JP2808044B2 - Package for storing semiconductor elements - Google Patents

Package for storing semiconductor elements

Info

Publication number
JP2808044B2
JP2808044B2 JP33282390A JP33282390A JP2808044B2 JP 2808044 B2 JP2808044 B2 JP 2808044B2 JP 33282390 A JP33282390 A JP 33282390A JP 33282390 A JP33282390 A JP 33282390A JP 2808044 B2 JP2808044 B2 JP 2808044B2
Authority
JP
Japan
Prior art keywords
semiconductor element
insulating base
metal layer
weight
external lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33282390A
Other languages
Japanese (ja)
Other versions
JPH04196566A (en
Inventor
弘 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33282390A priority Critical patent/JP2808044B2/en
Publication of JPH04196566A publication Critical patent/JPH04196566A/en
Application granted granted Critical
Publication of JP2808044B2 publication Critical patent/JP2808044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子を収容するための半導体素子収納
用パッケージの改良に関するものである。
Description: BACKGROUND OF THE INVENTION The present invention relates to an improvement in a semiconductor device housing package for housing a semiconductor device.

(従来技術及びその課題) 従来、半導体素子を収容するためのパッケージ、特に
ガラスの熔着によって封止するガラス封止型の半導体素
子収納用パッケージは、アルミナセラミックス等の電気
絶縁材料から成り、中央部に半導体素子を収容する空所
を形成するための凹部を有し、上面に封止用のガラス層
が被着された絶縁基体と、同じく電気絶縁材料から成
り、中央部に半導体素子を収容する空所を形成するため
の凹部を有し、下面に封止用のガラス層が被着された蓋
体と、内部に収容する半導体素子を外部の電気回路に電
気的に接続するための外部リード端子とにより構成され
ており、絶縁基体の上面に外部リード端子を載置させる
とともに予め被着させておいた封止用のガラス層を溶融
させることによって外部リード端子を絶縁基体に仮止め
し、次に前記絶縁基体の凹部に半導体素子を取着すると
ともに該半導体素子の各電極(信号電極、電源電極、接
地電極等)をボンディングワイヤを介して外部リード端
子に接続し、しかる後、絶縁基体と蓋体とをその相対向
する主面に被着させておいた封止用のガラス層を溶融一
体化させ、絶縁基体と蓋体とから成る容器を気密に封止
することによって最終製品としての半導体装置となる。
(Prior art and its problems) Conventionally, a package for housing a semiconductor element, particularly a glass-sealed semiconductor element housing package for sealing by welding glass, is made of an electrically insulating material such as alumina ceramics. A concave portion for forming a cavity for accommodating the semiconductor element is formed in the portion, an insulating base having a sealing glass layer adhered on the upper surface, and an electrically insulating material, and the semiconductor element is accommodated in the central portion. Having a concave portion for forming a cavity to be formed, a lid having a lower surface covered with a glass layer for sealing, and an external portion for electrically connecting a semiconductor element housed therein to an external electric circuit. The external lead terminals are temporarily mounted on the insulating substrate by placing the external lead terminals on the upper surface of the insulating substrate and melting the sealing glass layer previously applied. Then, a semiconductor element is attached to the concave portion of the insulating base, and each electrode (signal electrode, power supply electrode, ground electrode, etc.) of the semiconductor element is connected to an external lead terminal via a bonding wire. By melting and integrating a sealing glass layer in which the insulating substrate and the lid are adhered to the opposing main surfaces, and hermetically sealing the container comprising the insulating substrate and the lid. It becomes a semiconductor device as a final product.

尚、かかる従来の半導体素子収納用パッケージは内部
に収容する半導体素子が供給電源電圧の変動の影響を受
けないようにするために通常、容量素子が付加されてお
り、該半導体素子収納用パッケージへの容量素子の付加
は一般に容器を構成する絶縁基体内部に多層電極を配
し、多層電極間に絶縁基体材料を誘電体として一定の静
電容量を形成したり、絶縁基体の半導体素子を収容する
凹部底面にチタン酸バリウム磁器からなる容量素子を取
着したりすることによって行われている。
Such a conventional package for housing a semiconductor element is usually provided with a capacitive element in order to prevent the semiconductor element housed therein from being affected by fluctuations in the power supply voltage. In general, the addition of a capacitor element generally includes disposing a multilayer electrode inside an insulating base constituting a container, forming a constant capacitance between the multilayer electrodes using the insulating base material as a dielectric, and accommodating a semiconductor element of the insulating base. This is performed by attaching a capacitive element made of barium titanate porcelain to the bottom surface of the recess.

