JPS60138213A - Composite cycle waste heat recovery power generating plant - Google Patents

Composite cycle waste heat recovery power generating plant

Info

Publication number
JPS60138213A
JPS60138213A JP24928783A JP24928783A JPS60138213A JP S60138213 A JPS60138213 A JP S60138213A JP 24928783 A JP24928783 A JP 24928783A JP 24928783 A JP24928783 A JP 24928783A JP S60138213 A JPS60138213 A JP S60138213A
Authority
JP
Japan
Prior art keywords
pressure
steam
waste heat
low
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24928783A
Other languages
Japanese (ja)
Other versions
JPS6365807B2 (en
Inventor
Takeshi Suzuki
剛 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP24928783A priority Critical patent/JPS60138213A/en
Publication of JPS60138213A publication Critical patent/JPS60138213A/en
Publication of JPS6365807B2 publication Critical patent/JPS6365807B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/185Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using waste heat from outside the plant

Abstract

PURPOSE:To increase an amount of waste heat recovered, by a method wherein a high pressure feed water heater is heated by means of high-temperature high-pressure steam bled from the high pressure stage of a steam turbine, and drain produced therein is fed to a waste heat recovery boiler for evaporation to charge it to the high-pressure stage of the steam turbine. CONSTITUTION:A waste heat recovery boiler 7 of a titled plant is constituted such that a high-pressure steam heating pipe 10, a high-pressure boiler water heating pipe 11, a high-pressure feed water preheating pipe 12, a low-pressure steam heating pipe 13, a low-pressure boiler water heating pipe 14 and a low-pressure feed water preheating pipe 15 are aligned, in order named, from the inlet side, and steam, generated in low-pressure and high-pressure steam drums 17 and 26, is charged to the middle-pressure stage and the high-pressure of a steam turbine 18. In which case, a high-pressure feed water heater 101 is located in a piping 100 running between a high-pressure feed water pump 26 and the high-pressure steam drum 26, and feed water is heated by means of steam bled at A from the high-pressure stage of the steam turbine 18 which serves as a heat source. Drain 102 produced therein is evaporated in a heating pipe 104, and the generated steam is charged to the high pressure side of the steam turbine 18 through a gas liquid separator 105.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は複合サイクル廃熱回収方式の発電プラントに係
り、特にクリーンな排ガスを排出するガスタービンの廃
熱を回収して発電を行う発電プラントに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a combined cycle waste heat recovery type power plant, and more particularly to a power plant that generates electricity by recovering waste heat from a gas turbine that discharges clean exhaust gas.

〔発明の背景〕[Background of the invention]

第1図に廃熱回収方式のガスタービン複合サイクル発電
プラントの一般的な例を示す。第1図においテ、燃焼用
空気lがコンプレッサ2に与えられ、圧縮された空気は
燃焼器3に供給され、燃料4の燃焼に供される。次いで
、燃焼ガスはガスタービン5に与えられて仕事をし、排
ガス6として廃熱回収ボイラ7を介して煙突(図示せず
)から排出される。29は発電機を示している。
Figure 1 shows a typical example of a gas turbine combined cycle power plant using the waste heat recovery method. In FIG. 1, combustion air 1 is supplied to a compressor 2, and the compressed air is supplied to a combustor 3, where it is used to burn fuel 4. Next, the combustion gas is given to a gas turbine 5 to do work, and is discharged as exhaust gas 6 from a chimney (not shown) via a waste heat recovery boiler 7. 29 indicates a generator.

廃熱回収ボイラ7にはガスタービン5からの排ガス6の
保有する廃熱を利用する発電システムが設けられている
。この廃熱回収方式として良く知られているものに多段
圧力式ランキンサイクルがある。これは廃熱回収ボイラ
7において入口側から出口側に向かって排ガス温度が徐
々に降下するに応じた圧力で蒸気を発生させ、その発生
蒸気をその圧力に応じたタービンの段落に投入してター
ビンを効率よく駆動させるものである。一般にガスター
ビンの場合には高低の2段圧力式が経済的にも限度とさ
れている。第1図に示す例においても高圧側と低圧側の
2段で設けられている。
The waste heat recovery boiler 7 is provided with a power generation system that utilizes waste heat contained in the exhaust gas 6 from the gas turbine 5. A well-known waste heat recovery system is the multi-stage pressure Rankine cycle. In this system, steam is generated in the waste heat recovery boiler 7 at a pressure corresponding to the temperature of the exhaust gas gradually decreasing from the inlet side to the outlet side, and the generated steam is input into a turbine stage corresponding to the pressure. This is to drive the motor efficiently. In general, in the case of gas turbines, a two-stage high and low pressure type is considered to be the economical limit. In the example shown in FIG. 1, there are also two stages, one on the high pressure side and one on the low pressure side.

