JP2808456B2 - Steam turbine power plant - Google Patents

Steam turbine power plant

Info

Publication number
JP2808456B2
JP2808456B2 JP1055146A JP5514689A JP2808456B2 JP 2808456 B2 JP2808456 B2 JP 2808456B2 JP 1055146 A JP1055146 A JP 1055146A JP 5514689 A JP5514689 A JP 5514689A JP 2808456 B2 JP2808456 B2 JP 2808456B2
Authority
JP
Japan
Prior art keywords
temperature
turbine
steam
steam turbine
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1055146A
Other languages
Japanese (ja)
Other versions
JPH02238104A (en
Inventor
正敏 久留
啓一 岩本
英四郎 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1055146A priority Critical patent/JP2808456B2/en
Publication of JPH02238104A publication Critical patent/JPH02238104A/en
Application granted granted Critical
Publication of JP2808456B2 publication Critical patent/JP2808456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/04Using steam or condensate extracted or exhausted from steam engine plant for specific purposes other than heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蒸気タービン発電プラント、殊にタービン
排気ダクト(排気ライン)に適用する半導体熱電変換装
置に関する。
Description: TECHNICAL FIELD The present invention relates to a semiconductor thermoelectric converter applied to a steam turbine power plant, particularly to a turbine exhaust duct (exhaust line).

従来の技術 従来の蒸気タービン発電プラントの基本的なプラント
システム構成を第8図に基づいて説明すると、図中、符
号01は復水器、02は給水ポンプ、03は給水加熱器、04は
ボイラ、及び05は蒸気タービンであって、復水器01内の
復水が給水ポンプ02により昇圧されて給水処理装置(図
示せず)で処理される。
2. Description of the Related Art A basic plant system configuration of a conventional steam turbine power plant will be described with reference to FIG. 8. In the figure, reference numeral 01 denotes a condenser, 02 denotes a feedwater pump, 03 denotes a feedwater heater, and 04 denotes a boiler. , And 05 are steam turbines, and the condensate in the condenser 01 is pressurized by a water supply pump 02 and processed by a water supply processing device (not shown).

その後、給水ヒータ03で加熱され、給水管06を経てボ
イラ04へ供給され、過熱により蒸気となる。
Thereafter, the water is heated by the water supply heater 03, supplied to the boiler 04 via the water supply pipe 06, and turned into steam by overheating.

そして、発生蒸気は主蒸気管07を経て前記蒸気タービ
ン05に導入され膨張仕事によりタービン05を駆動してそ
のタービンに連結する発電機05′を回して電力を発生す
る。
The generated steam is introduced into the steam turbine 05 through the main steam pipe 07, drives the turbine 05 by expansion work, and turns a generator 05 'connected to the turbine to generate electric power.

そこで、蒸気タービン05で仕事をした蒸気は若干を湿
り度を有する低圧湿り蒸気となり、排気ダクト08を経て
前述の如き復水器01に再投入され、冷却水により冷却さ
れ凝縮復水する。
Therefore, the steam that has worked in the steam turbine 05 becomes low-pressure wet steam having a slight degree of wetness, is re-entered into the condenser 01 as described above via the exhaust duct 08, and is cooled by cooling water and condensed.

また、第9図に示す蒸気タービンプラントのi−s線
図(エンタルピ−エントロピ線図)に基づいて以上の蒸
気サイクルを説明すると、ボイラ04で発生した圧力P1
温度te、エンタルピieの高温高圧蒸気(点a)が、蒸気
タービン05出口で圧力P2まで膨張し、温度tl、エンタル
ピilの湿り蒸気、つまりタービン排気(点b)となる。
Further, the above steam cycle will be described based on the is-line diagram (enthalpy-entropy diagram) of the steam turbine plant shown in FIG. 9, and the pressure P 1 generated in the boiler 04,
Temperature te, high-temperature, high-pressure steam enthalpy ie (point a) is expanded in a steam turbine 05 outlet to a pressure P 2, the temperature tl, wet steam enthalpy il, the words turbine exhaust (point b).

そして、その排気が復水器01で冷却により凝縮しエン
タルピicなる復水(点c)となり、復水は給水ポンプ02
で昇圧され(点d)、給水加熱器03を経てボイラ04で過
熱されること(点a)となる。
Then, the exhaust gas is condensed by cooling in the condenser 01 and becomes condensed water (point c) with enthalpy, and condensed water is supplied to the feed pump 02
(Point d) and overheated by the boiler 04 via the feed water heater 03 (point a).

発明が解決しようとする課題 以上述べた従来の蒸気タービン発電プラントは、しか
し次のような問題があった。
Problems to be Solved by the Invention The conventional steam turbine power plant described above, however, has the following problems.

蒸気タービンプラントは熱エネルギを保有する高温高
圧の蒸気をタービンで膨張し機械エネルギーに一旦変
え、発電機を回して電気を発生するが蒸気の保有するエ
ネルギの約60%以上が潜熱であり、これを機械仕事に変
換出来ない。
A steam turbine plant expands high-temperature, high-pressure steam, which holds thermal energy, with a turbine, converts it into mechanical energy, and turns a generator to generate electricity.More than 60% of the energy held by the steam is latent heat. Cannot be converted to mechanical work.

即ち、この場合の蒸気流量をWとすると、蒸気タービ
ンプラントの総入熱はW・(ie−ic)(第9図参照)と
なるが、そのうちW・(il−ic)に相当する凝縮潜熱が
復水器01へ、厳密には復水器01を通る冷却水へ棄てられ
ている。
That is, assuming that the steam flow rate in this case is W, the total heat input of the steam turbine plant is W · (ie-ic) (see FIG. 9), of which the condensation latent heat corresponding to W · (il-ic) Is discarded to the condenser 01, more specifically, to the cooling water passing through the condenser 01.

このため、最新鋭の発電プラントでも、(タービンプ
ラント効率ηTP)=(ie−el)/(ie−ic)×100%は5
0%以下となり発電効率は低いのが現状である。
Therefore, even in a state-of-the-art power plant, (turbine plant efficiency η TP ) = (ie-el) / (ie-ic) × 100% is 5
At present, power generation efficiency is low at less than 0%.

例えば高性能の蒸気タービンでは再熱再生方式を採用
し、排気圧0.05ata程度まで膨張し、湿り度約10%程度
の飽和蒸気で入熱の約55%が復水器に棄てられており、
前記タービンプラント効率ηTPは約45%程度である。
For example, a high-performance steam turbine adopts a reheat regeneration method, which expands to an exhaust pressure of about 0.05ata, and about 55% of the heat input is discarded by a condenser with about 10% wetness of saturated steam.
The turbine plant efficiency η TP is about 45%.

そこで、本発明の目的は、以上の復水器における多大
な廃棄熱を回収し有効利用すべく、その熱を電力に変換
して取出すことにより総合タービンプラント効率の向上
を図る装置を提供することである。
Therefore, an object of the present invention is to provide an apparatus for improving the efficiency of a total turbine plant by converting the heat into electric power and extracting it in order to recover and effectively use a large amount of waste heat in the above condenser. It is.

課題を解決するための手段 本発明による蒸気タービン発電プラントは、このよう
な従来の課題を解決するために、蒸気タービンと、該蒸
気タービンで膨張した蒸気と排気として受ける排気ダク
トと、前記蒸気タービンからの前記排気を高温熱源とす
る高温部及び冷却水を低温熱源とする低温部を有すると
共に、該冷却水により前記排気を凝縮して給水にする熱
交換手段と、前記熱交換手段の前記低温部及び前記高温
部に、該低温部及び該高温部間の温度差に基づいて電位
差を発生するように接続された半導体熱電変換手段とを
備えるものである。
Means for Solving the Problems In order to solve such a conventional problem, a steam turbine power plant according to the present invention includes a steam turbine, an exhaust duct which receives steam expanded by the steam turbine and exhaust gas, and the steam turbine. A high-temperature section that uses the exhaust gas as a high-temperature heat source and a low-temperature section that uses cooling water as a low-temperature heat source. A semiconductor thermoelectric converter connected to the section and the high-temperature section so as to generate a potential difference based on a temperature difference between the low-temperature section and the high-temperature section.

作用 タービン排気の保有潜熱の一部は、低温熱源である冷
却水に棄てられるが、残部は半導体熱電変換手段により
電気に変換され、負荷に供給される。従って、電子エネ
ルギに相当する熱エネルギ分が回収され、それにより総
合タービンプラント効率ηTCの向上になる。しかも、蒸
気タービンの排気は、半導体熱電変換手段の熱電性能が
最適値となるような排気温度に容易にすることができる
ため、半導体熱電変換手段自体の熱電変換率が最大とな
り、総合タービンプラント効率の更なる向上をもたら
す。
A part of the latent heat of the turbine exhaust is discarded by the cooling water as a low-temperature heat source, but the remainder is converted into electricity by the semiconductor thermoelectric conversion means and supplied to the load. Therefore, heat energy corresponding to the electron energy is recovered, thereby improving the overall turbine plant efficiency η TC . Moreover, since the exhaust temperature of the steam turbine can be easily adjusted to an exhaust temperature at which the thermoelectric performance of the semiconductor thermoelectric conversion means becomes an optimum value, the thermoelectric conversion rate of the semiconductor thermoelectric conversion means itself is maximized, and the overall turbine plant efficiency is increased. Bring further improvement.