しかしながら、この従来の半導体素子収納用パッケー
ジにおいては容量素子の付加が容器を構成する絶縁基体
の内部に多層電極を配することによって行われている場
合、絶縁基体は一般にアルミナセラミックスから成り、
該アルミナセラミックスは誘電率が低い(誘電率9〜1
0)ことから多層電極間に形成される静電容量も極めて
小さいものとなり、その結果、半導体素子の電源電圧変
動に起因する誤動作を完全に防止することができないと
いう欠点を有していた。
However, in this conventional package for accommodating a semiconductor element, when the addition of a capacitive element is performed by arranging a multilayer electrode inside an insulating base constituting a container, the insulating base is generally made of alumina ceramics,
The alumina ceramic has a low dielectric constant (dielectric constant of 9 to 1).
0) Therefore, the capacitance formed between the multilayer electrodes is extremely small, and as a result, there is a disadvantage that a malfunction due to a power supply voltage fluctuation of the semiconductor element cannot be completely prevented.

尚、この欠点を解消するために多層電極の層数や電極
対向面積を増大させ、多層電極間に形成される静電容量
を大きくすることも考えられるが、電極の層数や面積を
増大させるとパッケージ自体の形状が大きく成り、内部
に半導体素子を収容し、半導体装置とする該半導体装置
が極めて大型のものとなる欠点を誘発する。
In order to solve this drawback, it is conceivable to increase the number of layers of the multilayer electrode and the area facing the electrodes to increase the capacitance formed between the multilayer electrodes. As a result, the shape of the package itself becomes large, and a semiconductor element is housed therein, which causes a disadvantage that the semiconductor device becomes extremely large.

また絶縁基体の半導体素子を収容する凹部内にチタン
酸バリウム磁器から成る容量素子を取着することによっ
て半導体素子収納用パッケージに容量素子を付加した場
合、絶縁基体の半導体素子を収容する凹部がチタン酸バ
リウム磁器から成る容量素子を取着するために大きくな
り、その結果、上述と同様、製品としての半導体装置が
大型化してしまうという欠点を有する。
Further, when a capacitance element made of barium titanate porcelain is mounted in a concave part for accommodating a semiconductor element of an insulating base, and the capacitance element is added to the package for accommodating a semiconductor element, the concave part for accommodating the semiconductor element of the insulating base is made of titanium. The size is increased due to the attachment of the capacitive element made of barium oxide porcelain, and as a result, as described above, there is a disadvantage that the semiconductor device as a product is enlarged.

更に前記絶縁基体の外観形状をそのままとし、半導体
素子を収容する凹部のみの形状を容量素子が取着し得る
程度に大きくすることも考えられるが凹部の形状のみを
大きくすると絶縁基体と蓋体とを接合させ容器の内部を
気密封止する際、絶縁基体と蓋体との接合面積が狭くな
って容器の気密封止の信頼性が大きく低下するという欠
点を誘発してしまう。
Further, it is conceivable that the outer shape of the insulating base is kept as it is and the shape of only the concave portion for accommodating the semiconductor element is made large enough to allow the capacitive element to be attached. When the inside of the container is hermetically sealed by joining the two, the joint area between the insulating base and the lid is reduced, and the reliability of hermetic sealing of the container is greatly reduced.

(発明の目的) 本発明は上記欠点に鑑み案出されたもので、その目的
は内部に収容する半導体素子を長期間にわたり誤動作す
ることなく安定に作動させることができる小型の半導体
素子収納用パッケージを提供することにある。
(Object of the Invention) The present invention has been devised in view of the above-mentioned drawbacks, and an object of the present invention is to provide a small-sized semiconductor element housing package capable of stably operating a semiconductor element housed therein for a long time without malfunction. Is to provide.

(課題を解決するための手段) 本発明は半導体素子を収容するための凹部を有する絶
縁基体と蓋体とから成る半導体素子収納用パッケージに
おいて、前記絶縁基体はその上面にメタライズ金属層を
有するとともに該メタライズ金属層上に外部リード端子
が酸化鉛60.0乃至90.0重量%、酸化ホウ素5.0乃至15.0
重量%に、フィラーとしてのペロブスカイト型チタン酸
塩を5.0乃至50.0重量%含有させて成るガラス部材を介
し固定されるとともに該外部リード端子のうち半導体素
子の電源電極もしくは接地電極と接続される端子が前記
メタライズ金属層に電気的に接続されていることを特徴
とするものである。
(Means for Solving the Problems) The present invention relates to a semiconductor element housing package including a lid and an insulating base having a concave portion for housing a semiconductor element, wherein the insulating base has a metallized metal layer on an upper surface thereof. On the metallized metal layer, external lead terminals are composed of 60.0 to 90.0% by weight of lead oxide and 5.0 to 15.0% of boron oxide.
% Of a perovskite type titanate as a filler is fixed through a glass member containing 5.0 to 50.0% by weight, and a terminal connected to a power supply electrode or a ground electrode of a semiconductor element among the external lead terminals is It is characterized by being electrically connected to the metallized metal layer.