すなわち、システムとしては廃熱回収ボイラ7内の高温
度域の廃熱を利用する発電システム(以下、高温側シス
テム)8と、低温度域の廃熱を利用する発電システム(
以下、低温側システム)9とより構成されている。つま
り、高温度域ではエクセルギー(機械的有効仕事と定義
される。)が高く、低温度域のエクセルギーが低いので
それぞれに応じて有効なエネルギーに変換するようにな
っている。
In other words, the systems include a power generation system (hereinafter referred to as high temperature side system) 8 that uses waste heat in the high temperature range in the waste heat recovery boiler 7, and a power generation system (hereinafter referred to as the high temperature side system) that uses waste heat in the low temperature range (
The low-temperature side system) 9 below. In other words, the exergy (defined as mechanical effective work) is high in the high temperature range, and the exergy is low in the low temperature range, so they are converted into useful energy accordingly.

廃熱回収ボイラ7内には入口側から出口側に向かって(
排ガス6の高温度域から低温度域に向かって)高圧蒸気
加熱管10、高圧ボイラ水加熱管11、高圧給水予熱管
12、低圧蒸気加熱管13、低圧ボイラ水加熱管14、
低圧給水予熱管15が順次配列されている。なお、低圧
給水予熱管15は後述する低圧給水加熱器16と同等の
役目を果たすもので、低圧給水加熱器t6を使用する場
合には不要であり、その場合には低圧給水加熱器16の
出口を低圧蒸気ドラム17に配管すればよい。
Inside the waste heat recovery boiler 7, from the inlet side to the outlet side (
(from the high temperature range to the low temperature range of the exhaust gas 6) high pressure steam heating pipe 10, high pressure boiler water heating pipe 11, high pressure feed water preheating pipe 12, low pressure steam heating pipe 13, low pressure boiler water heating pipe 14,
Low pressure water supply preheating pipes 15 are arranged in sequence. Note that the low-pressure feed water preheating pipe 15 plays the same role as the low-pressure feed water heater 16 described later, and is unnecessary when using the low-pressure feed water heater t6. may be piped to the low pressure steam drum 17.

さて、蒸気タービン18から排出された排気は復水器1
9により復水され、復水ポンプ20を介して脱気器21
に送られる。脱気器21において蒸気タービン18の中
段からの抽気により加熱されて脱気された復水け、低圧
給水ポンプ22を介して低圧給水加熱器16に送られる
。ここで、上述の通り低圧給水加熱器16により予熱さ
れるか、あるいは低圧給水予熱管15により予熱された
のち低圧蒸気ドラム17に給水される。低圧蒸気ドラム
17内のボイラ水は缶水循環ポンプ23を介して低圧ボ
イラ水加熱管14により強制循環加熱される。
Now, the exhaust gas discharged from the steam turbine 18 is transferred to the condenser 1
9, the water is condensed through a condensate pump 20, and then sent to a deaerator 21 through a condensate pump 20.
sent to. The condensate water is heated and deaerated by the air extracted from the middle stage of the steam turbine 18 in the deaerator 21 and sent to the low pressure feed water heater 16 via the low pressure feed water pump 22 . Here, water is supplied to the low pressure steam drum 17 after being preheated by the low pressure feed water heater 16 or by the low pressure feed water preheating pipe 15 as described above. The boiler water in the low pressure steam drum 17 is forcedly circulated and heated by the low pressure boiler water heating pipe 14 via the can water circulation pump 23 .