実施例 以下第1〜7図を参照して、本発明の一実施例につい
て詳述する。なお、前述した第8図において用いられた
符号と同一の符号は同一もしくは同等の部材を表してお
り、それらについては重複を避けるために説明を省略す
る。
Embodiment An embodiment of the present invention will be described below in detail with reference to FIGS. Note that the same reference numerals as those used in FIG. 8 indicate the same or equivalent members, and a description thereof will be omitted to avoid duplication.

しかして本発明によれば第1及び2図に示す基本的な
蒸気タービンサイクルにおいて、従来の如き復水器01
(第8図参照)は不要とされ、その代りに蒸気タービン
5の排気を高温熱源とし、かつ冷却水を低温熱源とする
半導体熱電変換装置1がタービン排気ダクト8に設置さ
れている。
Thus, according to the present invention, in the basic steam turbine cycle shown in FIGS.
(See FIG. 8) is not required, and instead, the semiconductor thermoelectric converter 1 using the exhaust gas of the steam turbine 5 as a high-temperature heat source and the cooling water as a low-temperature heat source is installed in the turbine exhaust duct 8.

この半導体熱電変換装置1は排気の保有潜熱を電気に
変換すると共に、タービン排気を凝縮するものである。
The semiconductor thermoelectric converter 1 converts latent heat of exhaust gas into electricity and condenses turbine exhaust gas.

即ち、本発明は半導体熱電変換装置が高温熱源として
一定温度(温度変化の少ない)の熱源を必要とすること
に着目する一方、タービン排気が飽和蒸気又は若干の過
熱度を有する過熱蒸気であることに注目し、その潜熱
(凝縮熱)を利用して半導体熱電変換装置で電気を得る
ようにすると共に、タービン排気を凝縮して復水器を不
要としたものである。
That is, the present invention focuses on the fact that the semiconductor thermoelectric conversion device requires a heat source of a constant temperature (with a small temperature change) as a high-temperature heat source, while the turbine exhaust is saturated steam or superheated steam having a slight degree of superheat. The semiconductor thermoelectric converter uses the latent heat (condensation heat) to generate electricity, and the turbine exhaust is condensed to eliminate the need for a condenser.

次に、このような半導体熱電変換装置1の構造組成を
第3〜6図に基づいて説明すると、第3図は変換装置の
概観を示し、第4及び5図は変換装置内の熱交換器のタ
ービン排気側接触面(第4図)及び冷却水側接触面(第
5図)を夫々示す。また、第6図は前記半導体素子材、
つまり熱電変換材料の配置及びその接続方式の例を示し
ており、プレート型熱交換器に類似して伝熱効率を高め
るために溝付或いはハニカム構造2a等を有する熱交換手
段としての多数の熱交換器2(第3〜5図参照)が、や
はり熱効率の点から対向して流動する高温熱源に供する
タービン排気と低温熱源に供する冷却水との各通路3,4
に挾まれて、該変換装置1内に配列されている。
Next, the structural composition of the semiconductor thermoelectric converter 1 will be described with reference to FIGS. 3 to 6. FIG. 3 shows an overview of the converter, and FIGS. 4 and 5 show heat exchangers in the converter. 4 shows a turbine exhaust side contact surface (FIG. 4) and a cooling water side contact surface (FIG. 5). FIG. 6 shows the semiconductor element material,
That is, it shows an example of the arrangement of the thermoelectric conversion materials and the connection method thereof. Similar to the plate type heat exchanger, a large number of heat exchange means as a heat exchange means having a grooved or honeycomb structure 2a or the like to enhance heat transfer efficiency. The heat exchanger 2 (see FIGS. 3 to 5) also includes passages 3 and 4 for a turbine exhaust provided for a high-temperature heat source and a cooling water provided for a low-temperature heat source, which also flow in opposition from the viewpoint of thermal efficiency.
Are arranged in the conversion device 1.

なお、変換装置1底部にはタービン排気通路3に連絡
する復水タンク(溜)1′が設けられている。
At the bottom of the converter 1, a condensate tank (reservoir) 1 'communicating with the turbine exhaust passage 3 is provided.

これらのプレート型熱交換器つまり平板状の熱交換器
2内(第6図参照)にはN型及びP形の半導体素子(半
導体熱電変換手段)6が交互に配列されており、その原
理はこれら2種の素子を夫々一方を高温部(タービン排
気通路3)側におき、他方を低温部(冷却水通路4)側
において、両高温部を連結するとき、N形、P形の素子
の相違により両低温部の間に電位差(電圧)を生じるの
で、その間に電力需要側の負荷7側を接続するようにし
たものである。
N-type and P-type semiconductor elements (semiconductor thermoelectric conversion means) 6 are alternately arranged in these plate-type heat exchangers, that is, flat heat exchangers 2 (see FIG. 6). When one of these two elements is placed on the high-temperature part (turbine exhaust passage 3) side and the other is on the low-temperature part (cooling water passage 4) side, when connecting the two high-temperature parts, the N-type and P-type elements are used. Since the difference causes a potential difference (voltage) between the two low-temperature portions, the load 7 on the power demand side is connected between them.

なお、図中、符号6aは各素子の高温接合部、6bは低温
接合部、及び6cは接続電極を夫々示し、接続電極6cを通
して所定の電圧が得られるように、N形、P形の半導体
素子6が多数直列に接続され、かつ高温熱源温度T′l
と低温熱源温度Tcとの差が生じることにより、熱交換器
2を介して高温側から低温側へ流れる熱の一部がN形、
P形半導体素子6にて直接電気に変換し、残りの熱量は
冷却水に棄てることとなる。
In the drawing, reference numeral 6a indicates a high-temperature junction of each element, 6b indicates a low-temperature junction, and 6c indicates a connection electrode. N-type and P-type semiconductors are provided so that a predetermined voltage can be obtained through the connection electrode 6c. A large number of elements 6 are connected in series, and a high-temperature heat source temperature T'l
And the low-temperature heat source temperature Tc, a part of the heat flowing from the high-temperature side to the low-temperature side via the heat exchanger 2 is N-type.
The P-type semiconductor element 6 directly converts the electricity into electricity, and the remaining heat is discarded by the cooling water.

従って、このように半導体素子6からなる熱交換器
2、冷却水通路4、及び復水タンク1′を内包する熱電
変換装置1は、発電装置であると同時に従来の復水器01
の機能を担う凝縮器でもある。
Accordingly, the thermoelectric converter 1 including the heat exchanger 2, the cooling water passage 4, and the condensate tank 1 ', which includes the semiconductor element 6, is a power generator and a conventional condenser 01.
It also serves as a condenser.

また、第7図に示すようにN形、P形の半導体素子6
の熱電変換性能に関しては、各種熱電変換材料A〜F
(ただし、材料を特定することが本旨ではないのでこの
場合各材料名は省略する)の性能指数Zと温度(差)T
とに依存するので、高い熱電変換効率ηTEを得るために
は、素子材自体の性能並びにその組合せの良否による最
適値、つまり高い性能指数Zとかつ広い温度範囲でなる
べく大きい最適温度Tとを選定することが必要である。
In addition, as shown in FIG.
Regarding the thermoelectric conversion performance of various thermoelectric conversion materials A to F
(However, since it is not the purpose of specifying the material, the names of the materials are omitted in this case.) The figure of merit Z and the temperature (difference) T
In order to obtain a high thermoelectric conversion efficiency η TE , an optimum value based on the performance of the element material itself and the quality of the combination thereof, that is, a high performance index Z and an optimum temperature T as large as possible in a wide temperature range are required. It is necessary to make a selection.

次にその作用について説明する。 Next, the operation will be described.

半導体熱電変換装置1内のプレート型熱交換器に類似
した多数の熱交換器2の一方の接触面には、排気ダクト
8を経てタービン排気通路3内に高温熱源となるタービ
ン排気を流動させ、同時に他方の接触面には、前記ター
ビン排気に対向して冷却水通路4内に低温熱源となる冷
却水を流動させる。
On one contact surface of a large number of heat exchangers 2 similar to plate heat exchangers in the semiconductor thermoelectric converter 1, turbine exhaust as a high-temperature heat source flows through the exhaust duct 8 into the turbine exhaust passage 3, At the same time, cooling water as a low-temperature heat source is caused to flow into the cooling water passage 4 opposite to the turbine exhaust gas on the other contact surface.

この熱源温度の差の発生により、特にタービン排気の
保有潜熱の一部が復水タンク1′に導入される前に、各
熱交換器2内に直列に配列されたN形、P形半導体素子
6を介して直接、低温接合部6b側に加わる直流の電圧に
変換されるので、発電機5′(従来の発電機05′と同様
である)と共にその電圧、即ち電気エネルギを電力需要
側の負荷7に供給できる。
Due to the difference between the heat source temperatures, the N-type and P-type semiconductor elements arranged in series in each heat exchanger 2 before a part of the latent heat of the turbine exhaust is introduced into the condensing tank 1 '. 6, the voltage is directly converted into a DC voltage applied to the low-temperature junction 6b side, so that the voltage, that is, the electric energy, together with the generator 5 '(similar to the conventional generator 05'), is transferred to the power demand side. It can be supplied to the load 7.

換言すれば、電気エネルギとして有効に取出された
(回収された)潜熱の一部熱量分だけ総合タービンプラ
ント効率ηTCを高めることが可能になる。
In other words, the total turbine plant efficiency η TC can be increased by a part of the amount of latent heat effectively extracted (recovered) as electric energy.

この場合、例えばタービン排気温度が従来より設定さ
れているtlのときのタービンプラント効率をηTPとし、
また変換装置1、厳密には総熱交換器2の入熱に対する
電気出力の割合(熱電変換率)をηTEとすると、前記η
TCは次式で求められる。
In this case, for example, the turbine plant efficiency when the turbine exhaust temperature is tl which has been conventionally set is η TP ,
The converter 1, when strictly to the ratio of the electrical output to heat input of the total heat exchanger 2 (thermoelectric conversion) and eta TE, the eta
TC is calculated by the following equation.

ηTC=ηTP+(1.0−ηTP)×ηTE …(1) ただし(1.0−ηTP)の値は冷却水通路4の冷却水に
棄て去られる潜熱の損失(排熱)割合を示す。
η TC = η TP + (1.0−η TP ) × η TE (1) However, the value of (1.0−η TP ) indicates the ratio of the loss (exhaust heat) of latent heat discarded to the cooling water in the cooling water passage 4 and removed. .

その後、タービン排気通路3を通過した排気は凝縮し
て、変換装置1底部に設けた復水タンク1′内に復水と
して溜められ、再び給水に供される。
Thereafter, the exhaust gas that has passed through the turbine exhaust passage 3 is condensed, stored as condensate water in a condensate tank 1 ′ provided at the bottom of the converter 1, and supplied again to water supply.

しかして、その熱交換器2に使用される半導体素子
(熱電変換材料)6は、第7図に示す如くタービン排気
温度tl付近をカバーする素子Bが選択されることとな
る。
Thus, as the semiconductor element (thermoelectric conversion material) 6 used in the heat exchanger 2, an element B covering the vicinity of the turbine exhaust temperature tl is selected as shown in FIG.

しかしながら、実際上のタービン排気温度tlは100℃
以下にあって、このような低温度域においては高い熱電
交換性能を有する熱電変換材料があまり多くなく、また
仮に素子Bを選択できても、タービン排気温度はその素
子B自体の性能指数Zの最適値を取り得る理想的なター
ビン排気温度t′lより下廻るケースが多い。
However, the actual turbine exhaust temperature tl is 100 ° C.
In the following, in such a low temperature range, there are not so many thermoelectric conversion materials having high thermoelectric exchange performance, and even if the element B can be selected, the turbine exhaust temperature is determined by the performance index Z of the element B itself. In many cases, the temperature is lower than the ideal turbine exhaust temperature t'l at which the optimum value can be obtained.

従って、従来の中でも最新鋭の高効率蒸気タービンプ
ラント(通常その排気温度は50℃以下)に本実施例の熱
電交換装置1を併設しても総合タービンプラント効率改
善の効果は極めて少ない。
Therefore, even if the thermoelectric exchange device 1 of this embodiment is installed in a state-of-the-art high-efficiency steam turbine plant (usually the exhaust gas temperature is 50 ° C. or lower), the effect of improving the efficiency of the overall turbine plant is extremely small.

そこで、この対策として本実施例によれば、多少のタ
ービンプラント効率ηTPを犠牲にしてもタービン排気温
度をTlからT′l(第2図b′参照)に引上げるように
蒸気タービン5を設計することにより総合タービンプラ
ント効率を増加させることができる。
Therefore, as a countermeasure, according to the present embodiment, the steam turbine 5 is raised so that the turbine exhaust temperature is raised from Tl to T′l (see FIG. 2 b ′) at the expense of some turbine plant efficiency η TP . The design can increase the overall turbine plant efficiency.

即ち、t′lなる排気温度は排気圧を従来の値よりも
上げることにより得られる、ほぼ排気圧P2′に相当する
飽和温度である。そして、この排気温度t′lのときの
タービンプラント効率をη′TP=(ie−i′l)/(ie
−ic)×100%、また入熱に対する電気出力の変換率を
η′TEとすると、まず前述の如き理由から、P2′>P2,
i′l>ilの下で、 ηTC>ηTP≧η′TP …(2) (ただしTl=T′lのとき、ηTP=η′TP) となる。
That is, the exhaust temperature t'l is a saturation temperature which is obtained by increasing the exhaust pressure higher than the conventional value and substantially corresponds to the exhaust pressure P 2 '. Then, the turbine plant efficiency at this exhaust temperature t′l is represented by η ′ TP = (ie−i′l) / (ie
-Ic) × 100%, also 'When TE, such reasons First described above, P 2' the conversion of electrical output for heat input eta> P 2,
Under i′l> il, η TC > η TP ≧ η ′ TP (2) (However, when Tl = T′l, η TP = η ′ TP ).

このことより、η′TPは通常ηTPよりも下廻るもの
の、このギャップの解消がなされるべく、前記半導体素
子6の熱電変換性能(性能指数Z)が最高となる近傍に
おいては、熱電変換率はηTEからη′TEに値が上昇する
ため、 ηTC=η′TP+(1.0−η′TP)×η′TE …(3) となることより、(3)式>(1)式を満足するタービ
ン排気温度T′lの値を決定すれば良い。
From this, although η ′ TP is usually lower than η TP, in order to eliminate the gap, the thermoelectric conversion rate is close to the maximum when the thermoelectric conversion performance (performance index Z) of the semiconductor element 6 is highest. Is increased from η TE to η ′ TE , so that η TC = η ′ TP + (1.0−η ′ TP ) × η ′ TE (3) The value of the turbine exhaust temperature T′l that satisfies the following condition may be determined.

発明の効果 以上詳述したように発明によれば、次の如き効果を得
ることができる。
Effects of the Invention As described in detail above, according to the invention, the following effects can be obtained.

(1)総合タービンプラント効率の改善を図ることがで
きる。
(1) The overall turbine plant efficiency can be improved.

(イ)従来、復水器に棄てられていたタービン廃棄を高
温熱源とし、また冷却水を低温熱源とするので、半導体
熱電変換装置でタービン排気の保有潜熱の一部を直接電
気に変換することができるため、タービンプラント効率
が向上する。
(A) Since the turbine waste previously discarded in the condenser is used as a high-temperature heat source and the cooling water is used as a low-temperature heat source, a part of the latent heat of the turbine exhaust is directly converted to electricity by a semiconductor thermoelectric converter. Therefore, the efficiency of the turbine plant is improved.

1つの例としてタービンプラント効率ηTP=45%なる
蒸気タービンのタービン排熱(損失)は(1.0−ηTP
≒0.55即ち55%程度ある。このプラントに復水器の代わ
りに該変換装置を設定しても、高温熱源温度(タービン
排気温度)が約40℃と低く、また低温熱源温度(冷却水
温度)約20℃との温度差も少ない。
As one example, the turbine waste heat (loss) of a steam turbine with a turbine plant efficiency η TP = 45% is (1.0−η TP )
≒ 0.55 or about 55%. Even if this converter is installed in this plant instead of a condenser, the high-temperature heat source temperature (turbine exhaust temperature) is as low as about 40 ° C, and the temperature difference between the low-temperature heat source temperature (cooling water temperature) and about 20 ° C Few.

このため、熱電変換効率ηTEは低くなり、数%(例え
ば2%)程度である。
For this reason, the thermoelectric conversion efficiency η TE is low, and is about several% (for example, about 2%).

従って、総合タービンプラント効率は、(1)式より ηTC=0.45+(1.0−0.45)×0.02≒0.46 即ち45〜46%程度の向上が認められる。Therefore, from the equation (1), it can be seen that the efficiency of the total turbine plant is improved by η TC = 0.45 + (1.0−0.45) × 0.02 ≒ 0.46, that is, about 45 to 46%.

(ロ)更に、熱電変換性能が熱源温度に依存することに
鑑み、殊にタービン排気温度t′lが従来の温度tlより
も高温とし、使用される半導体素子の熱電変換性能に対
して最適となる飽和圧まで膨張させ得るタービン設計と
することにより、熱電変換率η′TE自体を向上させ、総
合タービンプラント効率の一層の向上が図れる。
(B) In consideration of the fact that the thermoelectric conversion performance depends on the heat source temperature, in particular, the turbine exhaust temperature t'l is set to be higher than the conventional temperature tl, and it is optimal for the thermoelectric conversion performance of the semiconductor element used. By adopting a turbine design capable of expanding to a saturation pressure, the thermoelectric conversion rate η ′ TE itself can be improved, and the overall turbine plant efficiency can be further improved.

即ち、前記の例に従ってこれを説明すると、t′l>
tlとすることにより半導体素子の熱電変換性能η′TE
大幅に改善し、前記2%等に対して約10%程度を達成す
ることが可能である。
That is, if this is explained according to the above example, t′l>
By setting tl, the thermoelectric conversion performance η ′ TE of the semiconductor element is greatly improved, and it is possible to achieve about 10% of the above 2% or the like.

ここで、簡単のためにタービン排気が温度t′l=10
0℃の飽和蒸気の場合、タービンプラント効率η′TP
前記のηTPに比べて自ずと低下し、約41%程度となる。
Here, for simplicity, the turbine exhaust has a temperature t'l = 10
In the case of the saturated steam at 0 ° C., the turbine plant efficiency η ′ TP is naturally reduced as compared with the above η TP to about 41%.

その反面、総合タービンプラント効率は、(3)式よ
り ηTC=0.41+(1.0−0.41)×0.1≒0.47 即ち47%となり、結果として、より大きな総合タービ
ンプラント効率の改善が可能となる。
On the other hand, the total turbine plant efficiency is η TC = 0.41 + (1.0−0.41) × 0.1 ≒ 0.47 or 47% from the equation (3). As a result, it is possible to further improve the overall turbine plant efficiency.

(2)蒸気タービンプラントの所要設備の合理化が図れ
る。
(2) The required equipment of the steam turbine plant can be rationalized.

(イ)復水器が復水ライン上から不要となり、この周辺
の設備を簡素化できる。
(B) A condenser is not required on the condensate line, and the peripheral equipment can be simplified.

(ロ)温排水量が低減できるため、これに関するポンプ
等の動力源、エネルギの低減やスペースの有効利用が図
れる。
(B) Since the amount of hot waste water can be reduced, it is possible to reduce the power source such as a pump, the energy, and the effective use of the space.

(ハ)前記(1)項目の(ロ)においては、タービン排
気圧が高いため、例えば1ata以下の運転条件で設置して
いた低圧段を不要とすることができる。よって蒸気ター
ビンを大幅にコンパクト化でき、かつタービンの製作期
間及びそのコストを低減することができる。
(C) In (b) of the above item (1), since the turbine exhaust pressure is high, the low pressure stage installed under operating conditions of, for example, 1 ata or less can be eliminated. Therefore, the steam turbine can be significantly reduced in size, and the production period and cost of the turbine can be reduced.

しかも、以上の如くタービンプラント効率の改善、並
びに湿り蒸気の減少によるエロージョン防止効果等が得
られ、蒸気タービンプラント全体の信頼性、寿命が向上
する。
In addition, as described above, the efficiency of the turbine plant is improved, and the effect of preventing erosion due to the reduction of wet steam is obtained, so that the reliability and life of the entire steam turbine plant are improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による蒸気タービン発電プラントの一例
を示す基本的なプラントシステム図、第2図はそのi−
s線図、第3図は半導体熱電変換装置を示す概観及び一
部構造断面図、第4図は熱電変換装置内に配置する熱交
換器のタービン排気(高温熱源)に接触する外表面を示
す模式図、第5図はその冷却水(低温熱源)に接触する
外表面を示す模式図、第6図は第4及び5図のV−V線
断面図、第7図は各種熱電変換材料の一般的な性能指数
Z−熱源(タービン排気)温度Tの相関図、第8図は従
来の蒸気タービン発電プラントを示す基本的なプラント
システム図、第9図はそのi−s線図である。 1……半導体熱電変換装置、2……熱交換器(熱交換手
段)、3……タービン排気通路(高温部)、4……冷却
水通路(低温部)、5……蒸気タービン、6……半導体
素子(半導体熱電変換手段)、8……タービン排気ダク
ト。
FIG. 1 is a basic plant system diagram showing an example of a steam turbine power plant according to the present invention, and FIG.
FIG. 3 is an external view and a partial cross-sectional view showing the structure of the semiconductor thermoelectric converter, and FIG. 4 is an outer surface of a heat exchanger disposed in the thermoelectric converter, which contacts a turbine exhaust (high-temperature heat source). FIG. 5 is a schematic view showing an outer surface in contact with the cooling water (low-temperature heat source), FIG. 6 is a cross-sectional view taken along line VV in FIGS. 4 and 5, and FIG. FIG. 8 is a basic plant system diagram showing a conventional steam turbine power plant, and FIG. 9 is its is diagram thereof. DESCRIPTION OF SYMBOLS 1 ... Semiconductor thermoelectric converter, 2 ... Heat exchanger (heat exchange means), 3 ... Turbine exhaust passage (high temperature part), 4 ... Cooling water passage (low temperature part), 5 ... Steam turbine, 6 ... ... semiconductor element (semiconductor thermoelectric conversion means), 8 ... turbine exhaust duct.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−163746(JP,A) 実開 昭63−29964(JP,U) (58)調査した分野(Int.Cl.6,DB名) F01K 19/10 F01K 17/04 Z F01K 11/00 F28B 1/02 F01K 9/00 Z────────────────────────────────────────────────── (5) References JP-A-63-163746 (JP, A) JP-A-63-29964 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) F01K 19/10 F01K 17/04 Z F01K 11/00 F28B 1/02 F01K 9/00 Z

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蒸気タービンと、該蒸気タービンで膨張し
た蒸気を排気として受ける排気ダクト、前記蒸気タービ
ンからの前記排気を高温熱源とする高温部及び冷却水を
低温熱源とする低温部を有すると共に、該冷却水により
前記排気を凝縮して給水にする熱交換手段と、前記熱交
換手段の前記低温部及び前記高温部に、該低温部及び該
高温部間の温度差に基づいて電位差を発生するように接
続された半導体熱電変換手段とを備える蒸気タービン発
電プラント。
A steam turbine, an exhaust duct for receiving steam expanded by the steam turbine as exhaust gas, a high-temperature portion using the exhaust gas from the steam turbine as a high-temperature heat source, and a low-temperature portion using cooling water as a low-temperature heat source. A heat exchange means for condensing the exhaust gas with the cooling water to supply water, and generating a potential difference in the low temperature part and the high temperature part of the heat exchange means based on a temperature difference between the low temperature part and the high temperature part. And a semiconductor thermoelectric converter connected to the steam turbine power plant.
JP1055146A 1989-03-09 1989-03-09 Steam turbine power plant Expired - Lifetime JP2808456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055146A JP2808456B2 (en) 1989-03-09 1989-03-09 Steam turbine power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055146A JP2808456B2 (en) 1989-03-09 1989-03-09 Steam turbine power plant

Publications (2)

Publication Number Publication Date
JPH02238104A JPH02238104A (en) 1990-09-20
JP2808456B2 true JP2808456B2 (en) 1998-10-08

Family

ID=12990627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055146A Expired - Lifetime JP2808456B2 (en) 1989-03-09 1989-03-09 Steam turbine power plant

Country Status (1)

Country Link
JP (1) JP2808456B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058820A1 (en) * 1998-05-14 1999-11-18 Yyl Corporation Power generator
CN100372223C (en) * 2001-08-09 2008-02-27 张征 Thermoelectric perpetual motion machine
JP2009081970A (en) * 2007-09-27 2009-04-16 Ihi Marine United Inc Thermoelectric generation set, and power generation system using thermoelectric generation set
JP2010225702A (en) * 2009-03-19 2010-10-07 Actree Corp Thermoelectric generation system
JP2011004500A (en) * 2009-06-18 2011-01-06 Actree Corp Thermoelectric generation system using water vapor condensation latent heat
DE102011081565A1 (en) * 2011-08-25 2013-02-28 Siemens Aktiengesellschaft Gas turbine arrangement, power plant and method for its operation
JP7013611B1 (en) * 2021-06-17 2022-01-31 憲之 石村 Power generation equipment and power generation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329964U (en) * 1986-08-08 1988-02-27
JPS63163746A (en) * 1986-12-25 1988-07-07 松下電器産業株式会社 Heat drive type air conditioner

Also Published As

Publication number Publication date
JPH02238104A (en) 1990-09-20

Similar Documents

Publication Publication Date Title
US20160322553A1 (en) Electric Power Generation
US6269645B1 (en) Power plant
US6422017B1 (en) Reheat regenerative rankine cycle
US20070017207A1 (en) Combined Cycle Power Plant
US8887503B2 (en) Recuperative supercritical carbon dioxide cycle
US6367261B1 (en) Thermoelectric power generator and method of generating thermoelectric power in a steam power cycle utilizing latent steam heat
US9784248B2 (en) Cascaded power plant using low and medium temperature source fluid
JPH0445643B2 (en)
JP2808456B2 (en) Steam turbine power plant
JP2002199761A (en) Thermoelectric element power generator
CS6285A2 (en) Method of heat and electrical energy simultaneous production especially with industrial power plants
JPH0365044A (en) Combined generating method and device employing close cycle mhd generating unit
JP4486391B2 (en) Equipment for effective use of surplus steam
JPH0898569A (en) Power generation apparatus for enhancement of efficiency of thermal power generation
JPH02264101A (en) Combined cycle power plant
JP2002122006A (en) Power generation equipment utilizing low-temperature exhaust heat
Knox et al. Megawatt-scale application of thermoelectric devices in thermal power plants
JPS60138214A (en) Gas turbine composite cycle power generating plant
JPS61123703A (en) Steam power plant
JPS61126309A (en) Steam power plant
JPH0415364B2 (en)
JPS60138213A (en) Composite cycle waste heat recovery power generating plant
JPH04124411A (en) Steam turbine combine generator equipment
RU44761U1 (en) GEOTHERMAL POWER PLANT WITH BINARY CYCLE
JPH09280010A (en) Gas turbine, combined cycle plant provided with the gas turbine, and driving method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11