(実施例) 次に本発明を添付図面に示す実施例に基づき詳細に説
明する。
(Example) Next, the present invention will be described in detail based on an example shown in the accompanying drawings.

第1図は本発明の半導体素子収納用パッケージの一実
施例を示す断面図であり、1はアルミナセラミックス等
の電気絶縁材料より成る絶縁基体、2は同じく電気絶縁
材料より成る蓋体である。この絶縁基体1と蓋体2とに
より半導体素子3を収容するための容器が構成される。
FIG. 1 is a cross-sectional view showing an embodiment of a package for housing a semiconductor element according to the present invention, wherein 1 is an insulating base made of an electrically insulating material such as alumina ceramics, and 2 is a lid made of the same electrically insulating material. The insulating base 1 and the lid 2 constitute a container for housing the semiconductor element 3.

前記絶縁基体1及び蓋体2にはそれぞれの中央部に半
導体素子3を収容する空所を形成するための凹部が設け
てあり、絶縁基体1の凹部1a底面には半導体素子3が接
着材を介し取着固定される。
The insulating base 1 and the lid 2 are each provided with a concave portion for forming a space for accommodating the semiconductor element 3 at the center thereof, and the semiconductor element 3 is provided with an adhesive on the bottom surface of the concave portion 1a of the insulating base 1. It is attached and fixed.

前記絶縁基体1及び蓋体2は従来周知のプレス成形法
を採用することによって形成され、例えば絶縁基体1及
び蓋体2がアルミナセラミックスから成る場合には第1
図に示すような絶縁基体1または蓋体2に対応した形状
を有するプレス型内にアルミナセラミックスの粉末を充
填させるとともに一定圧力を印加して成形し、しかる
後、成形品を約1500℃の温度で焼成することによって製
作される。
The insulating substrate 1 and the lid 2 are formed by employing a conventionally known press molding method. For example, when the insulating substrate 1 and the lid 2 are made of alumina ceramic, the first
A press die having a shape corresponding to the insulating base 1 or the lid 2 as shown in the figure is filled with alumina ceramic powder and molded by applying a constant pressure. Thereafter, the molded product is heated to a temperature of about 1500 ° C. It is manufactured by firing.

また前記絶縁基体1はその上面にメタライズ金属層4
が被着されており、更にメタライズ金属層4の上部には
外部リード端子5がガラス部材6を介して固定され、メ
タライズ金属層4と外部リード端子5との間にガラス部
材6を誘電体材料とした容量素子Aが形成されている。
この容量素子Aは半導体素子3の電源電極と接地電極の
間に接続され、半導体素子3に供給電源電圧の変動に起
因した悪影響が及ぼさないように作用する。
The insulating substrate 1 has a metallized metal layer 4 on its upper surface.
The external lead terminal 5 is fixed on the metallized metal layer 4 via a glass member 6, and the glass member 6 is placed between the metallized metal layer 4 and the external lead terminal 5 by a dielectric material. Is formed.
The capacitance element A is connected between the power supply electrode and the ground electrode of the semiconductor element 3 and acts so that the semiconductor element 3 is not adversely affected by the fluctuation of the supply power supply voltage.

前記絶縁基体1の上面に被着されるメタライズ金属層
4は金(Au)、銀−白金(Ag−Pt)、銀−バラジウム
(Ag−Pd)等の金属材料から成り、金粉末等に適当な有
機溶剤、溶媒を添加混合して得た金属ペーストを絶縁基
体1の上面に従来周知のスクリーン印刷法を採用するこ
とによって印刷塗布し、しかる後、これを約450℃の温
度で焼成し、金粉末等を絶縁基体1の上面に焼き付ける
ことによって被着される。
The metallized metal layer 4 deposited on the upper surface of the insulating base 1 is made of a metal material such as gold (Au), silver-platinum (Ag-Pt), silver-palladium (Ag-Pd), and is suitable for gold powder or the like. Organic solvent, a metal paste obtained by adding and mixing a solvent, is applied by printing on the upper surface of the insulating substrate 1 by employing a conventionally known screen printing method, and thereafter, the resultant is baked at a temperature of about 450 ° C. It is applied by baking gold powder or the like on the upper surface of the insulating base 1.

前記メタライズ金属層4は半導体素子3に供給される
電源電圧の変動を平滑化して半導体素子3の誤動作を有
効に防止する容量素子Aの一方の電極として作用し、該
メタライズ金属層4には半導体素子3の電源電極、或い
は接地電極が電気的に接続される。
The metallized metal layer 4 acts as one electrode of a capacitive element A for smoothing fluctuations in the power supply voltage supplied to the semiconductor element 3 and effectively preventing malfunction of the semiconductor element 3. The power electrode or the ground electrode of the element 3 is electrically connected.

