JP2806070B2 - Manufacturing method of oxide superconductor - Google Patents

Manufacturing method of oxide superconductor

Info

Publication number
JP2806070B2
JP2806070B2 JP3092791A JP9279191A JP2806070B2 JP 2806070 B2 JP2806070 B2 JP 2806070B2 JP 3092791 A JP3092791 A JP 3092791A JP 9279191 A JP9279191 A JP 9279191A JP 2806070 B2 JP2806070 B2 JP 2806070B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
temperature
present
manufacturing
benzoquinone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3092791A
Other languages
Japanese (ja)
Other versions
JPH04219303A (en
Inventor
宣二 岸本
浩史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP3092791A priority Critical patent/JP2806070B2/en
Publication of JPH04219303A publication Critical patent/JPH04219303A/en
Application granted granted Critical
Publication of JP2806070B2 publication Critical patent/JP2806070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は酸化物超伝導体の製造方
法に関し、詳細には超伝導転移温度(以下Tcという)
の高温化を図ることのできる酸化物超伝導体の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconductor, and more particularly to a superconducting transition temperature (hereinafter referred to as Tc).
The present invention relates to a method for producing an oxide superconductor capable of increasing the temperature of a superconductor.

【0002】[0002]

【従来の技術】La−Ba−Cuの酸化物が超伝導特性
を示すことが明らかにされて以来、酸化物超伝導体はNb
3Sn に代表される金属間化合物超伝導体で実現されてい
たTcを飛躍的に上昇させるものとして注目を受け、こ
れまでにTc90K級のY−Ba−Cu系酸化物超伝導
体(以下Y系と略すこともある)、Tc110K級のB
i−Sr−Ca−Cu系酸化物超伝導体(以下Bi系と
略すこともある)やTc120K級のTl−Ba−Ca
−Cu系酸化物超伝導体(以下Tl系と略すこともあ
る)が知られている。
2. Description of the Related Art Since La-Ba-Cu oxides were found to exhibit superconducting properties, oxide superconductors have become Nb oxides.
Attention has been paid to the fact that Tc, which has been realized by an intermetallic compound superconductor represented by 3 Sn, is drastically increased, and a Tc90K-class Y-Ba-Cu-based oxide superconductor (hereinafter referred to as Y System), Tc110K class B
i-Sr-Ca-Cu-based oxide superconductor (hereinafter sometimes abbreviated as Bi-based) or Tc120K-class Tl-Ba-Ca
-Cu-based oxide superconductors (hereinafter sometimes abbreviated as Tl-based) are known.

【0003】例えばBi系はBi,Sr,Ca,Cuの
組成比によってTcが異なり、上記組成比が例えば2:
2:2:3である場合(以下高温相という)には105
〜110K程度のTcを示すが、上記組成比が例えば
2:2:1:2である場合(以下低温相という)ではT
cが75〜80K程度となり、これまで行なわれている
一般的な製造条件下では上記高温相と低温相が混在し易
く高温相の単相化は技術的に困難であるとされている。
For example, the Bi system has a different Tc depending on the composition ratio of Bi, Sr, Ca, and Cu.
In the case of 2: 2: 3 (hereinafter referred to as high temperature phase), 105
Although Tc of about 110 K is shown, when the above composition ratio is, for example, 2: 2: 1: 2 (hereinafter referred to as a low temperature phase),
It is said that c is about 75 to 80 K, and the high-temperature phase and the low-temperature phase are liable to coexist under general production conditions performed so far, and it is technically difficult to form a single-phase high-temperature phase.

【0004】またBi系酸化物超伝導体のBiの一部を
Pbで置換することが高温相の生成促進に有効である事
が知られているが、Tcの改善に作用するものではな
い。
It is known that substituting a part of Bi of a Bi-based oxide superconductor with Pb is effective in promoting the formation of a high-temperature phase, but does not act to improve Tc.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、酸化物超伝導体のTcを
高温化することのできる超伝導材料の製造方法を提供し
ようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for producing a superconducting material capable of increasing the Tc of an oxide superconductor to a high temperature. Things.