低圧蒸気ドラム17で発生された低圧発生蒸気は、低圧
蒸気加熱管13により加熱されたのち配管24を通じて
蒸気タービン18の中段に投入される。一方、低圧蒸気
ドラム17のボイラ水は高圧給水ポンプ25を介して高
圧給水予熱管12に送られて加熱され、高圧蒸気ドラム
26に給水される。高圧蒸気ドラム26のボイラ水は缶
水循環ポンプ27により、高圧ボイラ水加熱管11に送
られて強制循環加熱される。
The low-pressure steam generated in the low-pressure steam drum 17 is heated by the low-pressure steam heating pipe 13 and then introduced into the middle stage of the steam turbine 18 through the pipe 24. On the other hand, the boiler water in the low-pressure steam drum 17 is sent to the high-pressure water preheating pipe 12 via the high-pressure water pump 25, heated, and then supplied to the high-pressure steam drum 26. Boiler water in the high-pressure steam drum 26 is sent to the high-pressure boiler water heating pipe 11 by a canned water circulation pump 27 and is forcedly circulated and heated.

高圧蒸気ドラム26で発生した高圧蒸気は高圧蒸気加熱
管lOにより加熱されたのち蒸気タービン18の高圧段
に投入され、所定の仕事をする。
The high-pressure steam generated in the high-pressure steam drum 26 is heated by the high-pressure steam heating pipe 1O, and then introduced into the high-pressure stage of the steam turbine 18 to perform a predetermined work.

その仕事が発電機28により電力に変換されて出力され
ることとなる。
The work is converted into electric power by the generator 28 and output.

以上のようなガスタービンの廃熱回収方式の発電プラン
トにおいて、クリーンガス(天然ガス等)な排ガスの顕
熱回収の際、ダーティガス(重油等)に比べ廃熱回収ボ
イラ7内のガス出口温度の制限がない。このことは廃熱
回収の点では有利であるものの、上記従来のように低圧
給水加熱器16あるいは低圧給水予熱管15を設けてボ
イラ給水温度を上げても回収熱量は増大せず、また設け
なければサイクル効率は上らない。このようなことから
、クリーンガスであっても必ずしも回収熱量を増大(す
なわち、廃熱回収ボイラ7の出口ガス温度を下げる)し
ても発電出力の増大に結びつかないことがあった。
In a power generation plant using the gas turbine waste heat recovery method as described above, when recovering the sensible heat of clean exhaust gas (natural gas, etc.), the gas outlet temperature in the waste heat recovery boiler 7 is lower than that of dirty gas (heavy oil, etc.). There are no restrictions. Although this is advantageous in terms of waste heat recovery, even if the boiler feed water temperature is increased by installing the low pressure feed water heater 16 or the low pressure feed water preheating pipe 15 as in the conventional method, the amount of recovered heat does not increase, and it is necessary to install the low pressure feed water heater 16 or the low pressure feed water preheating pipe 15. Otherwise, cycle efficiency will not increase. For this reason, even if the gas is clean, increasing the amount of recovered heat (that is, lowering the outlet gas temperature of the waste heat recovery boiler 7) does not necessarily lead to an increase in the power generation output.

〔発明の目的〕[Purpose of the invention]

そこで、本発明はクリーンガスを使用するガスタービン
の排ガスからの廃熱回収量を増大して発電出力を増大し
うる発電プラントを提供することを目的とする。
Therefore, an object of the present invention is to provide a power generation plant that can increase the amount of waste heat recovered from the exhaust gas of a gas turbine using clean gas and increase the power generation output.

〔発明の概要〕 廃熱回収発電プラントは、火力発電等のように燃料を燃
やして蒸気を得るボイラとは違い、所定の顕熱を有した
ガスタービンからの排ガスを熱源として廃熱回収ボイラ
に導き、その排ガスの流路に沿った温度降下に応じたサ
イクルで構成される。
[Summary of the invention] Unlike a boiler that burns fuel to produce steam, such as in thermal power generation, a waste heat recovery power plant uses exhaust gas from a gas turbine with a predetermined sensible heat as a heat source to power the waste heat recovery boiler. It consists of a cycle that depends on the temperature drop along the flow path of the exhaust gas.

そのために、廃熱の保有する熱エネルギーを機械的仕事
に変換する場合のエクセルギー(機械的有効仕事)の考
え方を導入し、温度が高い所は低い所に比べてエクセル
ギーが高い点に着目して高、低の2段階のランキンサイ
クルで構成される廃熱回収発電プラントの高温(高圧)
側のシステムでの発生蒸気量を増大させればよいことが
わかる。
To this end, we introduced the concept of exergy (mechanical effective work) when converting thermal energy possessed by waste heat into mechanical work, and focused on the fact that exergy is higher in areas with higher temperatures than in areas with lower temperatures. The high temperature (high pressure) of the waste heat recovery power generation plant consists of a two-stage Rankine cycle, high and low.
It can be seen that the amount of steam generated in the side system can be increased.