前記メタライズ金属層4が被着された絶縁基体1の上
部にはまた外部リード端子5がガラス部材6を介して固
定されており、該ガラス部材6は絶縁基体1上に外部リ
ード端子5を固定するとともに容量素子Aの誘電体材料
として作用する。
External lead terminals 5 are fixed on the insulating base 1 on which the metallized metal layer 4 is adhered via a glass member 6. The glass members 6 fix the external lead terminals 5 on the insulating base 1. And acts as a dielectric material of the capacitor A.

前記ガラス部材6は酸化鉛60.0乃至90.0重量%、酸化
ホウ素5.0乃至15.0重量%に、フィラーとしてのペロブ
スカイト型チタン酸塩を5.0乃至50.0重量%含有するガ
ラスから成り、該ガラスの誘電率は35.0(室温1MHz)と
高い。
The glass member 6 is made of glass containing 60.0 to 90.0% by weight of lead oxide, 5.0 to 15.0% by weight of boron oxide, and 5.0 to 50.0% by weight of perovskite type titanate as a filler, and has a dielectric constant of 35.0 ( Room temperature is as high as 1MHz.

前記ガラス部材6はその誘電率が35.0と極めて高いこ
とからメタライズ金属層4と外部リード端子6との間に
形成される容量素子Aの静電容量値が極めて大きな値と
なり、その結果、容量素子Aによって供給電源電圧の変
動に起因する半導体素子への悪影響を有効に防止するこ
とができ、内部に収容する半導体素子を誤動作させるこ
となく安定に作動させることができる。
Since the glass member 6 has an extremely high dielectric constant of 35.0, the capacitance value of the capacitance element A formed between the metallized metal layer 4 and the external lead terminal 6 becomes an extremely large value. A can effectively prevent the semiconductor device from being adversely affected by the fluctuation of the supply power supply voltage, and can stably operate the semiconductor device housed therein without malfunctioning.

尚、前記ガラス部材6は酸化鉛の含有量が60.0重量%
未満であるとガラス部材6の加熱溶融温度が高くなり、
絶縁基体1にガラス部材6を被着、また絶縁基体1に外
部リード端子5をガラス部材6を介し固定する作業性が
悪いものとなり、また90.0重量%を越えるとガラス部材
6の熱膨張係数が絶縁基体1と合わなくなりガラス部材
6を絶縁基体1に強固に被着させることが困難となって
しまう。従って、酸化鉛の含有量は60.0乃至90.0重量%
の範囲に特定される。
The glass member 6 has a lead oxide content of 60.0% by weight.
When it is less than the above, the heating and melting temperature of the glass member 6 increases,
The workability of attaching the glass member 6 to the insulating base 1 and fixing the external lead terminals 5 to the insulating base 1 via the glass member 6 becomes poor, and if it exceeds 90.0% by weight, the coefficient of thermal expansion of the glass member 6 decreases. The glass member 6 does not match the insulating base 1 and it is difficult to firmly adhere the glass member 6 to the insulating base 1. Therefore, the content of lead oxide is 60.0 to 90.0% by weight.
Specified in the range.

また酸化ホウ素の含有量は5.0重量%未満であるとガ
ラス部材6のガラス化が困難となり、外部リード端子5
を絶縁基体1上に強固に固定することが不可となり、ま
た15.0重量%を越えるとガラス部材6の加熱溶融温度が
高くなり、絶縁基体1にガラス部材6を被着、また絶縁
基体1に外部リード端子5をガラス部材6を介し固定す
る作業性が悪いものとなってしまう。従って、酸化ホウ
素の含有量は5.0乃至15.0重量%の範囲に特定される。
If the content of boron oxide is less than 5.0% by weight, vitrification of the glass member 6 becomes difficult, and the external lead terminals 5
Cannot be firmly fixed on the insulating base 1, and if it exceeds 15.0% by weight, the heating and melting temperature of the glass member 6 increases, so that the glass member 6 is adhered to the insulating base 1, and The workability of fixing the lead terminal 5 via the glass member 6 becomes poor. Therefore, the content of boron oxide is specified in the range of 5.0 to 15.0% by weight.

