside the cold water coil 31 is cooled by dropping cold water from the drop tray 35. The temperature of the chilled water that has cooled the chilled water coil 31 rises, and raises the refrigerant flowing through the condensing coil 41 disposed on the opposite side.

【0014】水冷式ヒートポンプチラー23は、冷水用
コイル31で約−5℃に冷却し、冷水用コイル31に接
続した冷温水用配管33を介して、地中43に埋設した
地中熱交換器45に高純度水を送る。このとき、通常の
水では、約0℃以下で氷となり流れなくなるが、本案で
は高純度水になっているため、約0℃以下の過冷却にな
っても凍ることが無くなり流動性を保っている。また、
高純度水は約−5℃に過冷却することにより、地中熱と
の温度差が大きくなるために熱の吸収が良くなり、熱効
率を良くすることができる。
The water-cooled heat pump chiller 23 is cooled to about −5 ° C. by the cold water coil 31, and is buried in the underground 43 via the cold / hot water pipe 33 connected to the cold water coil 31. Send high purity water to 45. At this time, in normal water, it becomes ice at about 0 ° C or less and does not flow, but in the present invention, since it is high-purity water, it does not freeze even if it becomes supercooled at about 0 ° C or less, and maintains fluidity. I have. Also,
By supercooling high-purity water to about −5 ° C., the temperature difference from underground heat increases, so that heat absorption is improved and thermal efficiency can be improved.

【0015】地中熱交換器45は、内管47と、内管4
7を内方に収納する外管49の二重管により形成されて
おり、外管49が冷温水用配管33に接続されている。
これにより、水冷式ヒートポンプチラー23より送られ
た高純度水は外管49に入る。外管49に入った高純度
水は、外管49の外方から地中熱を受けて温度を約0℃
まで上昇し、内管47に入って上方に向かって流れる。
内管47に入った高純度水は、内管47に接続された戻
り配管21の中を流れて、戻り配管21に配設された循
環ポンプ51に吸引される。なお、図示では、地中熱交
換器45は冷温水用配管33に1個が接続されている
が、複数個を並列に接続して吸収する熱量を増やすよう
にしてもよい。また、地中熱を受けて温度は約0℃以上
に上昇しても良い。
The underground heat exchanger 45 includes an inner pipe 47 and an inner pipe 4.
The outer pipe 49 is formed of a double pipe of an outer pipe 49 that accommodates the inside 7, and the outer pipe 49 is connected to the cold / hot water pipe 33.
Thereby, the high-purity water sent from the water-cooled heat pump chiller 23 enters the outer tube 49. The high-purity water that has entered the outer tube 49 receives ground heat from outside the outer tube 49 and has a temperature of about 0 ° C.
And flows into the inner tube 47 and flows upward.
The high-purity water that has entered the inner pipe 47 flows through the return pipe 21 connected to the inner pipe 47, and is sucked by the circulating pump 51 provided in the return pipe 21. Although one underground heat exchanger 45 is connected to the cold / hot water pipe 33 in the drawing, a plurality of underground heat exchangers 45 may be connected in parallel to increase the amount of heat absorbed. In addition, the temperature may rise to about 0 ° C. or more due to the underground heat.