そこで、本発明は蒸気タービンの高圧段における所定の
抽気点から高温高圧蒸気を抽気し、このタービン抽気を
加熱源とする高圧給水加熱器によシ低圧蒸気ドラムから
高圧蒸気ドラムへの給水を加熱するように成し、前記高
圧給水加熱器内に生じたドレンを廃熱回収ボイラ内の所
定温度域に設けられた加熱管に送って気化させ、その過
熱蒸気を前記抽気点よりも高圧のタービンの段落に投入
するように配管した点に特徴を有する。
Therefore, the present invention extracts high-temperature, high-pressure steam from a predetermined extraction point in the high-pressure stage of a steam turbine, and heats the feed water from the low-pressure steam drum to the high-pressure steam drum using a high-pressure feed water heater that uses this turbine extracted air as a heating source. The condensate generated in the high-pressure feed water heater is sent to a heating pipe installed in a predetermined temperature range in the waste heat recovery boiler to vaporize it, and the superheated steam is sent to the turbine at a higher pressure than the extraction point. It is characterized by the fact that the piping is arranged so that it is fed into the paragraph.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明による発電プラントの実施例について図面
に基づき説明する。
Embodiments of the power plant according to the present invention will be described below with reference to the drawings.

第2図に本発明による実施例を示す。第2図において第
1図と重複する部分には同一の符号を附し説明を省略す
る。第2図において、高圧給水ポンプ25から高圧蒸気
ドラム26への配管100の途中には高圧給水加熱器i
01が設けられている。この高圧給水加熱器toiは蒸
気タービン18の高圧段における所定の抽気点Aがら抽
気したタービン蒸気の保有する熱を熱源として高圧蒸気
ドラム26への給水を加熱するものである。高圧給水加
熱器!01内に生じたドレン102はドレン移送ポンプ
103を介して加熱管104に送られて気化され、気液
分離器105に送られる。ここに気液分離器105を設
けたのは蒸気タービン+8内に水分を含んだ蒸気が混入
するのを防止するためである。気液分離器105を出た
蒸気は先の抽気点Aよりも高圧側の抽気点BK配管tO
Sを通じて投入される。一方、気液分離器to5に生じ
たドレン106は配管107を通じて高圧給水加熱器+
01からのドレン102と合流され、ドレン移送ポンプ
103により循環される。
FIG. 2 shows an embodiment according to the present invention. In FIG. 2, parts that overlap with those in FIG. 1 are designated by the same reference numerals, and explanations thereof will be omitted. In FIG. 2, there is a high-pressure water heater i in the middle of the piping 100 from the high-pressure water pump 25 to the high-pressure steam drum
01 is provided. This high-pressure feed water heater toi heats the water to be fed to the high-pressure steam drum 26 using the heat possessed by turbine steam extracted from a predetermined extraction point A in the high-pressure stage of the steam turbine 18 as a heat source. High pressure water heater! Drain 102 generated in 01 is sent to a heating pipe 104 via a drain transfer pump 103, vaporized, and sent to a gas-liquid separator 105. The reason why the gas-liquid separator 105 is provided here is to prevent moisture-containing steam from entering the steam turbine +8. The steam exiting the gas-liquid separator 105 is transferred to the extraction point BK piping tO, which is on the higher pressure side than the previous extraction point A.
It is input through S. On the other hand, the drain 106 generated in the gas-liquid separator TO5 passes through the pipe 107 to the high-pressure feed water heater +
It is combined with the drain 102 from 01 and circulated by the drain transfer pump 103.

このように、高圧蒸気ドラム26への給水を高圧給水加
熱器101においてタービン抽気の保有熱により加熱す
る。一方では、高圧給水加熱器101のドレン102を
廃熱回収ボイラ7内の加熱管104により気化して高温
高圧蒸気を作シ、気液分離したのち(通常は過熱蒸気が
通過する)高圧段の抽気点Bに投入することにより、高
圧側システム9での蒸気発生量を増大することができ、
したがって廃熱回収ボイラ7内の高温度域のエネルギー
を有効に機械的エネルギーに変換することが可能となる
In this way, the water supplied to the high-pressure steam drum 26 is heated in the high-pressure feed water heater 101 using the heat retained in the turbine bleed air. On the other hand, the drain 102 of the high-pressure feed water heater 101 is vaporized by the heating pipe 104 in the waste heat recovery boiler 7 to produce high-temperature and high-pressure steam, and after separating the gas and liquid (usually through which superheated steam passes), the high-pressure stage is heated. By introducing it to the extraction point B, the amount of steam generated in the high pressure side system 9 can be increased,
Therefore, it becomes possible to effectively convert the energy in the high temperature range within the waste heat recovery boiler 7 into mechanical energy.

第3図に従来の場合X(破線)と本発明Y(実線)の廃
熱回収ボイラ内の熱流線図を示す。ここに、Tiは廃熱
回収ボイラの入口排ガス温度、TOは従来の場合の出口
排ガス温度、TO/は本発明の場合の出口排ガス温度、
Tnは高圧蒸気ドラムの入口蒸気温度、TLは低圧蒸気
ドラムの出口蒸気温度、Trは加熱管104による再熱
蒸気温度をそれぞれ示している。この第3図かられかる
ように、本発明の場合の温度降下線Xの勾配が急であり
、したがって出口温度T O/と’roの相対比較でも
本発明の方が廃熱回収効率がよい。また、直線X、Yは
加熱側としての廃熱回収ボイラの温度降下を示すもので
あるのに対し、直線2は被加熱側としての蒸気ドラム等
の温度降下線を示すものである。この直線z中の21の
部分は従来の場合(破線)が急勾配で低下するのに対し
、本発明によれば(実線)低下しないことを示しており
、したがって回収エクセルギー量が多いことを示してい
る。
FIG. 3 shows heat flow diagrams in the waste heat recovery boiler of the conventional case X (broken line) and the present invention Y (solid line). Here, Ti is the inlet exhaust gas temperature of the waste heat recovery boiler, TO is the outlet exhaust gas temperature in the conventional case, TO/ is the outlet exhaust gas temperature in the case of the present invention,
Tn represents the inlet steam temperature of the high-pressure steam drum, TL represents the exit steam temperature of the low-pressure steam drum, and Tr represents the reheated steam temperature by the heating tube 104, respectively. As can be seen from Fig. 3, the slope of the temperature drop line . Further, straight lines X and Y indicate the temperature drop of the waste heat recovery boiler as the heating side, whereas straight line 2 indicates the temperature drop line of the steam drum or the like as the heated side. The part 21 in this straight line z shows a steep decline in the conventional case (broken line), but does not decline according to the present invention (solid line), which indicates that the amount of recovered exergy is large. It shows.