更にフィラーとして含有されるペロブスカイト型のチ
タン酸塩は例えば、ジルコンやチタン酸鉛が使用され、
その含有量が5.0重量%未満であるとガラス部材6の誘
電率が低くなり、外部リード端子5とメタライズ金属層
4との間に大きな静電容量値の容量素子Aを形成するこ
とができなくなり、また50.0重量%を越えるとガラス部
材6の熱膨張係数が絶縁基体1と合わなくなりガラス部
材6を絶縁基体1に強固に被着させることが困難となっ
てしまう。従って、ペロブスカイト型のチタン酸塩の含
有量は5.0乃至50.0重量%の範囲に特定される。
Further perovskite-type titanate contained as a filler, for example, zircon or lead titanate is used,
If the content is less than 5.0% by weight, the dielectric constant of the glass member 6 becomes low, and it becomes impossible to form the capacitive element A having a large capacitance value between the external lead terminal 5 and the metallized metal layer 4. If it exceeds 50.0% by weight, the coefficient of thermal expansion of the glass member 6 does not match that of the insulating substrate 1, and it becomes difficult to firmly attach the glass member 6 to the insulating substrate 1. Therefore, the content of the perovskite type titanate is specified in the range of 5.0 to 50.0% by weight.

前記ガラス部材6は酸化鉛、酸化ホウ素、酸化チタ
ン、酸化ジルコニウムの粉末に適当な有機溶剤、溶媒を
添加混合して得たガラスペーストを絶縁基体1の上面に
従来周知のスクリーン印刷法により印刷塗布し、しかる
後、これを約500℃の温度で焼き付けることによって絶
縁基体1の上面に被着される。
The glass member 6 is obtained by printing and applying a glass paste obtained by adding a suitable organic solvent and a solvent to powders of lead oxide, boron oxide, titanium oxide and zirconium oxide on the upper surface of the insulating substrate 1 by a conventionally known screen printing method. Thereafter, the resultant is baked at a temperature of about 500 ° C. to be adhered to the upper surface of the insulating base 1.

前記ガラス部材6はその厚みが0.05mm未満であると絶
縁基体1に外部リード端子5を強固に固定できなくなる
危険性があり、また0.5mmを越えると外部リード端子5
とメタライズ金属層4との間に形成される容量素子Aの
静電容量値が小さな値となって半導体素子3への電源電
圧変動の影響を有効に防止できなくなる危険性がある。
従って、前記ガラス部材6はその厚みを0.05乃至0.5mm
の範囲としておくことが好ましい。
If the thickness of the glass member 6 is less than 0.05 mm, there is a risk that the external lead terminal 5 cannot be firmly fixed to the insulating base 1.
There is a danger that the capacitance value of the capacitance element A formed between the semiconductor element 3 and the metallized metal layer 4 becomes small and the influence of the power supply voltage fluctuation on the semiconductor element 3 cannot be effectively prevented.
Therefore, the glass member 6 has a thickness of 0.05 to 0.5 mm.
Is preferably set in the range.

また前記ガラス部材6を介して絶縁基体1の上部に固
定される外部リード端子5は例えば、コバール金属(Fe
−Ni−Co合金)や42Alloy(Fe−Ni合金)等の金属から
成り、該コバール金属等のインゴット(塊)を従来周知
の圧延加工法及び打ち抜き加工法を採用することによっ
て所定の板状に形成される。
The external lead terminal 5 fixed to the upper portion of the insulating base 1 via the glass member 6 is made of, for example, Kovar metal (Fe
-Ni-Co alloy) and 42Alloy (Fe-Ni alloy), etc., and the ingot (lumps) of the Kovar metal or the like is formed into a predetermined plate shape by adopting a conventionally known rolling and punching method. It is formed.

前記外部リード端子5は内部に収容する半導体素子3
の信号電極、電源電極及び接地電極を外部電気回路に接
続する作用を為し、その一端には半導体素子3の各電極
がボンディングワイヤ7を介して接続され、外部リード
端子5を外部電気回路に接続することによって半導体素
子3は外部電気回路と接続されることとなる。
The external lead terminal 5 is a semiconductor element 3 housed inside.
Of the semiconductor element 3 is connected to one end of the semiconductor element 3 via a bonding wire 7 to connect the external lead terminal 5 to the external electric circuit. By connecting, the semiconductor element 3 is connected to an external electric circuit.

尚、前記外部リード端子5はその外表面にニッケル、
金等から成る良導電性で、且つ耐蝕性に優れた金属をメ
ッキにより2.0乃至20.0μmの厚みに層着させておくと
外部リード端子5の酸化腐食を有効に防止するとともに
外部リード端子5と外部電気回路との電気的接続を良好
となすことができる。そのため外部リード端子5はその
外表面にニッケル、金等をメッキにより2.0乃至20.0μ
mの厚みに層着させておくことが好ましい。
The external lead terminal 5 has nickel on its outer surface.
If a metal having good conductivity and excellent corrosion resistance made of gold or the like is layered by plating to a thickness of 2.0 to 20.0 μm, oxidation corrosion of the external lead terminal 5 can be effectively prevented and the external lead terminal 5 Good electrical connection with an external electric circuit can be achieved. Therefore, the external lead terminal 5 is formed by plating nickel, gold, or the like on the outer surface with 2.0 to 20.0 μm.
It is preferable that the layer is layered to a thickness of m.