【0016】循環ポンプ51で吸引され、加圧された高
純度水は、戻り配管21に配設された三方弁53に送ら
れる。三方弁53は、第1接続口53aが地中熱交換器
45に接続する戻り配管21に、第2接続口53bが水
冷式ヒートポンプチラー23に接続する戻り配管21
に、および、第3接続口53cが加圧水用配管11に接
続されている。また、三方弁53は、制御部27に接続
され、制御部27からの指令により高純度水の流れを制
御している。純水度センサ25から送信された高純度水
の純度が所定値以上のときには、制御部27は第1接続
口53aから第2接続口53bに流れるように三方弁5
3を連通し、地中熱交換器45からの高純度水をそのま
ま水冷式ヒートポンプチラー23に戻している。また、
純水度センサ25から送信された高純度水の純度が所定
値以下のときには、制御部27は第1接続口53aと第
3接続口53cとを連通する指令を三方弁53に出力し
て汚れた高純度水を純水化処理装置13に流し、純水化
処理装置13で浄化した後に高純度加圧水用配管11a
を経て本回路の戻り配管21に戻されるため、浄化され
た高純度水を水冷式ヒートポンプチラー23に送ること
ができ、約0℃以下に過冷却化できて凍らない高純度水
を循環することができる。上記のように、水冷式ヒート
ポンプチラー23と地中熱交換器45とは、冷温水用配
管33と戻り配管21とにより接続されて冷媒が流れる
熱源側の本回路が形成されている。また、戻り配管21
には高純度加圧水用配管11aが接続されており、純水
化処理装置13により浄化された高純度水が供給されて
いる。
The high-purity water sucked and pressurized by the circulation pump 51 is sent to a three-way valve 53 provided in the return pipe 21. The three-way valve 53 includes a return pipe 21 having a first connection port 53a connected to the underground heat exchanger 45 and a return pipe 21 having a second connection port 53b connected to the water-cooled heat pump chiller 23.
And the third connection port 53c is connected to the pressurized water pipe 11. Further, the three-way valve 53 is connected to the control unit 27 and controls the flow of high-purity water according to a command from the control unit 27. When the purity of the high-purity water transmitted from the pure water sensor 25 is equal to or higher than a predetermined value, the control unit 27 causes the three-way valve 5 to flow from the first connection port 53a to the second connection port 53b.
3, the high-purity water from the underground heat exchanger 45 is returned to the water-cooled heat pump chiller 23 as it is. Also,
When the purity of the high-purity water transmitted from the pure water degree sensor 25 is equal to or lower than a predetermined value, the control unit 27 outputs a command for communicating the first connection port 53a and the third connection port 53c to the three-way valve 53 to cause contamination. The purified high-purity water flows into the pure water treatment apparatus 13 and is purified by the pure water treatment apparatus 13, and then the high-purity pressurized water pipe 11a
The purified high-purity water can be sent to the water-cooled heat pump chiller 23 because it is returned to the return pipe 21 of the circuit through the above, and high-purity water that can be supercooled to about 0 ° C. or less and does not freeze is circulated. Can be. As described above, the water-cooled heat pump chiller 23 and the underground heat exchanger 45 are connected by the cold / hot water pipe 33 and the return pipe 21 to form a main circuit on the heat source side through which the refrigerant flows. Also, return pipe 21
Is connected to a high-purity pressurized water pipe 11a, and is supplied with high-purity water purified by the pure water treatment apparatus 13.

【0017】次に、凝縮器7に接続されている空調設備
61について説明する。本案の熱交換システム1では、
本案の空調設備61は、熱源側の蒸発器5とほぼ同様に
構成されているため、同一部品には同一符号を付して説
明は省略する。
Next, the air conditioner 61 connected to the condenser 7 will be described. In the heat exchange system 1 of the present invention,
Since the air conditioner 61 of the present invention has substantially the same configuration as the evaporator 5 on the heat source side, the same components are denoted by the same reference numerals and description thereof is omitted.

【0018】空調設備61は、凝縮器7に空調用配管6
3が接続されるとともに、空調用配管63には、純水貯
槽65、循環ポンプ51、三方弁53、純水度センサ2
5、および、空調機67が順次配設されている。また、
空調機67と凝縮器7との間は、空調用戻り配管69が
接続されている。また、熱源側と同様に、純水度センサ
25には制御部27が接続されており、純水度センサ2
5で測定された高純度水の純度が制御部27に送信され
ている。制御部27では、純水度センサ25から送信さ
れた高純度水の純度を判定し、所定値以下になったとき
に三方弁53に指令を出力している。また、空調用配管
63には、前記と同様に、純水度センサ25と空調機6
7との間の点(Pb)で純水化処理装置13からの新た
な加圧水あるいは補給用加圧水を供給する加圧水用配管
11が接続されている。上記のように、水冷式ヒートポ
ンプチラー23と空調機67とは、空調用配管63と空
調用戻り配管69とにより接続されて冷媒が流れる空調
設備61側の本回路が形成されている。
The air conditioner 61 includes an air conditioning pipe 6 in the condenser 7.
3 is connected, and a pure water storage tank 65, a circulation pump 51, a three-way valve 53, a pure water degree sensor 2
5, and an air conditioner 67 are sequentially arranged. Also,
An air conditioning return pipe 69 is connected between the air conditioner 67 and the condenser 7. Further, similarly to the heat source side, a controller 27 is connected to the pure water sensor 25, and the pure water sensor 2
The purity of the high-purity water measured in 5 is transmitted to the control unit 27. The control unit 27 determines the purity of the high-purity water transmitted from the pure water sensor 25, and outputs a command to the three-way valve 53 when the purity falls below a predetermined value. The air conditioning pipe 63 is provided with the pure water content sensor 25 and the air conditioner 6 in the same manner as described above.
7 is connected to a pressurized water pipe 11 for supplying new pressurized water or supplementary pressurized water from the pure water treatment apparatus 13 at a point (Pb). As described above, the water-cooled heat pump chiller 23 and the air conditioner 67 are connected by the air-conditioning pipe 63 and the air-conditioning return pipe 69 to form the main circuit on the air-conditioning equipment 61 side through which the refrigerant flows.

