JPH02238104A - Steam turbine type power generation plant - Google Patents

Steam turbine type power generation plant

Info

Publication number
JPH02238104A
JPH02238104A JP5514689A JP5514689A JPH02238104A JP H02238104 A JPH02238104 A JP H02238104A JP 5514689 A JP5514689 A JP 5514689A JP 5514689 A JP5514689 A JP 5514689A JP H02238104 A JPH02238104 A JP H02238104A
Authority
JP
Japan
Prior art keywords
turbine
exhaust
temperature
heat
turbine exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5514689A
Other languages
Japanese (ja)
Other versions
JP2808456B2 (en
Inventor
Masatoshi Kudome
正敏 久留
Keiichi Iwamoto
啓一 岩本
Eishiro Sasagawa
英四郎 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1055146A priority Critical patent/JP2808456B2/en
Publication of JPH02238104A publication Critical patent/JPH02238104A/en
Application granted granted Critical
Publication of JP2808456B2 publication Critical patent/JP2808456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/04Using steam or condensate extracted or exhausted from steam engine plant for specific purposes other than heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To permit the conversion of the latent heat of the turbine exhaust to electricity and eliminate the need of a condenser by arranging a semiconductor heat-electricity converter which uses the exhaust of a steam turbine as high temperature heat source and uses cooling water as low temperature heat source onto a turbine exhaust duct. CONSTITUTION:A steam turbine 5 is driven by the steam generated in a boiler 04 into which water is supplied from a water feeding pump 02, and a power generator 5' is driven by the generated power, and a semiconductor heat- electricity converter 1 which uses the exhaust of the steam turbine 5 as high temperature heat source and uses cooling water as low temperature heat source at the part where a condenser is arranged in the conventional is arranged in a turbine exhaust duct 8. The semiconductor heat-electricity converter 1 is equipped with a number of heat exchangers 2 having each honeycomb structure which are installed so as to be interposed in each passage 3, 4 for the turbine exhaust and cooling water and N-type and P-type semiconductor elements 6 are arranged alternately in the heat exchanger 2. The latent heat of the exhaust is converted to electricity, and the turbine exhaust is condensed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蒸気タービン発電プラント、殊にタービン排
気ダクト(排気ライン)に適用する半導体へ熱電変換装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor-to-thermoelectric conversion device for use in a steam turbine power plant, in particular in a turbine exhaust duct (exhaust line).

従来の技術 従来の蒸気タービン発電プラントの基本的なプラントシ
ステム構成を第8図に基づいて説明すると、図中、符号
01は復水器、02は給水ポンプ、03は給水加熱器、
04はボイラ、及び05は蒸気タービンであって、復水
器Ol内の復水が給水ボンプ02により昇圧されて給水
処理装置(図示せず)で処理される。
BACKGROUND OF THE INVENTION The basic plant system configuration of a conventional steam turbine power plant will be explained based on FIG. 8. In the figure, 01 is a condenser, 02 is a feed water pump, 03 is a feed water heater,
04 is a boiler, and 05 is a steam turbine, in which condensate in a condenser Ol is pressurized by a feed water pump 02 and treated by a feed water treatment device (not shown).

その後、給水ヒータ03で加熱され、給水管06を経て
ボイラ04へ供給され、過熱により蒸気となる。
Thereafter, the water is heated by the feed water heater 03, supplied to the boiler 04 via the water feed pipe 06, and becomes steam due to overheating.

そして、発生蒸気は主蒸気管07を経て府記蒸気タービ
ン05に導入され膨張仕事によりタービン05を駆動し
てそのタービンに連結する発電機05’を回して電力を
発生する。
The generated steam is introduced into the Fuuki steam turbine 05 through the main steam pipe 07, and the expansion work drives the turbine 05, which turns the generator 05' connected to the turbine to generate electric power.

そこで、蒸気タービン05で仕事をした蒸気は若干の湿
り度を有する低圧湿り蒸気となり、排気ダクト08を経
て前述の如き復水器01に再投入され、冷却水により冷
却され凝縮復水する。
Therefore, the steam that has done work in the steam turbine 05 becomes low-pressure wet steam with a slight degree of humidity, is reinjected into the aforementioned condenser 01 via the exhaust duct 08, is cooled by cooling water, and is condensed and condensed.

また、第9図に示す蒸気タービンプラントのi−s線図
(エンタルピーエントロビ線図)に基づいて以上の蒸気
サイクルを説明すると、ボイラ04で発生した圧力P1
、温度te,エンタルピieの高温高圧蒸気(点a)が
、蒸気タービン05出口で圧力P,まで膨張し、温度t
I2、エンタルピi(2の湿り蒸気、つまりタービン排
気(点b)となる。
Moreover, when the above steam cycle is explained based on the i-s diagram (enthalpy enthrobi diagram) of the steam turbine plant shown in FIG. 9, the pressure P1 generated in the boiler 04 is
, temperature te, enthalpy ie, high-temperature, high-pressure steam (point a) expands at the steam turbine 05 outlet to pressure P, and temperature t
I2, the enthalpy i (2) becomes wet steam, that is, the turbine exhaust (point b).

そして・、その排気が復水器01で冷却により凝縮しエ
ンタルピicなる復水(点C)となり、復水は給水ボン
ブ02で昇圧され(点d)、給水加熱器03を経てボイ
ラ04で過熱されること(点a)となる。
Then, the exhaust gas is cooled and condensed in condenser 01 to become enthalpic condensate (point C), and the condensate is pressurized in feed water bomb 02 (point d), passes through feed water heater 03, and is heated in boiler 04. (point a).

発明が解決しようとする課題 以上述べた従来の蒸気タービン発電プラントは、しかし
次のような問題があった。
Problems to be Solved by the Invention The conventional steam turbine power plant described above, however, has the following problems.

蒸気タービンプラントは熱エネルギを保有する高温高圧
の蒸気をタービンで膨張し機械エネルギに一旦変え、発
電機を回して電気を発生するが蒸気の保有するエネルギ
の約60%以上が潜熱であり、これを機械仕事に変換出
来ない。
A steam turbine plant expands high-temperature, high-pressure steam, which contains thermal energy, in a turbine and converts it into mechanical energy, which then turns a generator to generate electricity. Approximately 60% or more of the energy contained in steam is latent heat. cannot be converted into mechanical work.

即ち、この場合の蒸気流量をWとすると、蒸気タービン
プラントの総人熱はW・(ie−ic) (第9ずオ 
. 図参照)となるが、そのうちW・(k−10)に相当す
る凝縮潜熱が復水器Olへ、厳密には復水器01を通る
冷却水へ棄てられている。
That is, if the steam flow rate in this case is W, the total human heat of the steam turbine plant is W・(ie-ic) (9th
.. (see figure), of which the latent heat of condensation corresponding to W·(k-10) is discarded to the condenser Ol, more precisely to the cooling water passing through the condenser 01.

このため、最新鋭の発電プラントでも、(タービンプラ
ント効率η7p )= (ie − i1J)/(ie
 − ic)X 10G%は50%以下となり発電効率
は低いのが現状であ?。
Therefore, even in the most advanced power plants, (turbine plant efficiency η7p) = (ie − i1J)/(ie
-ic)X 10G% is less than 50%, and the power generation efficiency is currently low? .

例えば高性能の蒸気タービンでは再熱再生方式を採用し
、排気圧0.05ata程度まで膨張し、湿り度約10
%程度の飽和蒸気で入熱の約55%が復水器に棄てられ
ており、前記タービンプラント効率η■,は約45%程
度である。
For example, high-performance steam turbines use a reheat regeneration system, which expands to an exhaust pressure of about 0.05 ata and a humidity level of about 10.
% of the heat input is wasted in the condenser, and the turbine plant efficiency η■ is about 45%.

そこで、本発明の目的は、以上の復水器における多大な
廃棄熱を回収し有効利用すべく、その熱を電力に変換し
て取出すことにより総合タービンプラント効率の向上を
図る装置を提供することである。
Therefore, an object of the present invention is to provide a device that improves overall turbine plant efficiency by converting the heat into electric power and extracting it in order to recover and effectively utilize the large amount of waste heat in the condenser. It is.

課題を解決するための手段 本発明は、このような従来の課題を解決するために、蒸
気タービン発電プラントにおいて、蒸気タービンの排気
を高温熱源とし、冷却水を低温熱源とする半導体熱電変
換装置をタービン排気ダクトに設置し、タービン排気の
保有潜熱を電気に変換すると共に、タービン排気を凝縮
して復水器を不要としたものである。
Means for Solving the Problems In order to solve these conventional problems, the present invention provides a semiconductor thermoelectric conversion device in a steam turbine power generation plant that uses the exhaust of the steam turbine as a high-temperature heat source and uses cooling water as a low-temperature heat source. It is installed in the turbine exhaust duct and converts the latent heat of the turbine exhaust into electricity, as well as condensing the turbine exhaust, eliminating the need for a condenser.

作用 ?のような手段によれば、従来復水器にて廃棄されてい
たまだ高温のタービン排気の有効な潜熱が、半導体熱電
変換装置により電気に変換されるので、その電気エネル
ギに相当する熱エネルギ分の回収により、総合タービン
プラント効率η■。
Effect? According to such a method, the effective latent heat of the still-hot turbine exhaust, which was conventionally discarded in the condenser, is converted into electricity by the semiconductor thermoelectric conversion device, so the thermal energy equivalent to that electrical energy is converted into electricity. By recovering the total turbine plant efficiency η■.

を高めることができる。can be increased.

実施例 以下第1〜7図を参照して、本発明の一実施例について
詳述する。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to FIGS. 1 to 7.

しかして本発明によれば第1及び2図に示す基本的な蒸
気タービンサイクルにおいて、従来の如き復水器01(
第8図参照)は不要とされ、その代りに蒸気タービン5
の排気を高温熱源とし、かつ冷却水を低温熱源とする半
導体熱電変換装置lがタービン排気ダクト8に設置され
ている。
According to the present invention, however, in the basic steam turbine cycle shown in FIGS. 1 and 2, the conventional condenser 01 (
(see Figure 8) is not required, and instead the steam turbine 5
A semiconductor thermoelectric conversion device 1 is installed in the turbine exhaust duct 8, using the exhaust gas as a high-temperature heat source and cooling water as a low-temperature heat source.

この半導体熱電変換装置1は排気の保有潜熱を電気に変
換すると共に、タービン排気を凝縮するものである。
This semiconductor thermoelectric conversion device 1 converts the latent heat of exhaust gas into electricity and condenses turbine exhaust gas.

即ち、該変換装置1の構造組成を第3〜6図に基づいて
説明すると、第3図は変換装置の概観を示し、第4及び
5図は変換装置内の熱交換器のタービン排気側接触面(
第4図)及び冷却水側接触面(第5図)を夫々示す。ま
た、第6図は前記半導体素子材、っまり熱電変換材料の
配置及びその接続方式の例を示しており、プレート型熱
交に類似して伝熱効率を高めるために溝付或いはハニカ
ム構造2a等を有する多数の熱交換器2 (第3〜5図
参照)が、やはり熱効率の点から対向して流動する高温
熱源に供するタービン排気と低温熱源に供する冷却水と
の各通路3,4に挾まれて、該変換装置!内に配列され
ている。
That is, the structural composition of the converter 1 will be explained based on FIGS. 3 to 6. FIG. 3 shows an overview of the converter, and FIGS. 4 and 5 show the turbine exhaust side contact of the heat exchanger in the converter. surface(
Figure 4) and cooling water side contact surface (Figure 5) are shown, respectively. Further, FIG. 6 shows an example of the arrangement of the semiconductor element material, namely the thermoelectric conversion material, and its connection method, and similar to a plate type heat exchanger, a grooved or honeycomb structure 2a etc. is used to improve heat transfer efficiency. A large number of heat exchangers 2 (see Figs. 3 to 5) having a large number of heat exchangers 2 (see Figs. 3 to 5) are interposed in each passage 3, 4 for the turbine exhaust gas for the high temperature heat source and the cooling water for the low temperature heat source, which flow oppositely from the point of view of thermal efficiency. Come on, the conversion device! arranged within.

なお、変換装置1底郎にはタービン排気通路3に連絡す
る復水タンク(溜)ビが設けられている。
Note that the converter 1 is provided with a condensate tank (reservoir) connected to the turbine exhaust passage 3.

これらのプレート熱交型っまり平板状の熱交換器2内(
第6図参照)にはN形及びP形の半導体素子6が交互に
配列されており、その原理はこれら2種の素子を夫々一
方を高嚇部(タービン排気通路3)側におき、他方を低
温部(冷却水通路4)側において、両高温郎を連結する
とき、N形、P形の素子の相違により両低温部の間に電
位差(電圧)接続するようにしたものである。
These plate heat exchanger type flat heat exchangers 2 (
(see Fig. 6), N-type and P-type semiconductor elements 6 are arranged alternately, and the principle is that one of these two types of elements is placed on the high threat part (turbine exhaust passage 3) side, and the other When connecting both high-temperature tubes on the low-temperature section (cooling water passage 4) side, a potential difference (voltage) is connected between the two low-temperature sections due to the difference in N-type and P-type elements.

なお、図中、符号6aは各素子の高温接合部、6bは低
温接合部、及び6cは接続電極を夫々示し、接続電極6
cを通して所定の電圧が得られるように、N形、P形の
半導体素子6が多数直列に接続され、かつ高温熱源温度
T’l2と低温熱源温度Tcとの差が生じることにより
、熱交換器2を介して高温側から低温側へ流れる熱の一
郎がN形、P形半導体素子6にて直接電気に変換し、残
りの熱量は冷却水に棄てることとなる。
In the figure, reference numeral 6a indicates a high-temperature junction of each element, 6b indicates a low-temperature junction, and 6c indicates a connection electrode.
A large number of N-type and P-type semiconductor elements 6 are connected in series so that a predetermined voltage can be obtained through the heat exchanger. The heat flowing from the high temperature side to the low temperature side through the N-type and P-type semiconductor elements 6 is directly converted into electricity, and the remaining heat is discarded into the cooling water.

従って、このように半導体素子6からなる熱交換器2、
冷却水通路4、及び復水タンク1′を内包する熱電変換
装置lは、発電装置であると同時に従来の復水器01の
機能を担う凝縮器でもある。
Therefore, the heat exchanger 2 made of the semiconductor element 6 in this way,
The thermoelectric conversion device 1, which includes the cooling water passage 4 and the condensate tank 1', is not only a power generation device but also a condenser that performs the function of the conventional condenser 01.

また、第7図に示すようにN形、P形の半導体素子6の
熱電変換性能に関しては、各種熱電変換材料A−F(た
だし、材料を特定することが本旨ではないのでこの場合
各材料名は省略する)の性能指数Zと温度(差)Tとに
依存するので、高い熱電変換効率ηエ。を得るためには
、素子材自体の性能並びにその組合せの良否による最適
値、つまり高い性能指数Zとかつ広い温度範囲でなるべ
く大きい最適温度Tとを選定することが必要である。
In addition, as shown in FIG. 7, regarding the thermoelectric conversion performance of the N-type and P-type semiconductor elements 6, various thermoelectric conversion materials A to F (however, the main purpose is not to specify the material, so in this case, each material name is (omitted) depends on the figure of merit Z and temperature (difference) T, so the thermoelectric conversion efficiency is high. In order to obtain this, it is necessary to select an optimum value based on the performance of the element materials themselves and the quality of their combinations, that is, a high figure of merit Z and an optimum temperature T that is as large as possible over a wide temperature range.

次にその作用について説明する。Next, its effect will be explained.

半導体熱電変換装置1内のプレート型熱交に類似した多
数の熱交換器2の一方の接触面には、排気ダクト8を経
てタービン排気通路3内に高温熱源となるタービン排気
を流動させ、同時に他方の接触面には、前記タービン排
気に対向して冷却水通路4内に低温熱源となる冷却水を
流動させる。
At one contact surface of a large number of heat exchangers 2 similar to plate-type heat exchangers in the semiconductor thermoelectric conversion device 1, turbine exhaust gas, which serves as a high-temperature heat source, flows through an exhaust duct 8 into a turbine exhaust passage 3, and at the same time On the other contact surface, cooling water serving as a low-temperature heat source is made to flow in the cooling water passage 4, facing the turbine exhaust gas.

この熱源温度の差の発生により、特にタービン排気の保
有潜熱の一郎が復水タンクビに導入される前に、各熱交
換器2内に直列に配列されたN来の発電機5′と共にそ
の電圧、即ち電気エネルギを電力需要側の負荷7に供給
できる。
Due to the generation of this difference in heat source temperature, in particular, before the latent heat retained in the turbine exhaust gas is introduced into the condensing tank, the voltage of the generator 5' arranged in series in each heat exchanger 2 is That is, electrical energy can be supplied to the load 7 on the power demand side.

換言すれば、電気エネルギとして有効に取出された(回
収された)潜熱の一郎熱量分だけ総合ター?ンプラント
効率η1oを高めることが可能になる。
In other words, is the total amount of heat equivalent to the amount of latent heat effectively extracted (recovered) as electrical energy? This makes it possible to increase the plant efficiency η1o.

この場合、例えばタービン排気温度が従来より設定され
ているtXのときのタービンプラント効率をη.,4と
し、また変換装置l1厳密には総熱交換器2の入熱に対
する電気出力の割合(熱電変換率)をη■.とすると、
前記η1oは次式で求められる。
In this case, for example, the turbine plant efficiency when the turbine exhaust temperature is tX, which is conventionally set, is set to η. , 4, and to be more precise, the ratio of electrical output to total heat exchanger 2 heat input (thermoelectric conversion rate) is η■. Then,
The above η1o is determined by the following equation.

η  = η  +(1.0−η  )×η  ・ ・
 φ(1)TC     TF         TP
     TE?だし(1.0−η■,)の値は冷却水
通路4の冷却水に棄て去られる潜熱の損失(排熱)割合
を示す。
η = η + (1.0-η)×η ・ ・
φ(1)TC TF TP
TE? The value of (1.0-η■,) indicates the rate of latent heat loss (exhaust heat) that is discarded to the cooling water in the cooling water passage 4.

その後、タービン排気通路3を通過した排気は凝縮して
、変換装置!底部に設けた復水タンク1′内に復水とし
て溜められ、再び給水に供される。
After that, the exhaust gas that passed through the turbine exhaust passage 3 is condensed and converted into a converter! The water is stored as condensate in a condensate tank 1' provided at the bottom, and is supplied to the water supply again.

しかして、その熱交換器2に使用される半導体素子(熱
電変換材料)6は、第7図に示す如くタービン排気温度
tQ付近をカバーする素子Bが選択されることとなる。
Therefore, as the semiconductor element (thermoelectric conversion material) 6 used in the heat exchanger 2, an element B that covers around the turbine exhaust temperature tQ is selected as shown in FIG.

しかしながら、実際上のタービン排気温度tQは100
℃以下であって、このような低温度域においては高い熱
電変換性能を有する熱電変換材料があまり多くなく、ま
た仮に素子Bを選択できても、タービン排気温度はその
素子B自体の性能指数Zビンプラント(通常その排気温
度は50℃以下)に本実施例の熱電変換装置lを併設し
ても総合タービンプラント効率改善の効果は極めて少な
い。
However, the actual turbine exhaust temperature tQ is 100
℃ or below, and there are not many thermoelectric conversion materials that have high thermoelectric conversion performance in such a low temperature range, and even if element B can be selected, the turbine exhaust temperature will be lower than the figure of merit Z of element B itself. Even if the thermoelectric conversion device 1 of this embodiment is installed in a turbine plant (usually, the exhaust temperature thereof is 50° C. or lower), the effect of improving the overall turbine plant efficiency is extremely small.

そこで、この対策として本実施例によれば、多少のター
ビンプラント効率η.,を犠牲にしてもタービン排気温
度をTl2からT’&(第2図b′参照)に弓上げるよ
うに蒸気タービン5を設計することにより、総合タービ
ンプラント効率を増加させることができる。
Therefore, as a countermeasure to this problem, according to this embodiment, the turbine plant efficiency η. , the overall turbine plant efficiency can be increased by designing the steam turbine 5 to raise the turbine exhaust temperature from Tl2 to T'& (see Figure 2 b'), even at the expense of .

即ち、t′Cなる排気温度は排気圧を従来の値よりも上
げることにより得られる、ほぼ排気圧P,′に相当する
飽和温度である。そして、この排気温度t′gのときの
タービンプラント効率をη′T,=(ie − i’Q
)/ (ie − ic)X 100%、また人熱に対
する電気出力の変換率をη’TEとすると、まず前述の
如き理由から、Py’ > Pt, i’e>iクの下
で、ηTc〉 ηTP≧η’TP・・・(2)(ただし
T& =  T’ffノとき、” TP= ””TP)
となる。
That is, the exhaust temperature t'C is a saturation temperature obtained by raising the exhaust pressure above the conventional value and approximately corresponds to the exhaust pressure P,'. Then, the turbine plant efficiency at this exhaust temperature t'g is η'T, = (ie − i'Q
) / (ie - ic) 〉 ηTP≧η'TP...(2) (However, when T& = T'ff, "TP=""TP)
becomes.

このことより、η′.,は通常ηT,よりも下廻る高と
なる近傍においては、熱電変換率はηTEからη’TE
に値が上昇するため、 ηTC一η’TP+(1.0−η′TP)×η’TE・
・・(3)となることより、(3)式〉(1)式を満足
するタービン排気温度T′gの値を決定すれば良い。
From this, η′. , is usually higher than ηT, and the thermoelectric conversion rate increases from ηTE to η'TE.
Since the value increases, ηTC - η'TP + (1.0 - η'TP) × η'TE・
...(3), it is sufficient to determine the value of the turbine exhaust temperature T'g that satisfies the equation (3)>(1).

発明の効果 以上詳述したように本発明によれば、次の如き効果を得
ることかできる。
Effects of the Invention As detailed above, according to the present invention, the following effects can be obtained.

(1)  総合タービンプラント効率の改善を図ること
ができる。
(1) Overall turbine plant efficiency can be improved.

(イ)従来、復水器に棄てられていたタービン廃?を高
温熱源とし、また冷却水を低温熱源とするので、半導体
熱電変換装置でタービン排気の保有潜熱の一部を直接電
気に変換することができるため、タービンプラント効率
が向上する。
(a) Turbine waste that was conventionally disposed of in the condenser? Since the turbine is used as a high-temperature heat source and the cooling water is used as a low-temperature heat source, the semiconductor thermoelectric conversion device can directly convert a portion of the latent heat held in the turbine exhaust into electricity, improving turbine plant efficiency.

1つの例としてタービンプラント効率ηTP一45%な
る蒸気タービンのタービン排熱(損失)は(1.0−η
■, )40.55即ち55%程度ある。
As an example, the turbine exhaust heat (loss) of a steam turbine with a turbine plant efficiency ηTP - 45% is (1.0-η
■, )40.55, or about 55%.

このプラントに復水器の代わりに該変換装置乙ても を設定#t唸、高温熱源温度(タービン排気温度)が約
40℃と低く、また低温熱源温度(冷却水温度)約20
℃との温度差も少ない。
The converter is installed in this plant instead of a condenser.The high-temperature heat source temperature (turbine exhaust temperature) is as low as approximately 40°C, and the low-temperature heat source temperature (cooling water temperature) is approximately 20°C.
There is also little difference in temperature from ℃.

このため、熱電変換効率η■6は低くなり、数%(例え
ば2%)程度である。
For this reason, the thermoelectric conversion efficiency η■6 becomes low, on the order of several percent (for example, 2%).

従って、総合タービンプラント効率は、(1)式より ηTc= 0.45+ (1.0− 0.45)X 0
.02# 0.46即ち45〜46%程度の向上が認め
られる。
Therefore, from equation (1), the overall turbine plant efficiency is ηTc = 0.45+ (1.0- 0.45)X 0
.. 02# 0.46, that is, an improvement of about 45 to 46% is observed.

(口)更に、熱電変換性能が熱源温度に依存することに
鑑み、殊にタービン排気温度t′gが従来の温度tI2
よりも高温とし、使用される半導体素子の熱電変換性薯
普して最適となる飽和圧まで膨張させ得るタービン設計
とすることにより、熱電変換率η′.6自体を向上させ
、総合タービンプラント効率の一層の向上が図れる。
(Example) Furthermore, considering that the thermoelectric conversion performance depends on the heat source temperature, it is particularly important that the turbine exhaust temperature t'g is lower than the conventional temperature tI2.
The thermoelectric conversion rate η′. 6 itself, and the overall turbine plant efficiency can be further improved.

即ち、前記の例に従ってこれを説明すると、t’c >
tcとすることにより半導体素子の熱電変換性能η’T
Eが大幅に改善し、前記2%等に対して約10%程度を
達成することが可能である。
That is, to explain this according to the above example, t'c >
By setting tc, the thermoelectric conversion performance η'T of the semiconductor element
E is significantly improved, and it is possible to achieve about 10% compared to the above-mentioned 2%.

ここで、簡単のためにタービン排気が温度t’a= i
oo℃の飽和蒸気の場合、タービンプランド効率η′ 
は前記のηTPに比べて自ず4;rP と低下し、約輯%程度となる。
Here, for simplicity, the temperature of the turbine exhaust is t'a=i
In the case of saturated steam at oo°C, the turbine plant efficiency η′
is naturally lower than the above-mentioned ηTP to 4;rP, which is about 1%.

その反面、総合タービンプラント効率は、(3)式より ηTc= 0.41+(1.0−0.41)xo.1=
0.47即ち47%となり、結果として、より大きな総
合タービンプラント効率の改善が可能となる。
On the other hand, the overall turbine plant efficiency is calculated as follows from equation (3): ηTc=0.41+(1.0-0.41)xo. 1=
0.47 or 47%, resulting in a greater overall turbine plant efficiency improvement.

(2)蒸気タービンプラントの所要設備の合理化が図れ
る。
(2) The required equipment for a steam turbine plant can be rationalized.

(イ)復水器が復水ライン上から不要となり、この周辺
の設備を簡素化できる。
(a) A condenser is no longer required on the condensate line, and the surrounding equipment can be simplified.

(口)温排水量が低減できるため、これに関するポンプ
等の動力源、エネルギの低減やスペースの有効利用が図
れる。
(Example) Since the amount of heated waste water can be reduced, it is possible to reduce the power source and energy for pumps, etc., and to make effective use of space.

(ハ)館記(1)項目の(口)においては、タービン排
気圧が高いため、例えば1 ata以下の運転条件で設
置していた低圧段を不要とすることができる。よって蒸
気タービンを大幅にコンパクト化でき、かつタービンの
製作期間及びそのコストを低減することができる。
(C) Regarding item (1), since the turbine exhaust pressure is high, it is possible to eliminate the need for a low-pressure stage that has been installed under operating conditions of, for example, 1 ata or less. Therefore, the steam turbine can be made significantly more compact, and the manufacturing period and cost of the turbine can be reduced.

しかも、以上の如くタービンプラント効率ト全体の信頼
性、寿命が向上する。
Moreover, as described above, the reliability and life of the entire turbine plant are improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による蒸気タービン発電プラントの一例
を示す基本的なプラントシステム図、第2図はそのi−
s線図、第3図は半導体熱電変換装置を示す概観及び一
部構造断面図、第4図は熱電変換装置内に配置する熱交
換器のタービン排気(高温熱源)に接触する外表面を示
す模式図、第5図はその冷却水(低温熱源)に接触する
外表面を示す模式図、第6図は第4及び5図の■−V線
断面図、第7図は各種熱電変換材料の一般的な性能指数
Z熱源(タービン排気)温度Tの相関図、第8図は従来
の蒸気タービン発電プラントを示す基本的なプラントシ
ステム図、第9図はそのi−s線図である。 ■・・半導体熱電変換装置、2・・熱交換器、3・・タ
ービン排気通路、4・・冷却水通路、5・・蒸気タービ
ン、6・・半導体素子、8・・タ(ほかl名) 第 図 1′ イlkタンク 第 図 第 B 図 エンFロごS
Fig. 1 is a basic plant system diagram showing an example of a steam turbine power generation plant according to the present invention, and Fig. 2 is an i-
s diagram, Figure 3 is an overview and partial structural cross-sectional view of a semiconductor thermoelectric conversion device, and Figure 4 shows the outer surface of a heat exchanger placed in the thermoelectric conversion device that comes into contact with the turbine exhaust (high-temperature heat source). Schematic diagram, Figure 5 is a schematic diagram showing the outer surface in contact with the cooling water (low-temperature heat source), Figure 6 is a sectional view taken along the ■-V line in Figures 4 and 5, and Figure 7 is a diagram showing the outer surface in contact with the cooling water (low-temperature heat source). A correlation diagram of a general figure of merit Z and a heat source (turbine exhaust) temperature T, FIG. 8 is a basic plant system diagram showing a conventional steam turbine power generation plant, and FIG. 9 is an i-s diagram thereof. ■...Semiconductor thermoelectric conversion device, 2...Heat exchanger, 3...Turbine exhaust passage, 4...Cooling water passage, 5...Steam turbine, 6...Semiconductor element, 8...Ta (and other names) Figure 1' Tank Figure B Figure 1'

Claims (1)

【特許請求の範囲】[Claims] 蒸気タービンの排気を高温熱源とし、冷却水を低温熱源
とする半導体熱電変換装置をタービン排気ダクトに設置
し、タービン排気の保有潜熱を電気に変換すると共に、
タービン排気を凝縮して復水器を不要としたことを特徴
とする蒸気タービン発電プラント。
A semiconductor thermoelectric conversion device that uses steam turbine exhaust as a high-temperature heat source and cooling water as a low-temperature heat source is installed in the turbine exhaust duct to convert latent heat in the turbine exhaust into electricity.
A steam turbine power generation plant characterized by condensing turbine exhaust gas and eliminating the need for a condenser.
JP1055146A 1989-03-09 1989-03-09 Steam turbine power plant Expired - Lifetime JP2808456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055146A JP2808456B2 (en) 1989-03-09 1989-03-09 Steam turbine power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055146A JP2808456B2 (en) 1989-03-09 1989-03-09 Steam turbine power plant

Publications (2)

Publication Number Publication Date
JPH02238104A true JPH02238104A (en) 1990-09-20
JP2808456B2 JP2808456B2 (en) 1998-10-08

Family

ID=12990627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055146A Expired - Lifetime JP2808456B2 (en) 1989-03-09 1989-03-09 Steam turbine power plant

Country Status (1)

Country Link
JP (1) JP2808456B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058820A1 (en) * 1998-05-14 1999-11-18 Yyl Corporation Power generator
CN100372223C (en) * 2001-08-09 2008-02-27 张征 Thermoelectric perpetual motion machine
WO2009041020A1 (en) * 2007-09-27 2009-04-02 Ihi Marine United Inc. Thermoelectric power generator and power generating system using thermoelectric power generator
JP2010225702A (en) * 2009-03-19 2010-10-07 Actree Corp Thermoelectric generation system
JP2011004500A (en) * 2009-06-18 2011-01-06 Actree Corp Thermoelectric generation system using water vapor condensation latent heat
JP2014524543A (en) * 2011-08-25 2014-09-22 シーメンス アクチエンゲゼルシヤフト Gas turbine device, power plant and method of operating the power plant
JP2023000206A (en) * 2021-06-17 2023-01-04 憲之 石村 Power generation device and power generation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329964U (en) * 1986-08-08 1988-02-27
JPS63163746A (en) * 1986-12-25 1988-07-07 松下電器産業株式会社 Heat drive type air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329964U (en) * 1986-08-08 1988-02-27
JPS63163746A (en) * 1986-12-25 1988-07-07 松下電器産業株式会社 Heat drive type air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058820A1 (en) * 1998-05-14 1999-11-18 Yyl Corporation Power generator
US6269645B1 (en) 1998-05-14 2001-08-07 Yyl Corporation Power plant
CN100372223C (en) * 2001-08-09 2008-02-27 张征 Thermoelectric perpetual motion machine
WO2009041020A1 (en) * 2007-09-27 2009-04-02 Ihi Marine United Inc. Thermoelectric power generator and power generating system using thermoelectric power generator
JP2009081970A (en) * 2007-09-27 2009-04-16 Ihi Marine United Inc Thermoelectric generation set, and power generation system using thermoelectric generation set
JP2010225702A (en) * 2009-03-19 2010-10-07 Actree Corp Thermoelectric generation system
JP2011004500A (en) * 2009-06-18 2011-01-06 Actree Corp Thermoelectric generation system using water vapor condensation latent heat
JP2014524543A (en) * 2011-08-25 2014-09-22 シーメンス アクチエンゲゼルシヤフト Gas turbine device, power plant and method of operating the power plant
US9806247B2 (en) 2011-08-25 2017-10-31 Siemens Aktiengesellschaft Gas turbine arrangement, power plant and method for the operation thereof
JP2023000206A (en) * 2021-06-17 2023-01-04 憲之 石村 Power generation device and power generation method

Also Published As

Publication number Publication date
JP2808456B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
US10249809B2 (en) Electric power generation
US20070017207A1 (en) Combined Cycle Power Plant
US20060174622A1 (en) Electrical generating system using solar energy and gas turbine
AU2009329431B2 (en) Electricity generation device with several heat pumps in series
EP0997613A1 (en) Power generator
US20140075937A1 (en) Cascaded power plant using low and medium temperature source fluid
ITFI20120273A1 (en) "A CONCENTRATED SOLAR THERMAL POWER PLANT AND METHOD"
KR20130086397A (en) The power efficiency improvement by using absorption heat pump in power plant system
JPH02238104A (en) Steam turbine type power generation plant
JP2002199761A (en) Thermoelectric element power generator
KR101499810B1 (en) Hybrid type condenser system
CN108843406B (en) Flue gas reheating type disc type photo-thermal and gas-steam combined cycle power generation system
US20100095648A1 (en) Combined Cycle Power Plant
JP4486391B2 (en) Equipment for effective use of surplus steam
CN111600512A (en) Nuclear reactor power supply system with energy gradient utilization function
CN115749998A (en) Device system for electrically coupling and heating molten salt by flue gas and new energy abandoned electricity and application method
JP2002122006A (en) Power generation equipment utilizing low-temperature exhaust heat
Knox et al. Megawatt-scale application of thermoelectric devices in thermal power plants
JPS61123703A (en) Steam power plant
JPS61126309A (en) Steam power plant
JP2001055906A (en) Combined power generating method and system therefor
JPS63235650A (en) Thermoelectric combination feed system
JPS635102A (en) Exhaust heat recovery power plant
CN218509559U (en) Medium-pressure industrial steam supply system with auxiliary temperature and pressure rise through fused salt coupling electricity
JPS59126005A (en) Power generating system supplying heat energy simultaneously

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11