また前記外部リード端子5は半導体素子3に供給され
る電源電圧の変動を平滑化して半導体素子3の誤動作を
有効に防止する容量素子Aの一方の電極としても作用
し、該外部リード端子5のうち半導体素子3の電源電極
あるいは接地電極が接続される端子5aはボンディングワ
イヤ7aを介して絶縁基板1の上面に被着させたメタライ
ズ金属層4に電気的に接続され、これによって外部リー
ド端子5とメタライズ金属層4との間に形成される容量
素子Aは半導体素子3の電源電極と接地電極の間に電気
的に接続されることとなる。
The external lead terminal 5 also functions as one electrode of a capacitive element A for smoothing fluctuations in the power supply voltage supplied to the semiconductor element 3 and effectively preventing malfunction of the semiconductor element 3. Among them, the terminal 5a to which the power supply electrode or the ground electrode of the semiconductor element 3 is connected is electrically connected to the metallized metal layer 4 attached to the upper surface of the insulating substrate 1 via the bonding wire 7a. The capacitance element A formed between the semiconductor element 3 and the metallized metal layer 4 is electrically connected between the power supply electrode and the ground electrode of the semiconductor element 3.

前記半導体素子3の電源電極と接地電極との間に接続
される容量素子Aは、メタライズ金属層4を被着させた
絶縁基板1の上部に外部リード端子5を高誘電率のガラ
ス部材6を介し固定することによって形成されることか
ら絶縁基体1の半導体素子3を取着する凹部1aの大きさ
を容量素子Aを取着するために特別大きくする必要は一
切ない。そのため後述する絶縁基体1と蓋体2とを接合
させ容器を気密封止することによって半導体装置となす
際、絶縁基体1と蓋体2とはその外観形状を大きくする
ことなく両者の接合面積を広くなすことができ、その結
果、容器の気密封止の信頼性を高いものとして、且つ半
導体装置の形状も小型となすことができる。
The capacitive element A connected between the power electrode and the ground electrode of the semiconductor element 3 has an external lead terminal 5 on the upper part of the insulating substrate 1 on which the metallized metal layer 4 is adhered, and a high dielectric constant glass member 6. The size of the concave portion 1a for mounting the semiconductor element 3 of the insulating base 1 does not need to be particularly large in order to mount the capacitive element A because it is formed by fixing through the interposition. Therefore, when a semiconductor device is formed by bonding an insulating base 1 and a lid 2 to be described later and hermetically sealing the container, the insulating base 1 and the lid 2 can be bonded to each other without increasing their external shapes. As a result, the reliability of hermetic sealing of the container can be increased, and the size of the semiconductor device can be reduced.

また前記半導体素子3の電源電極と接地電極との間に
接続される容量素子Aはその静電容量値が大きいため供
給電源電圧の変動に起因する半導体素子3への影響を有
効に防止することもでき、これによって半導体素子3は
供給電源電圧の変動に左右されることなく安定に作動す
ることが可能となる。
In addition, since the capacitance element A connected between the power supply electrode and the ground electrode of the semiconductor element 3 has a large capacitance value, it is necessary to effectively prevent the semiconductor element 3 from being affected by fluctuations in the supply power supply voltage. Thus, the semiconductor element 3 can operate stably without being affected by the fluctuation of the supply power supply voltage.

前記外部リード端子5が固定された絶縁基体1はまた
その上面に蓋体2がガラス材6aを介して接合され、これ
によって絶縁基体1と蓋体2とから成る容器内部に半導
体素子3が気密に封止される。
The insulating substrate 1 to which the external lead terminals 5 are fixed is also provided with a lid 2 bonded to the upper surface thereof through a glass material 6a, whereby the semiconductor element 3 is hermetically sealed inside a container formed of the insulating substrate 1 and the lid 2. Sealed.

前記蓋体2を絶縁基体1に接合させるガラス材6aは低
融点のガラス材料から成り、該ガラス材6aは予め蓋体2
の下面に被着されている。
The glass material 6a for joining the lid 2 to the insulating base 1 is made of a low-melting glass material.
Is attached to the lower surface.