【0006】[0006]

【課題を解決するための手段】上記目的を達成した本発
明に係る酸化物超伝導体の製造方法とは、酸化物超伝導
体製造工程における中間生成物又は超伝導特性を示すに
至ったものを、酸化性を有する化合物を含有する溶液で
処理することを要旨とするものである。
Means for Solving the Problems A method for producing an oxide superconductor according to the present invention, which has achieved the above object, comprises an intermediate product in an oxide superconductor production process or a compound exhibiting superconductivity. Is treated with a solution containing a compound having an oxidizing property.

【0007】[0007]

【作用】酸化物超伝導体は層状ペロブスカイト構造を有
しており、該構造中に形成されたホール(正孔)または
一部のものでは電子が超伝導のキャリアーとなり超伝導
特性を支配していることが知られている。
The oxide superconductor has a layered perovskite structure, and in some or some of the holes formed in the structure, electrons become carriers of superconductivity and dominate superconductivity. Is known to be.

【0008】本発明者らは超伝導キャリアー密度とTc
の関係を鋭意研究する中で、キャリアー密度に変化を与
える方法として、酸化物超伝導体製造工程における中間
生成物又は超伝導特性を示すに至ったものを、酸化性を
有する化合物を含有する溶液で処理すると、Tcの高温
化に有効に作用するとの知見を得て、本発明に想到し
た。
[0008] The present inventors have determined that the superconducting carrier density and Tc
As a method of giving a change to the carrier density, while studying the relationship of the intermediate, the intermediate product in the oxide superconductor manufacturing process or the one that has shown superconducting properties, a solution containing an oxidizing compound It has been found that treatment with Tc effectively acts to increase the temperature of Tc, and the present inventors have arrived at the present invention.

【0009】尚本発明の製造方法に用いることのできる
酸化物超伝導体は、形状の如何によって限定されるもの
ではなく、粉末状,バルク状,線材,薄膜等いずれであ
ってもよい。さらにバルク状の酸化物超伝導体を製造す
るにあたっては原料粉末を混合した後、乾燥して成形
し、予備焼結を行なって前駆体とし、さらに1回または
2回以上の焼結を行なって酸化物超伝導体を製造する方
法が一般的であるが、上記前駆体以降の中間生成物を本
発明の製造方法に適用してもよい。
The oxide superconductor that can be used in the production method of the present invention is not limited by the shape, and may be any of powder, bulk, wire, thin film and the like. Further, in producing a bulk oxide superconductor, the raw material powders are mixed, dried and molded, pre-sintered to obtain a precursor, and further sintered once or twice. Although a method for producing an oxide superconductor is generally used, an intermediate product after the above precursor may be applied to the production method of the present invention.

【0010】また本発明の製造方法に好適に用いられる
酸化性を有する化合物としては、カルボニル化合物、オ
ゾン、過酸化水素、有機過酸化物、ジメチルスルホキシ
ド、過マンガン酸塩等が例示できる。
Examples of the oxidizing compound suitably used in the production method of the present invention include carbonyl compounds, ozone, hydrogen peroxide, organic peroxides, dimethyl sulfoxide, permanganate and the like.

【0011】カルボニル化合物としては脂環式カルボニ
ル化合物が好ましく、キノン類がより好ましい。キノン
類としてはベンゾキノン、トルキノン、ナフトキノン、
アントラキノン、2,3−ジクロロ−5,6−ジシアノ
−1,4−ベンゾキノン、テトラクロロ−1,4−ベン
ゾキノン、テトラクロロ−1,2−ベンゾキノン等が例
示でき、キノン類以外の脂環式カルボニル化合物として
は、シクロペンタノン、シクロペンタンジオン、シクロ
ヘキサノン、シクロヘキサンジオン、シクロヘキサジエ
ノン等が挙げられる。
As the carbonyl compound, an alicyclic carbonyl compound is preferable, and quinones are more preferable. As quinones, benzoquinone, tolquinone, naphthoquinone,
Examples include anthraquinone, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, tetrachloro-1,4-benzoquinone, tetrachloro-1,2-benzoquinone and the like, and alicyclic carbonyl other than quinones Examples of the compound include cyclopentanone, cyclopentanedione, cyclohexanone, cyclohexanedione, cyclohexadienone, and the like.

【0012】また有機過酸化物としてはtert- ブチルヒ
ドロペルオキシド、クメニルヒドロペルオキシド、過酸
化べンゾイル、過酸化ジ−p−クロロベンゾイル、過ジ
炭酸ジ−iso-プロピル、過安息香酸tert- ブチル、過酢
酸tert- ブチル、過酸化ジtert- ブチル等が例示でき
る。
Examples of the organic peroxide include tert-butyl hydroperoxide, cumenyl hydroperoxide, benzoyl peroxide, di-p-chlorobenzoyl peroxide, di-iso-propyl percarbonate, tert-butyl perbenzoate. Tert-butyl peracetate, di-tert-butyl peroxide and the like.

【0013】以下バルク状の酸化物超伝導体を製造する
場合を代表的にとりあげて、本発明に係る製造方法を説
明する。
Hereinafter, the production method according to the present invention will be described with reference to a typical case of producing a bulk oxide superconductor.

【0014】まず酸化物超伝導体を構成する金属元素は
少なくともBi,Sr,Ca,Cuを含むことが好まし
く、Biの一部をPbで置換したものや、Srの一部を
Laで置換したもの等であってもよい。上記金属元素を
供給するための原料化合物は特に限定されず、酸化物の
ほか炭酸塩,硝酸塩,硫酸塩等の無機酸塩や、酢酸塩,
しゅう酸塩等の有機酸塩又はアルコキシド化合物や錯化
合物等が適用可能である。
First, the metal element constituting the oxide superconductor preferably contains at least Bi, Sr, Ca and Cu, and a part of Bi is replaced with Pb and a part of Sr is replaced with La. Or the like. The raw material compound for supplying the metal element is not particularly limited. In addition to oxides, inorganic acid salts such as carbonates, nitrates and sulfates, acetates,
Organic acid salts such as oxalate, alkoxide compounds, complex compounds and the like are applicable.

【0015】また混合方法についても特に限定されず、
例えば機械的混合,均一溶液化法,共沈法等の公知の方
法から化合物の種類や物性により適宜選択すればよい。
The mixing method is not particularly limited.
For example, a known method such as mechanical mixing, a uniform solution method, and a coprecipitation method may be appropriately selected according to the type and physical properties of the compound.

【0016】原料化合物からなる混合物は必要に応じて
乾燥させた後焼成を行なう。焼成は粉砕成形工程を間に
はさんで2回以上行なうことが好ましく、最終焼成温度
は800℃以上が好ましい。
The mixture comprising the starting compounds is dried if necessary and then fired. The firing is preferably performed at least twice with a pulverization molding step interposed therebetween, and the final firing temperature is preferably 800 ° C. or higher.

【0017】本発明に特徴的な製造方法は、焼成した成
形品を用いて、酸化性を有する化合物を有する溶液(以
下処理液ということもある)で処理することにあり、そ
の後乾燥すればよい。上記処理方法としては前記成形品
を処理液に浸漬する方法が好ましく、その他処理液を断
続的又は連続的にふりかける方法等であってもよい。
A production method characteristic of the present invention is to treat a baked molded article with a solution containing an oxidizing compound (hereinafter sometimes referred to as a treatment liquid), and then dry it. . As the treatment method, a method of immersing the molded article in a treatment liquid is preferable, and a method of sprinkling the treatment liquid intermittently or continuously may be used.

【0018】また処理液を構成する溶媒は、超伝導体の
安定性の面から非水溶媒が好ましく、メタノールやトル
エン等が例示できる。
The solvent constituting the treatment liquid is preferably a non-aqueous solvent in view of the stability of the superconductor, and examples thereof include methanol and toluene.

【0019】本発明の製造方法は上記処理液の濃度、処
理時間や温度を限定するものではないが、均質なものを
製造するには処理液の濃度を0.1M或はそれ以下とし
て一定時間処理することが望ましく、室温において処理
を行う場合は1時間以上処理することが好ましい。処理
後必要に応じてメタノール等の溶媒により洗浄を行な
い、乾燥させる。乾燥条件は特に制約されないが、低温
での通風によるおだやかな乾燥が好ましい。
The production method of the present invention does not limit the concentration of the treatment solution, the treatment time and the temperature. The treatment is desirably performed, and when the treatment is performed at room temperature, the treatment is preferably performed for 1 hour or more. After the treatment, if necessary, washing is performed with a solvent such as methanol, and drying is performed. Drying conditions are not particularly limited, but gentle drying by ventilation at a low temperature is preferable.

【0020】以上の工程を経て製造された酸化物超伝導
体は、従来の製造方法による酸化物超伝導体に比較して
大幅なTcの向上という変化を示すものである。さらに
本発明の製造方法による明確な変化は、Tc以外にも層
状ペロブスカイト構造におけるC軸方向の長さ(以下C
軸長という)の変化としてあらわれており、処理に伴う
結晶構造及び電子構造の変化がTcの向上をもたらした
ものと考えられる。
The oxide superconductor manufactured through the above-described steps shows a change of a large improvement in Tc as compared with the oxide superconductor manufactured by the conventional manufacturing method. Further, a clear change due to the manufacturing method of the present invention is that the length of the layered perovskite structure in the C-axis direction (hereinafter referred to as C
(Referred to as “axial length”), and it is considered that the change in the crystal structure and the electronic structure accompanying the treatment resulted in an improvement in Tc.

【0021】[0021]

【実施例】実施例1,比較例1 Bi(NO3)3・5H2O, Sr(NO3)2, Ca(NO3)2・4H2O, Cu(NO3)2・3
H2O の市販試薬(和光純薬製、純度99.9%)を用いて、
金属原子比がBi2Sr2Ca1Cu2となるように秤取し、加熱し
ながら混合撹拌を行ない、上記硝酸塩を徐々に融解して
均一液とした。該均一液を230℃の乾燥器中で20時
間乾燥した後、大気中800℃で10時間焼成して前駆
体を得た。この前駆体を粉砕した粉末を、直径約15m
m,厚さ約2mmの円盤状に加圧成形し、大気中820℃
で20時間焼成した。この段階で得られた成形品は従来
の低温相のBi系酸化物超伝導体であり、これは比較例
1の試験片とした。
EXAMPLES Example 1 and Comparative Example 1 Bi (NO 3 ) 3 .5H 2 O, Sr (NO 3 ) 2 , Ca (NO 3 ) 2 .4H 2 O, Cu (NO 3 ) 2 .3
Using commercially available H 2 O reagent (Wako Pure Chemical Industries, purity 99.9%)
It was weighed so that the metal atom ratio became Bi 2 Sr 2 Ca 1 Cu 2 , mixed and stirred while heating, and the nitrate was gradually melted to form a uniform liquid. The uniform liquid was dried in a dryer at 230 ° C. for 20 hours, and then calcined in air at 800 ° C. for 10 hours to obtain a precursor. The powder obtained by pulverizing this precursor is approximately 15 m in diameter.
m, press molded into a disk shape of about 2mm thickness, 820 ℃ in air
For 20 hours. The molded product obtained at this stage was a conventional low-temperature phase Bi-based oxide superconductor, which was used as a test piece of Comparative Example 1.

【0022】上記成形品をベンゾキノンの0.1 Mメタノ
ール溶液に室温で6時間浸漬し、ぬき出した後メタノー
ルで1時間洗浄を行ない、その後大気通風下室温で乾燥
して実施例1の試験片を得た。
The above molded article was immersed in a 0.1 M methanol solution of benzoquinone at room temperature for 6 hours, extruded, washed with methanol for 1 hour, and then dried at room temperature under ventilation to obtain a test piece of Example 1. Was.

【0023】上記試験片を通常の四端子法により超伝導
転移開始温度(以下Tconsetという)及びゼロ抵抗温
度(以下Tc0という)を測定した。さらにX線回折に
より層状ペロブスカイト構造のC軸長を求めた。結果は
表1に示す。
[0023] was measured superconducting transition initiation temperature (hereinafter referred to as Tc onset) and zero resistance temperature (hereinafter referred to as Tc 0) to the test strip by conventional four-terminal method. Further, the C-axis length of the layered perovskite structure was determined by X-ray diffraction. The results are shown in Table 1.

【0024】実施例2〜5 ベンゾキノンのかわりに、トルキノン、ナフトキノン、
2,3−ジクロロ−5,6−ジシアノ−1,4−ベンゾ
キノンまたは1,4−シクロヘキサンジオンを用いた以
外は実施例1と同様にして試験片を得、Tconset ,T
0及びC軸長を測定した。結果は表1に併記する。
Examples 2-5 Instead of benzoquinone, tolquinone, naphthoquinone,
Except for using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone or 1,4-cyclohexanedione to give a test piece in the same manner as in Example 1, Tc onset, T
c 0 and C axis length were measured. The results are shown in Table 1.

【0025】比較例2 ベンゾキノンのかわりに、ベンゼンを用いた以外は実施
例1と同様にして試験片を得、Tconset ,Tc0及び
C軸長を測定した。結果は表1に示す。
[0025] Instead of Comparative Example 2 benzoquinone, the resulting test pieces in the same manner as in Example 1 except for using benzene, was measured Tc onset, Tc 0 and C-axis length. The results are shown in Table 1.

【0026】実施例6,比較例3 Bi(NO3)3・5H2O, Pb(NO3)2, Sr(NO3)2,Ca(NO3)2・4H2O, C
u(NO3)2・3H2Oの市販試薬(和光純薬製、純度99.5%)を
用いて、金属原子比がBi1.5Pb0.5Sr2Ca2Cu3となるよう
に秤取し、加熱しながら混合撹拌を行ない、上記硝酸塩
を徐々に融解して均一液とした。該均一液を230℃の
乾燥器中で20時間乾燥した後、大気中800℃で10
時間焼成して前駆体を得た。この前駆体を粉砕した粉末
を、直径約15mm,厚さ約2mmの円盤状に加圧成形し、
酸素分圧0.5 気圧の雰囲気下840℃で150時間焼成
した。この段階で得られた成形品は従来の高温相のBi
系酸化物超伝導体であり、これは比較例3の試験片とし
た。
Example 6, Comparative Example 3 Bi (NO 3 ) 3 .5H 2 O, Pb (NO 3 ) 2 , Sr (NO 3 ) 2 , Ca (NO 3 ) 2 .4H 2 O, C
u (NO 3) 2 · 3H 2 O commercial reagent (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5%) was used to weighed as ratio metal atom is Bi 1.5 Pb 0.5 Sr 2 Ca 2 Cu 3, heating While stirring, the nitrate was gradually melted to form a uniform liquid. The homogeneous liquid was dried in a dryer at 230 ° C for 20 hours, and then dried at 800 ° C in air for 10 hours.
After firing for a time, a precursor was obtained. The powder obtained by pulverizing this precursor is pressed into a disk having a diameter of about 15 mm and a thickness of about 2 mm,
It was calcined at 840 ° C. for 150 hours in an atmosphere having an oxygen partial pressure of 0.5 atm. The molded product obtained at this stage is a conventional high temperature phase Bi
This was a test piece of Comparative Example 3.

【0027】上記成形品をベンゾキノンの0.1 Mメタノ
ール溶液に室温で6時間浸漬し、ぬき出した後メタノー
ルで1時間洗浄を行ない、その後大気通風下室温で乾燥
して実施例6の試験片を得た。
The molded article was immersed in a 0.1M methanol solution of benzoquinone at room temperature for 6 hours, extruded, washed with methanol for 1 hour, and then dried at room temperature under ventilation to obtain a test piece of Example 6. Was.

【0028】上記2種の試験片についてTconset ,T
0及びC軸長を測定した。結果は表1に併記する。
For the above two types of test pieces, Tconset , T
c 0 and C axis length were measured. The results are shown in Table 1.

【0029】比較例4 ベンゾキノンのかわりに、ベンゼンを用いた以外は実施
例6と同様にして試験片を得、Tconset ,Tc0及び
C軸長を測定した。結果は表1に示す。
[0029] Instead of Comparative Example 4-benzoquinone, the resulting test pieces in the same manner as in Example 6 except for using benzene, was measured Tc onset, Tc 0 and C-axis length. The results are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】以上の結果から本発明の製造方法によれば
低温相のBi系酸化物超伝導体に対しては、Tcを10
K程度高温化することが可能であり、また高温相のBi
系酸化物超伝導体ではTcを5K程度高温化できること
がわかる。
From the above results, according to the manufacturing method of the present invention, Tc is set to 10% for the Bi-based oxide superconductor in the low-temperature phase.
It is possible to raise the temperature to about K, and Bi
It can be seen that Tc can be raised to about 5K in the system oxide superconductor.

【0032】[0032]

【発明の効果】本発明は以上の様に構成されているの
で、酸化物超伝導体のTcを高める製造方法が提供でき
ることとなった。
As described above, according to the present invention, a method for increasing the Tc of an oxide superconductor can be provided.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C01G 1/00 - 57/00 H01L 39/00 - 39/24 H01B 12/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C01G 1/00-57/00 H01L 39/00-39/24 H01B 12/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化物超伝導体製造工程における中間生
成物又は超伝導特性を示すに至ったものを、酸化性を有
する化合物を含有する溶液で処理することを特徴とする
酸化物超伝導体の製造方法。
1. An oxide superconductor characterized in that an intermediate product or a material that has exhibited superconductivity in a process for producing an oxide superconductor is treated with a solution containing an oxidizing compound. Manufacturing method.
【請求項2】 中間生成物又は超伝導特性を示すに至っ
たものが、少なくともBi,Sr,Ca及びCuを含有
する酸化物である請求項1記載の酸化物超伝導体の製造
方法。
2. The method for producing an oxide superconductor according to claim 1, wherein the intermediate product or an oxide having superconductivity is an oxide containing at least Bi, Sr, Ca and Cu.
JP3092791A 1990-04-03 1991-03-29 Manufacturing method of oxide superconductor Expired - Lifetime JP2806070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3092791A JP2806070B2 (en) 1990-04-03 1991-03-29 Manufacturing method of oxide superconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-89782 1990-04-03
JP8978290 1990-04-03
JP3092791A JP2806070B2 (en) 1990-04-03 1991-03-29 Manufacturing method of oxide superconductor

Publications (2)

Publication Number Publication Date
JPH04219303A JPH04219303A (en) 1992-08-10
JP2806070B2 true JP2806070B2 (en) 1998-09-30

Family

ID=26431193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3092791A Expired - Lifetime JP2806070B2 (en) 1990-04-03 1991-03-29 Manufacturing method of oxide superconductor

Country Status (1)

Country Link
JP (1) JP2806070B2 (en)

Also Published As

Publication number Publication date
JPH04219303A (en) 1992-08-10

Similar Documents

Publication Publication Date Title
JP2655671B2 (en) Superconducting oxide of copper having mixed valence and method for producing the same
JP2806070B2 (en) Manufacturing method of oxide superconductor
JP2806071B2 (en) Manufacturing method of oxide superconductor
EP0450561B1 (en) Process for producing an oxide superconductor
JP3224578B2 (en) Manufacturing method of oxide superconductor
JP3164392B2 (en) Manufacturing method of oxide superconductor
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JP2831755B2 (en) Oxide superconductor
JPH10330117A (en) Oxide superconductor, its production and current lead using the same
JPH0558708A (en) Oxide superconductor
JPH01290530A (en) Multiple oxides superconducting material and production thereof
JP2653448B2 (en) Oxide superconducting element
JPH02221125A (en) Oxide superconductor and its production
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JPH02296722A (en) Oxide superconductor and its manufacture
JPS63310758A (en) Production of electrically conductive materials
JPS6471010A (en) Manufacture of oxide system superconductive wire material
Sakurai et al. N-type oxide superconductor represented by the formula (Nd x (Ce y L z) 2 CuO 4-d where L is La, Mg or a mixture of alakaline earth elements
JPH0778530A (en) Oxide superconductor and preparation thereof
JPH01238190A (en) Manufacture of superconductor thick film
JPH02296721A (en) Oxide superconductor and its manufacture
JPH01279507A (en) Manufacture of ceramic superconductor
JPH02258665A (en) Production of superconductive material
JPH0459654A (en) Oxide superconductor
JPH07187672A (en) Oxide superconductor and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980623