以上の実施例ではガスタービンの排ガスの廃熱回収発電
プラントの場合について説明したが、一般の火力発電プ
ラント等における再生再熱サイクル等に適用することが
可能であることはいうまでもない。
In the above embodiments, the case of a power generation plant that recovers waste heat from gas turbine exhaust gas has been described, but it goes without saying that it is also possible to apply the present invention to a regeneration reheat cycle in a general thermal power plant or the like.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、蒸気タービンの高圧段に
おける所定の抽気点から高温高圧蒸気を抽気し、このタ
ービン抽気を加熱源として高圧給水加熱器により低圧蒸
気ドラムから高圧蒸気ドラムへの給水を加熱し、一方で
は、高圧給水加熱器内に生じたドレンを廃熱回収ボイラ
内に設けられた加熱管により気化して過熱高圧蒸気を作
り前記抽気点よりも高圧のタービンの段落に投入するよ
うにしたことにより、高温側の発電システムの発生蒸気
蓋を増すことができ、それによって発電出力の増大を図
ることができる。
As described above, according to the present invention, high-temperature and high-pressure steam is extracted from a predetermined extraction point in the high-pressure stage of a steam turbine, and the high-pressure feed water heater uses this turbine extracted air as a heating source to supply water from the low-pressure steam drum to the high-pressure steam drum. On the other hand, condensate generated in the high-pressure feedwater heater is vaporized by a heating pipe installed in the waste heat recovery boiler to produce superheated high-pressure steam and injected into the turbine stage whose pressure is higher than the extraction point. By doing so, it is possible to increase the generation steam cover of the power generation system on the high temperature side, thereby increasing the power generation output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガスタービン複合サイクル廃熱回収プラ
ントの系統図、 第2図は本発明による発電プラントの実施例を示す系統
図、 第3図は本発明と従来の場合の廃熱回収状態を示す熱流
線図である。 1・・・燃焼用空気、 2・・・コンプレッサ、3・・
・燃焼器、 4・・・燃料、 5・・・ガスタービン、 6・・・排ガス、7・・・廃
熱回収ボイラ、 8・・・高温側システム、9・・・低
温側システム、10・・・高圧蒸気加熱管、17・・・
低圧蒸気ドラム、I8・・・蒸気タービン、19・・・
復水器、 25・・・高圧給水ポンプ、26・・・高圧
蒸気ドラム、28・・・発電機、101・・・高圧給水
加熱器、 102・・・ドレン、 104・・・加熱管、108・
・・配管、 A・・・抽気点、B・・・高圧側抽気点、 TO・・・廃熱回収ボイラの出口排ガス温度(従来)T
o’・・・廃熱回収ボイラの出口排ガス温度(本発明)
代理人 鵜 沼 辰 之 (ほか1名)
Fig. 1 is a system diagram of a conventional gas turbine combined cycle waste heat recovery plant, Fig. 2 is a system diagram showing an embodiment of a power generation plant according to the present invention, and Fig. 3 is a state of waste heat recovery in the case of the present invention and the conventional case. FIG. 1... Combustion air, 2... Compressor, 3...
- Combustor, 4... Fuel, 5... Gas turbine, 6... Exhaust gas, 7... Waste heat recovery boiler, 8... High temperature side system, 9... Low temperature side system, 10. ...High pressure steam heating tube, 17...
Low pressure steam drum, I8...Steam turbine, 19...
Condenser, 25... High pressure feed water pump, 26... High pressure steam drum, 28... Generator, 101... High pressure feed water heater, 102... Drain, 104... Heating tube, 108・
...Piping, A...Bleed point, B...High pressure side bleed point, TO...Temperature of exhaust gas at outlet of waste heat recovery boiler (conventional) T
o'...Exhaust gas temperature at the outlet of the waste heat recovery boiler (this invention)
Agent Tatsuyuki Unuma (and 1 other person)

Claims (1)

【特許請求の範囲】 高圧蒸気ドラムからの高圧発生蒸気を廃熱回収ボイラ内
の高温域を経由して加熱した後蒸気タービンの高圧段に
供給するようにした高温側廃熱回収発電システムと、 前記蒸気タービンの排気を復水し、その復水から前記高
圧発生蒸気より相対的に低圧の発生蒸気を低圧蒸気ドラ
ムから発生させ、その低圧発生蒸気を前記廃熱回収ボイ
ラ内の低温域を経由して加熱した後蒸気タービンの低圧
段に供給するとともに、低圧蒸気ドラム内のボイラ水を
前記高圧蒸気ドラムに供給するようKした低温側廃熱回
収発電システムと、を備えた複合サイクル廃熱回収発電
プラントにおいて、 前記蒸気タービンの高圧段における所定の抽気点から抽
気した高圧蒸気を加熱源として前記低圧蒸気ドラムから
高圧蒸気ドラムへの給水を加熱する高圧給水加熱器と、
前記高圧給水加熱器内に生じたドレンを加熱して気化す
るために前記廃熱回収ボイラ内の所定温度域に設けられ
た加熱管と、前記気化蒸気を前記蒸気タービンの抽気点
よりも高圧の段落に供給する配管系と、を備えたことを
特徴とする複合サイクル廃熱回収発電プラント。
[Scope of Claims] A high-temperature side waste heat recovery power generation system in which high-pressure generated steam from a high-pressure steam drum is heated through a high-temperature region in a waste heat recovery boiler and then supplied to a high-pressure stage of a steam turbine; The exhaust gas of the steam turbine is condensed, and from the condensate, generated steam having a relatively lower pressure than the high-pressure generated steam is generated from a low-pressure steam drum, and the low-pressure generated steam is passed through a low-temperature area in the waste heat recovery boiler. a low-temperature side waste heat recovery power generation system configured to heat the water and then supply it to the low-pressure stage of the steam turbine, and to supply boiler water in the low-pressure steam drum to the high-pressure steam drum. In a power generation plant, a high-pressure feed water heater that heats feed water from the low-pressure steam drum to the high-pressure steam drum using high-pressure steam extracted from a predetermined bleed point in the high-pressure stage of the steam turbine as a heat source;
A heating pipe is installed in a predetermined temperature range in the waste heat recovery boiler to heat and vaporize the condensate generated in the high-pressure feed water heater, and A combined cycle waste heat recovery power generation plant characterized by comprising: a piping system for supplying a paragraph;
JP24928783A 1983-12-26 1983-12-26 Composite cycle waste heat recovery power generating plant Granted JPS60138213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24928783A JPS60138213A (en) 1983-12-26 1983-12-26 Composite cycle waste heat recovery power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24928783A JPS60138213A (en) 1983-12-26 1983-12-26 Composite cycle waste heat recovery power generating plant