尚、前記ガラス材6aは酸化鉛50.0乃至80.0重量%、酸
化ホウ素5.0乃至15.0重量%、酸化亜鉛15.0重量%以
下、酸化ケイ素10.0重量%以下、酸化アルミニウム10.0
重量%以下を含むガラスから成り、該各ガラス原料粉末
に適当な有機溶剤、溶媒を添加混合して得たガラスペー
ストを蓋体2の下面に従来周知のスクリーン印刷法によ
り印刷塗布するとともにこれを約400℃の温度で焼成す
ることによって蓋体2下面に被着される。
The glass material 6a contains 50.0 to 80.0% by weight of lead oxide, 5.0 to 15.0% by weight of boron oxide, 15.0% by weight or less of zinc oxide, 10.0% by weight or less of silicon oxide, and 10.0% by weight of aluminum oxide.
A glass paste containing an appropriate organic solvent and a solvent is added to each glass raw material powder, and a glass paste obtained by mixing is printed on the lower surface of the lid 2 by a conventionally known screen printing method. It is attached to the lower surface of the lid 2 by firing at a temperature of about 400 ° C.

かくしてこの半導体素子収納用パッケージによれば絶
縁基体1の凹部1a底面に半導体素子3を取着するととも
に該半導体素子3の各電極をボンディングワイヤ7によ
り外部リード端子4に接続させるとともに半導体素子3
の電源電極、或いは接地電極が接続される外部リード端
子5aをボンディングワイヤ7aを介して絶縁基体1の上面
に被着させたメタライズ金属層4に接続させ、しかる
後、絶縁基体1と蓋体2とを蓋体2の下面に予め被着さ
せておいたガラス材6aを加熱溶融させ、接合させること
によって内部に半導体素子3を気密封止し、これによっ
て最終製品としての半導体装置が完成する。
Thus, according to the package for accommodating the semiconductor element, the semiconductor element 3 is attached to the bottom surface of the concave portion 1a of the insulating base 1, and each electrode of the semiconductor element 3 is connected to the external lead terminal 4 by the bonding wire 7 and the semiconductor element 3
The external lead terminal 5a to which the power supply electrode or the ground electrode is connected is connected to the metallized metal layer 4 adhered to the upper surface of the insulating base 1 via the bonding wire 7a. The glass material 6a previously applied to the lower surface of the lid 2 is heated and melted and joined to hermetically seal the semiconductor element 3 therein, thereby completing a semiconductor device as a final product.

(発明の効果) 以上の通り、本発明の半導体素子収納用パッケージに
よれば、絶縁基体の上面にメタライズ金属層を被着し、
更にその上部に外部リード端子を誘電率が35.0である酸
化鉛60.乃至90.0重量%、酸化ホウ素5.0乃至15.0重量%
に、フィラーとしてのペロブスカイト型チタン酸塩を5.
0乃至50.0重量%含有させて成るガラス部材を介して固
定するとともに該外部リード端子のうち半導体素子の電
源電極もしくは接地電極が接続される端子を前記メタラ
イズ金属層に電気的に接続したことからメタライズ金属
層と外部リード端子との間に大きな静電容量を有した容
量素子を形成することができ、その結果、前記容量素子
によって供給電源電圧の変動に起因する半導体素子への
悪影響を有効に防止し、半導体素子を長期間にわたり正
常、且つ安定に作動させることが可能となる。
(Effects of the Invention) As described above, according to the package for housing a semiconductor element of the present invention, a metallized metal layer is deposited on the upper surface of the insulating base,
Further, an external lead terminal is provided on the upper portion with 60.about.90.0% by weight of lead oxide having a dielectric constant of 35.0 and 5.0-15.0% by weight of boron oxide.
Then, a perovskite type titanate as a filler is added to 5.
The metal lead is fixed through a glass member containing 0 to 50.0% by weight, and a terminal of the external lead terminal to which a power supply electrode or a ground electrode of a semiconductor element is connected is electrically connected to the metallized metal layer. A capacitance element having a large capacitance can be formed between the metal layer and the external lead terminal. As a result, the capacitance element effectively prevents a semiconductor element from being adversely affected by a fluctuation in a supply voltage. However, the semiconductor element can be normally and stably operated for a long period of time.