【0019】上記構成において、凝縮器7の内部に凝縮
用コイル41が配設されており、この凝縮用コイル41
は一方では空調用配管63に、また、他方では空調用戻
り配管69に接続されている。暖房時においては、水冷
式ヒートポンプチラー23は、滴下トレー71から温水
を滴下して凝縮用コイル41の内部を流れる高純度水を
温めている。また、冷水用コイル31を冷却した冷水は
温度が上昇して、反対側に配置された凝縮用コイル41
の中を流れる冷媒を上昇させている。
In the above configuration, the condensing coil 41 is provided inside the condenser 7, and the condensing coil 41 is provided.
Is connected to the air-conditioning pipe 63 on the one hand and to the air-conditioning return pipe 69 on the other hand. During heating, the water-cooled heat pump chiller 23 drops hot water from the drop tray 71 to warm the high-purity water flowing inside the condensing coil 41. The temperature of the chilled water that has cooled the chilled water coil 31 increases, and the condensing coil 41 disposed on the opposite side is cooled.
The refrigerant flowing inside is rising.

【0020】水冷式ヒートポンプチラー23は、凝縮用
コイル41で約35℃に温度を上昇し、凝縮用コイル4
1に接続した空調用配管63を介して、空調機67に高
純度水を送る。空調機67では室内の空気の温度を上昇
させるとともに、高純度水の温度を約30℃に低下し
て、空調用戻り配管69を経て水冷式ヒートポンプチラ
ー23に戻る。
The water-cooled heat pump chiller 23 raises the temperature of the condenser coil 41 to about 35 ° C.
High-purity water is sent to the air conditioner 67 via the air-conditioning pipe 63 connected to 1. In the air conditioner 67, the temperature of the indoor air is raised, the temperature of the high-purity water is reduced to about 30 ° C., and the air returns to the water-cooled heat pump chiller 23 via the return pipe 69 for air conditioning.

【0021】上記において、冷房時には、反対に水冷式
ヒートポンプチラー23は、滴下トレー71から冷水を
滴下して凝縮用コイル41の内部を流れる高純度水を冷
却している。また、凝縮用コイル41を冷却した冷水は
温度が上昇して、反対側に配置された冷却用コイル31
の中を流れる冷媒を上昇させている。
In the above, on the contrary, at the time of cooling, the water-cooled heat pump chiller 23 drops cold water from the drop tray 71 to cool the high-purity water flowing inside the condensing coil 41. The temperature of the cold water that has cooled the condensing coil 41 rises, and the cooling coil 31 disposed on the opposite side is cooled.
The refrigerant flowing inside is rising.

【0022】水冷式ヒートポンプチラー23は、凝縮用
コイル41で冷媒の高純度水を約−5℃の温度に低下
し、凝縮用コイル41に接続した空調用配管63を介し
て、空調機67に高純度水を送る。空調機67では室内
の空気の温度を冷却させるとともに、高純度水の温度を
約0℃に上昇して、空調用戻り配管69を経て水冷式ヒ
ートポンプチラー23に戻る。
The water-cooled heat pump chiller 23 lowers the high-purity water of the refrigerant to a temperature of about −5 ° C. by the condensing coil 41 and sends it to the air conditioner 67 via the air conditioning pipe 63 connected to the condensing coil 41. Send high purity water. The air conditioner 67 cools the temperature of the indoor air, raises the temperature of the high-purity water to about 0 ° C., and returns to the water-cooled heat pump chiller 23 via the return pipe 69 for air conditioning.

【0023】また、反対側の冷却用コイル31は、滴下
トレー35から温水を滴下され内部を流れる高純度水を
温めている。また、凝縮用コイル41を温められた高純
度水を冷却した冷水は温度が上昇して、反対側に配置さ
れた冷却用コイル31の中を流れる冷媒を上昇させてい
る。
Further, the cooling coil 31 on the opposite side is heated with high-purity water flowing from inside by dropping warm water from the drop tray 35. Further, the temperature of the cold water obtained by cooling the high-purity water having the condensing coil 41 warmed rises, and the refrigerant flowing in the cooling coil 31 arranged on the opposite side rises.

【0024】水冷式ヒートポンプチラー23は、冷却用
コイル31で約35℃に温度を上昇し、冷却用コイル3
1に接続した冷却用配管33を介して、地中43に埋設
した地中熱交換器45に高純度水を送る。地中熱交換器
45では地中内の空気の温度を上昇させるとともに、高
純度水の温度を約30℃に低下して、戻り配管21を経
て水冷式ヒートポンプチラー23に戻る。これにより、
空調側も冷却時には、通常の水では、約0℃以下で氷と
なり流れなくなるが、本案では高純度水になっているた
め、約0℃以下の過冷却になっても凍ることが無くなり
流動性を保っている。また、高純度水は約−5℃に冷却
することにより、地中熱との温度差が大きくなるために
熱の吸収が良くなり、熱効率を良くすることができる。
The water-cooled heat pump chiller 23 raises the temperature of the cooling coil 31 to about 35 ° C.
The high-purity water is sent to the underground heat exchanger 45 buried in the underground 43 via the cooling pipe 33 connected to 1. In the underground heat exchanger 45, the temperature of the air in the ground is raised, the temperature of the high-purity water is reduced to about 30 ° C., and the water returns to the water-cooled heat pump chiller 23 via the return pipe 21. This allows
When cooling the air-conditioning side, ordinary water becomes ice at about 0 ° C or less and does not flow, but in this case, it is high-purity water, so it will not freeze even if it is overcooled at about 0 ° C or less, and it will not flow Is kept. Further, by cooling the high-purity water to about −5 ° C., the temperature difference from the underground heat increases, so that the heat absorption is improved and the thermal efficiency can be improved.

【0025】上記のごとく構成した熱交換システム1の
実施形態の作用について説明する。先ず、暖房時におい
て、熱交換システム1の始動時においては、先ず、新た
な加圧水あるいは補給用加圧水を供給する加圧水用配管
11に付設されている図示しないバルブを開いて、水道
水等の水を純水化処理装置13に供給する。純水化処理
装置13は供給された水道水等の水から夾雑物を除去し
て高純度水にした後、純水化処理装置13に接続されて
いる高純度加圧水用配管11aおよび本回路の戻り配管
21の接続点Paから純水度センサ25を経て、水冷式
ヒートポンプチラー23に送られる。水冷式ヒートポン
プチラー23では、純水度センサ25で所定値以上と判
定された場合には、冷却コイル31の中を流れて、約−
5℃に冷却される。冷却された高純度水は、冷水用コイ
ル31に接続した冷温水用配管33を介して、地中43
に埋設した地中熱交換器45に高純度水を送られる。こ
のとき、高純度水は、約0℃以下の過冷却になっても凍
ることが無く流動性を保って地中熱交換器45に送られ
る。これにより、高純度水は約−5℃に冷却することに
より、地中熱との温度差が大きくなるために熱の吸収が
良くなり、熱効率を良くすることができる。
The operation of the embodiment of the heat exchange system 1 configured as described above will be described. First, at the time of heating, at the time of starting the heat exchange system 1, first, a valve (not shown) attached to the pressurized water pipe 11 for supplying new pressurized water or supplementary pressurized water is opened, and water such as tap water is supplied. The water is supplied to the pure water treatment apparatus 13. The water purification apparatus 13 removes foreign substances from the supplied water such as tap water to obtain high-purity water, and then connects the high-purity pressurized water pipe 11a connected to the water purification apparatus 13 and the main circuit. From the connection point Pa of the return pipe 21, the water is sent to the water-cooled heat pump chiller 23 through the pure water sensor 25. In the water-cooled heat pump chiller 23, when the pure water degree sensor 25 determines that the value is equal to or more than a predetermined value, the water flows through the cooling coil 31 and is approximately-
Cool to 5 ° C. The cooled high-purity water is supplied to the underground 43 through a cold / hot water pipe 33 connected to the cold water coil 31.
The high-purity water is sent to the underground heat exchanger 45 buried in the water. At this time, the high-purity water is sent to the underground heat exchanger 45 while maintaining fluidity without freezing even when the super-cooled water is supercooled to about 0 ° C. or less. By cooling the high-purity water to about −5 ° C., the temperature difference between the high-purity water and the ground heat increases, so that the heat absorption is improved and the thermal efficiency can be improved.

【0026】地中熱交換器45に送られた高純度水は、
循環ポンプ51から三方弁53および純水度センサ25
を経て、水冷式ヒートポンプチラー23に戻される。こ
の熱源側の蒸発器5の回路を高純度水が巡回中に、純水
度センサ25で所定値以下と判定された場合には、純水
度センサ25は制御部27にその結果を送信する。制御
部27は、三方弁53に指令を出力して第1接続口53
aと第3接続口53cとを連通する。これにより、汚れ
た高純度水は第3接続口53cから純水化処理装置13
に流されて浄化され、高純度加圧水用配管11aを経て
本回路の戻り配管21に戻されるため、浄化された高純
度水を水冷式ヒートポンプチラー23に送ることがで
き、絶えず高純度水は約−5℃に過冷却されても凍らな
いで循環することができ、地中熱との温度差が大きくで
きて採熱効率を良くすることが出来る。
The high-purity water sent to the underground heat exchanger 45 is
From the circulation pump 51 to the three-way valve 53 and the pure water sensor 25
Is returned to the water-cooled heat pump chiller 23. When high-purity water is traveling around the circuit of the evaporator 5 on the heat source side and the pure water sensor 25 determines that the value is equal to or less than a predetermined value, the pure water sensor 25 transmits the result to the control unit 27. . The control unit 27 outputs a command to the three-way valve 53 to
a and the third connection port 53c. As a result, dirty high-purity water is supplied from the third connection port 53c to the pure water treatment apparatus 13
The purified high-purity water is returned to the return pipe 21 of the circuit via the high-purity pressurized water pipe 11a, so that the purified high-purity water can be sent to the water-cooled heat pump chiller 23. Even if it is supercooled to -5 ° C, it can circulate without freezing, and the temperature difference from the ground heat can be increased, and the heat collection efficiency can be improved.

【0027】また、上記において、水道水等の水の給水
時に、高純度水が純水度センサ25で所定値以下と判定
された場合には、冷却コイル31の中を流れた後、冷水
用コイル31に接続した冷温水用配管33を介して、地
中43に埋設した地中熱交換器45に高純度水を送られ
る。地中熱交換器45に送られた高純度水は、循環ポン
プ51から三方弁53および純水度センサ25を経て、
水冷式ヒートポンプチラー23に戻される。このとき、
純水度センサ25は高純度水が所定値以下である結果を
制御部27に送信する。制御部27は、三方弁53に指
令を出力して第1接続口53aと第3接続口53cとを
連通する。これにより、汚れた高純度水は第3接続口5
3cから純水化処理装置13に流れて浄化され、浄化さ
れた高純度水は高純度加圧水用配管11aを経て本回路
の戻り配管21に戻されるため、浄化された高純度水を
水冷式ヒートポンプチラー23に送ることができる。こ
れにより、この熱源側の蒸発器5の回路は、純水度セン
サ25で所定値以上と判定されるまで高純度水を巡回す
る。巡回中に、純水度センサ25で所定値以上と判定さ
れた場合には、冷却コイル31の中を流れて、約−5℃
に冷却される。冷却された高純度水は、冷水用コイル3
1に接続した冷温水用配管33を介して、地中43に埋
設した地中熱交換器45に高純度水を送られる。地中熱
交換器45に送られた高純度水は、前記と同様に、循環
ポンプ51から三方弁53および純水度センサ25を経
て、水冷式ヒートポンプチラー23に戻される。以上よ
り、高純度水は、絶えず純水度センサ25で判定されて
おり、判定結果により三方弁53を直接通過して水冷式
ヒートポンプチラー23に戻されるか、あるいは、純水
化処理装置13に流れて浄化されてから水冷式ヒートポ
ンプチラー23に戻されるかを行っている。このため、
高純度水は絶えず高純度に維持されるため、約0℃以下
の過冷却になっても凍ることが無く流動性を保って熱源
側の蒸発器5の回路を巡回することができるとともに、
高純度水は約−5℃に冷却することにより、地中熱との
温度差が大きくなるために熱の吸収が良くなり、熱効率
を良くすることができる。
In the above description, when high purity water is determined to be equal to or less than a predetermined value by the pure water sensor 25 when supplying tap water or the like, after flowing through the cooling coil 31, High-purity water is sent to an underground heat exchanger 45 buried in the underground 43 via a cold / hot water pipe 33 connected to the coil 31. The high-purity water sent to the underground heat exchanger 45 passes through the three-way valve 53 and the pure water sensor 25 from the circulation pump 51,
It is returned to the water-cooled heat pump chiller 23. At this time,
The pure water sensor 25 transmits a result indicating that the high-purity water is equal to or less than a predetermined value to the control unit 27. The control unit 27 outputs a command to the three-way valve 53 to communicate the first connection port 53a and the third connection port 53c. As a result, dirty high-purity water is supplied to the third connection port 5.
3c, the purified high-purity water flows to the pure water treatment apparatus 13 and is purified. The purified high-purity water is returned to the return pipe 21 of the circuit through the high-purity pressurized water pipe 11a. It can be sent to the chiller 23. Thus, the circuit of the evaporator 5 on the heat source side circulates high-purity water until the pure water level sensor 25 determines that the value is equal to or more than the predetermined value. If the pure water sensor 25 determines that the value is equal to or higher than the predetermined value during the patrolling, the pure water sensor 25 flows through the cooling coil 31 to about −5 ° C.
Is cooled. The cooled high-purity water is supplied to the cold water coil 3
The high-purity water is sent to the underground heat exchanger 45 buried in the underground 43 via the cold / hot water pipe 33 connected to 1. The high-purity water sent to the underground heat exchanger 45 is returned from the circulation pump 51 to the water-cooled heat pump chiller 23 via the three-way valve 53 and the pure water sensor 25 in the same manner as described above. As described above, high-purity water is constantly determined by the pure water sensor 25 and is returned to the water-cooled heat pump chiller 23 directly through the three-way valve 53 according to the determination result, or to the pure water treatment apparatus 13. It is determined whether the water is cooled and returned to the water-cooled heat pump chiller 23. For this reason,
Since the high-purity water is constantly maintained at a high purity, it is possible to circulate through the circuit of the evaporator 5 on the heat source side while maintaining fluidity without freezing even when the super-cooled water is cooled to about 0 ° C. or less.
By cooling high-purity water to about −5 ° C., the temperature difference from the underground heat increases, so that the heat absorption is improved and the thermal efficiency can be improved.

【0028】なお、上記の作動については、暖房時にお
いて、熱源側の蒸発器5の回路について説明したが、冷
房時の空調設備61側の回路も高純度水を用いた場合に
同様なため説明は省略する。
The above operation has been described for the circuit of the evaporator 5 on the heat source side at the time of heating. However, the circuit of the air conditioner 61 at the time of cooling is also the same when high-purity water is used. Is omitted.

【0029】上記に記載したように本発明は、地熱等の
熱源を用いて熱作業を行う熱交換器間の回路、あるいは
/および、熱交換器と空調機との間の回路を流れる冷媒
により熱交換を行う熱交換システムにおいて、冷媒に使
う流体を過冷却にしても流動するよう高純度にした構成
としているため、地中の熱源を用いるような場合でも温
度差を大きくでき、かつ、水道水を用いた高純度水に使
用できるので安価で多量に用いることができるととも
に、熱効率のよい冷媒を得ることができる。
As described above, the present invention is directed to a circuit between heat exchangers for performing thermal work using a heat source such as geothermal heat and / or a refrigerant flowing through a circuit between a heat exchanger and an air conditioner. In the heat exchange system that performs heat exchange, high-purity construction is used to flow even if the fluid used for the refrigerant is supercooled, so that the temperature difference can be increased even when using an underground heat source, and Since it can be used for high-purity water using water, it can be used inexpensively and in large quantities, and a refrigerant with high thermal efficiency can be obtained.

【0030】[0030]

【発明の効果】以上説明したように、地熱等の熱源を用
いて熱作業を行う熱交換器間の回路、あるいは/およ
び、熱交換器と空調機との間の回路を流れる冷媒に使う
流体を過冷却にしても流動するよう高純度にした構成と
しているため、熱源との温度差を大きくできるので熱効
率を良くできる。また、冷媒の材料として安価な水道水
等の水を使用することができるため、コストアップにな
ることを防止できる。また、高純度水が漏洩したときで
も環境破壊を起こすことがない。更に、運転中に高純水
度に維持しているため、スケール等が付着しないので、
熱交換効率が低下しないという効果が得られる。
As described above, the fluid used as the refrigerant flowing in the circuit between the heat exchangers performing the heat work using the heat source such as geothermal heat and / or the circuit between the heat exchanger and the air conditioner. The structure is made high purity so that it can flow even if it is supercooled, so that the temperature difference with the heat source can be increased, so that the thermal efficiency can be improved. Further, since water such as inexpensive tap water can be used as a material of the refrigerant, it is possible to prevent an increase in cost. Also, even when high-purity water leaks, no environmental destruction occurs. In addition, since the high purity water level is maintained during operation, scale etc. do not adhere,
The effect that the heat exchange efficiency does not decrease is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る高純度水を冷媒とした
熱交換システムの全体構成概念図である。
FIG. 1 is an overall configuration conceptual diagram of a heat exchange system using high-purity water as a refrigerant according to an embodiment of the present invention.

【図2】従来の熱交換システムの全体構成概念図であ
る。
FIG. 2 is a conceptual diagram of the overall configuration of a conventional heat exchange system.

【符号の説明】[Explanation of symbols]

1……熱交換システム、3……ヒートポンプ、5……蒸
発器、7……凝縮器、13……純水化処理装置、17…
…イオン交換樹脂、21……戻り配管、23……水冷式
ヒートポンプチラー、25……純水度センサー、27…
…制御部、31……冷水用コイル、41……凝縮用コイ
ル、45……地中熱交換器、51……循環ポンプ、53
……三方弁、61……空調設備、65……純水貯槽、6
7……空調機
DESCRIPTION OF SYMBOLS 1 ... Heat exchange system, 3 ... Heat pump, 5 ... Evaporator, 7 ... Condenser, 13 ... Pure water treatment apparatus, 17 ...
... Ion exchange resin, 21 ... Return piping, 23 ... Water-cooled heat pump chiller, 25 ... Pure water sensor, 27 ...
... Control part, 31 ... Coil for cold water, 41 ... Coil for condensation, 45 ... Ground heat exchanger, 51 ... Circulation pump, 53
... three-way valve, 61 ... air conditioning equipment, 65 ... pure water storage tank, 6
7 ... Air conditioner

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F28G 9/00 F28G 9/00 Z Fターム(参考) 3L054 BF02 BF08 BF10 4D006 GA03 GA06 KB11 MA12 PA02 PB06 4D025 AA01 AB02 BA21 BA27 BB07 DA10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI theme coat ゛ (reference) F28G 9/00 F28G 9/00 Z F term (reference) 3L054 BF02 BF08 BF10 4D006 GA03 GA06 KB11 MA12 PA02 PB06 4D025 AA01 AB02 BA21 BA27 BB07 DA10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷媒の相変化を伴う1次熱交換回路との
間で熱の授受をなす相変化を伴わない冷媒を用いた2次
熱交換回路を有する熱交換システムにおいて、前記2次
熱交換回路に純水化処理手段を介装したバイパス回路を
設け、当該バイパス回路に2次冷媒の水を通流させて純
水となし、前記2次熱交換回路に2次冷媒として高純度
水を循環させるようにしたことを特徴とする熱交換シス
テム。
1. A heat exchange system having a secondary heat exchange circuit using a refrigerant that does not involve a phase change and transfers heat to and from a primary heat exchange circuit that undergoes a phase change of the refrigerant. The exchange circuit is provided with a bypass circuit interposed with deionization treatment means, and the secondary circuit water is passed through the bypass circuit to make pure water, and high-purity water is used as the secondary refrigerant in the secondary heat exchange circuit. A heat exchange system characterized by circulating water.
【請求項2】 前記バイパス回路への流路切替手段を備
え、2次冷媒の電気伝導度検出センサを設け、当該検出
手段による検出値が設定値以上となった場合に前記流路
切替手段を操作して2次冷媒をバイパス回路に通流させ
る制御手段を備えたことを特徴とする請求項1に記載の
熱交換システム。
2. The apparatus according to claim 1, further comprising a flow path switching means for connecting to the bypass circuit, an electric conductivity detection sensor for the secondary refrigerant being provided, and when the detection value of the detection means becomes equal to or more than a set value, the flow path switching means is provided. The heat exchange system according to claim 1, further comprising control means for operating the secondary refrigerant to flow through the bypass circuit.
【請求項3】 前記バイパス回路に水道水管路を接続し
たことを特徴とする請求項1に記載の熱交換システム。
3. The heat exchange system according to claim 1, wherein a tap water pipe is connected to the bypass circuit.
【請求項4】 2次熱交換回路の採熱側冷媒循環経路に2
次冷媒としての水から運転中に発生するスケールやイオ
ンを除去して純水化処理する手段を設け、一次熱交換器
の1次冷媒と熱交換可能としたことを特徴とする熱交換
システム。
4. A refrigerant circulation path on the heat-extraction side of the secondary heat exchange circuit.
A heat exchange system comprising means for removing scale and ions generated during operation from water as a secondary refrigerant to purify the water, thereby enabling heat exchange with the primary refrigerant of the primary heat exchanger.
JP2000310616A 2000-10-11 2000-10-11 Heat exchange system Withdrawn JP2002115873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000310616A JP2002115873A (en) 2000-10-11 2000-10-11 Heat exchange system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000310616A JP2002115873A (en) 2000-10-11 2000-10-11 Heat exchange system

Publications (1)

Publication Number Publication Date
JP2002115873A true JP2002115873A (en) 2002-04-19

Family

ID=18790543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000310616A Withdrawn JP2002115873A (en) 2000-10-11 2000-10-11 Heat exchange system

Country Status (1)

Country Link
JP (1) JP2002115873A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845607B1 (en) 2007-04-30 2008-07-17 (주)경진티알엠 Heat pump using geothermy improved heatingcapacity
KR101168590B1 (en) 2010-11-24 2012-07-30 주식회사 지지케이 Geothermal cooling and heating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845607B1 (en) 2007-04-30 2008-07-17 (주)경진티알엠 Heat pump using geothermy improved heatingcapacity
KR101168590B1 (en) 2010-11-24 2012-07-30 주식회사 지지케이 Geothermal cooling and heating apparatus

Similar Documents

Publication Publication Date Title
RU2738989C2 (en) Improved thawing by reversible cycle in vapor compression refrigeration systems, based on material with phase transition
US4336692A (en) Dual source heat pump
US4308042A (en) Heat pump with freeze-up prevention
US20120227429A1 (en) Cooling system
JP4885481B2 (en) Cooling device operation method
CN101589277A (en) Refrigeration device
US4932221A (en) Air-cooled cooling apparatus
EP3001123A1 (en) Heat reclaim for a multifunction heat pump and a muntifunction air conditioner
JP2011069529A (en) Air-conditioning hot water supply system and heat pump unit
JPH11316061A (en) Air conditioning system and its operation method
WO2006114983A1 (en) Refrigeration cycle device
JP3126239U (en) Air conditioner
KR20130072385A (en) An experimental and training apparatus for heating and refrigerating system using alternative energy
KR20070022585A (en) Compressor with vapor injection system
JP2004156806A (en) Warm/cold thermal system
JP2006220332A (en) Composite type air conditioner
JP2002115873A (en) Heat exchange system
KR101100475B1 (en) An experimental and training apparatus for heating and refrigerating system using alternative energy
KR100901726B1 (en) Heat pump type thermo - hygrostat have a cooling and heating apparatus
JP2006220335A (en) Composite type air conditioner
CN104697245A (en) Coupled heat pump system
CN102305496A (en) Air-cooled heat pump unit
JP2006017440A (en) Heat pump air conditioner
WO2008147027A1 (en) Air conditioning system for communication equipment and method of preventing the same from freezing
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108