Publications (2)

Publication Number Publication Date
JPS60138213A true JPS60138213A (en) 1985-07-22
JPS6365807B2 JPS6365807B2 (en) 1988-12-16

Family

ID=17190720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24928783A Granted JPS60138213A (en) 1983-12-26 1983-12-26 Composite cycle waste heat recovery power generating plant

Country Status (1)

Country Link
JP (1) JPS60138213A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200313A (en) * 1985-02-26 1986-09-04 エクセルギー・インコーポレイテッド Method and apparatus for performing thermodynamic cycle
US7753993B2 (en) * 2004-01-20 2010-07-13 Siemens Aktiengesellschaft Method and device for treating contaminated water
CN106050337A (en) * 2016-07-29 2016-10-26 南京电力设备质量性能检验中心 Method and device for increasing water feed temperature at medium loads and low loads of steam turbine set
CN106642053A (en) * 2016-11-29 2017-05-10 武汉都市环保工程技术股份有限公司 System of adopting coal gas with low heating value to conduct electricity generation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7277822B2 (en) * 2019-04-19 2023-05-19 日本製鉄株式会社 plated steel
EP3992326A4 (en) * 2019-06-26 2022-05-18 Posco Plated steel wire and manufacturing method for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200313A (en) * 1985-02-26 1986-09-04 エクセルギー・インコーポレイテッド Method and apparatus for performing thermodynamic cycle
US7753993B2 (en) * 2004-01-20 2010-07-13 Siemens Aktiengesellschaft Method and device for treating contaminated water
CN106050337A (en) * 2016-07-29 2016-10-26 南京电力设备质量性能检验中心 Method and device for increasing water feed temperature at medium loads and low loads of steam turbine set
CN106642053A (en) * 2016-11-29 2017-05-10 武汉都市环保工程技术股份有限公司 System of adopting coal gas with low heating value to conduct electricity generation

Also Published As

Publication number Publication date
JPS6365807B2 (en) 1988-12-16

Similar Documents

Publication Publication Date Title
CN1066799C (en) Cooling of hot unit of gas turbine
US5375410A (en) Combined combustion and steam turbine power plant
US5623822A (en) Method of operating a waste-to-energy plant having a waste boiler and gas turbine cycle
US6694740B2 (en) Method and system for a thermodynamic process for producing usable energy
US5412937A (en) Steam cycle for combined cycle with steam cooled gas turbine
RU2595192C2 (en) Power plant with built-in pre-heating of fuel gas
RU2009333C1 (en) Combined steam-gas power plant and method of its operation
CA2679811C (en) High efficiency feedwater heater
US6244033B1 (en) Process for generating electric power
KR20130099168A (en) Hybrid biomass process with reheat cycle
SU1521284A3 (en) Power plant
JP3925985B2 (en) Combined cycle power plant
JPH0392508A (en) Method and equipment for forming steam and power for starting and auxiliarily operat- ing steam power station
CN114183742A (en) Reheating steam extraction and heat storage combined denitration load reduction system
CN110397481A (en) Promote the waste incineration and generating electricity device of main steam condition
US11313252B2 (en) Enhanced HRSG for repowering a coal-fired electrical generating plant
JPH11173111A (en) Thermal power plant
JPS60138213A (en) Composite cycle waste heat recovery power generating plant
US6951105B1 (en) Electro-water reactor steam powered electric generator system
US20180171827A1 (en) Method to integrate regenerative rankine cycle into combined cycle applications using an integrated heat recovery steam generator
JPS60138214A (en) Gas turbine composite cycle power generating plant
JPH0440524B2 (en)
JPH06212909A (en) Compound electric power plant
RU2078229C1 (en) Steam-and-gas plant
JPH07243305A (en) Waste heat recovery combined plant for garbage burning incinerator