また前記容量素子はメタライズ金属層を被着させた絶
縁基体の上部に外部リード端子を誘電率が35.0のガラス
部材を介し固定することによって形成されることから絶
縁基体の半導体素子を取着する凹部の大きさを容量素子
を取着するために特別大きくする必要は一切ない。その
ため絶縁基体と蓋体とを接合させ容器を気密封止するこ
とによって半導体装置となす際、絶縁基体と蓋体とはそ
の外観形状を大きくすることなく両者の接合面積を広く
なすことができ、その結果、容器の気密封止の信頼性を
高いものとして、且つ半導体装置も小型となすことがで
きる。
Further, since the capacitor element is formed by fixing an external lead terminal via a glass member having a dielectric constant of 35.0 on the upper portion of the insulating base on which the metallized metal layer is applied, a concave portion for attaching the semiconductor element of the insulating base. Does not need to be particularly large in order to mount the capacitive element. Therefore, when a semiconductor device is formed by joining the insulating base and the lid and hermetically sealing the container, the joining area between the insulating base and the lid can be increased without enlarging the external shape thereof, As a result, the reliability of hermetic sealing of the container can be increased, and the size of the semiconductor device can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の半導体素子収納用パッケージの一実施
例を示す断面図である。 1……絶縁基体、2……蓋体 4……メタライズ金属層 5……外部リード端子 6……ガラス部材 6a……ガラス材
FIG. 1 is a sectional view showing one embodiment of a package for housing a semiconductor element according to the present invention. DESCRIPTION OF SYMBOLS 1 ... Insulating base, 2 ... Lid 4 ... Metallized metal layer 5 ... External lead terminal 6 ... Glass member 6a ... Glass material

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 23/10 H01L 23/50Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 23/10 H01L 23/50

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体素子を収容するための凹部を有する
絶縁基体と蓋体とから成る半導体素子収納用パッケージ
において、前記絶縁基体はその上面にメタライズ金属層
が被着され、且つその上部に外部リード端子が酸化鉛6
0.0乃至90.0重量%、酸化ホウ素5.0乃至15.0重量%に、
フィラーとしてのペロブスカイト型チタン酸塩を5.0乃
至50.0重量%含有させて成るガラス部材を介し固定され
るとともに該外部リード端子のうち半導体素子の電源電
極もしくは接地電極と接続される端子が前記メタライズ
金属層に電気的に接続されていることを特徴とする半導
体素子収納用パッケージ。
1. A semiconductor device housing package comprising a cover and an insulating base having a concave portion for housing a semiconductor element, wherein the insulating base has a metallized metal layer adhered on an upper surface thereof, and an outer surface on an upper surface thereof. Lead terminal is lead oxide 6
0.0 to 90.0% by weight, boron oxide 5.0 to 15.0% by weight,
The metal lead metal layer is fixed via a glass member containing 5.0 to 50.0% by weight of a perovskite type titanate as a filler, and a terminal connected to a power supply electrode or a ground electrode of a semiconductor element among the external lead terminals is the metallized metal layer. A semiconductor element storage package electrically connected to the semiconductor device.
JP33282390A 1990-11-28 1990-11-28 Package for storing semiconductor elements Expired - Fee Related JP2808044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33282390A JP2808044B2 (en) 1990-11-28 1990-11-28 Package for storing semiconductor elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33282390A JP2808044B2 (en) 1990-11-28 1990-11-28 Package for storing semiconductor elements

Publications (2)

Publication Number Publication Date
JPH04196566A JPH04196566A (en) 1992-07-16
JP2808044B2 true JP2808044B2 (en) 1998-10-08

Family

ID=18259203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33282390A Expired - Fee Related JP2808044B2 (en) 1990-11-28 1990-11-28 Package for storing semiconductor elements

Country Status (1)

Country Link
JP (1) JP2808044B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439967B2 (en) * 1997-11-28 2003-08-25 京セラ株式会社 High frequency semiconductor device package

Also Published As

Publication number Publication date
JPH04196566A (en) 1992-07-16

Similar Documents

Publication Publication Date Title
JP2808044B2 (en) Package for storing semiconductor elements
JP2838589B2 (en) Package for storing semiconductor elements
JP2849875B2 (en) Package for storing semiconductor elements
JP2808043B2 (en) Package for storing semiconductor elements
JP2838590B2 (en) Package for storing semiconductor elements
JP2750237B2 (en) Electronic component storage package
JP2801449B2 (en) Package for storing semiconductor elements
JP2962951B2 (en) Package for storing semiconductor elements
JP3207075B2 (en) Package for storing semiconductor elements
JP2552554Y2 (en) Package for storing semiconductor elements
JP2958201B2 (en) Package for storing semiconductor elements
JP2555178Y2 (en) Package for storing semiconductor elements
JPH04199851A (en) Package for storing semiconductor element
JP3318449B2 (en) Package for storing semiconductor elements
JP2908932B2 (en) Electronic component storage package
JP2548964Y2 (en) Package for storing semiconductor elements
JP2922719B2 (en) Package for storing semiconductor elements
JP2514910Y2 (en) Package for storing semiconductor devices
JP2750255B2 (en) Electronic component storage package
JP2552419Y2 (en) Package for storing semiconductor elements
JP2873130B2 (en) Package for storing semiconductor elements
JPH05152489A (en) Semiconductor device housing package
JPH043666B2 (en)
JP2545401Y2 (en) Package for storing semiconductor elements
JP2922718B2 (en) Package for storing semiconductor elements

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees