JP2805253B2 - Ferroelectric liquid crystal device - Google Patents

Ferroelectric liquid crystal device

Info

Publication number
JP2805253B2
JP2805253B2 JP3074205A JP7420591A JP2805253B2 JP 2805253 B2 JP2805253 B2 JP 2805253B2 JP 3074205 A JP3074205 A JP 3074205A JP 7420591 A JP7420591 A JP 7420591A JP 2805253 B2 JP2805253 B2 JP 2805253B2
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
ferroelectric liquid
state
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3074205A
Other languages
Japanese (ja)
Other versions
JPH04218023A (en
Inventor
豊 稲葉
榑松  克巳
修三 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3074205A priority Critical patent/JP2805253B2/en
Priority to EP91104222A priority patent/EP0448032B1/en
Priority to AT91104222T priority patent/ATE140097T1/en
Priority to DE69120564T priority patent/DE69120564T2/en
Publication of JPH04218023A publication Critical patent/JPH04218023A/en
Application granted granted Critical
Publication of JP2805253B2 publication Critical patent/JP2805253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3651Control of matrices with row and column drivers using an active matrix using multistable liquid crystals, e.g. ferroelectric liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/367Control of matrices with row and column drivers with a nonlinear element in series with the liquid crystal cell, e.g. a diode, or M.I.M. element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/207Display of intermediate tones by domain size control
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

A method of driving a liquid crystal display element in which a switching element is provided for each of pixel electrodes arranged in a matrix manner and a ferroelectric liquid crystal is sandwiched between the pixel electrodes and a counter electrode includes the steps of applying a reset voltage for resetting the entire pixel to a first stable state of the ferroelectric liquid crystal across the pixel electrode and the counter electrode, partially transiting the pixel to a second stable state by a tone signal voltage having a pole opposite to that of the reset voltage, and reversing the pole of the reset voltage every predetermined period. Assuming that a state reverse ratio of the ferroelectric liquid crystal is T(V)% when the tone signal voltage is V, a tone signal voltage V1 after negative resetting and a corresponding tone signal voltage -V2 after positive resetting satisfy the following relation: T(V1) + T(V2) = 100 <IMAGE>

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 本発明は、表示装置等強誘電
性液晶装置に関する。
The present invention relates to a ferroelectric liquid crystal device such as a display device.

【0002】[0002]

【従来技術の説明】強誘電性液晶(以下FLCと呼ぶ)
を用いた電気光学素子は、電界に対して高速に応答する
ことと、双安定性を示すことの特徴を生かして主に単純
マトリクス表示素子に応用されてきたが、近年、アクテ
ィブマトリクス表示素子への応用も検討されるようにな
った。アクティブマトリクスFLC素子の特徴は、第1
に、一画面の走査時間(フレーム周期)がFLCの応答
速度によらず決めることができることである。単純マト
リクスFLC素子では1走査線の選択時間内に液晶が応
答する必要があるので、フレーム周期は(液晶の応答速
度)×(走査線本数)以下に下げることはできず、走査
線の本数が増すにつれてフレーム周期が長くなるという
欠点があった。これに対してアクティブマトリクスFL
C素子では、1走査線選択時間内にその走査線上の画素
の充放電だけが行なわれればよく、選択期間後は画素の
スイッチング素子がオフ状態になって液晶への印加電圧
を保持するので、液晶の応答はこの保持時間内に行なわ
れる。したがって、フレーム周期は液晶の応答速度に依
らず、走査線本数が増えてもテレビジョンで使われてい
る33msで動作させることが可能である。
2. Description of the Prior Art Ferroelectric liquid crystal (hereinafter referred to as FLC)
Electro-optical devices using GaN have been mainly applied to simple matrix display devices, taking advantage of their characteristics of high-speed response to an electric field and exhibiting bistability. The application of is also being considered. The feature of the active matrix FLC element is the first
Second, the scanning time (frame period) of one screen can be determined regardless of the response speed of the FLC. In the simple matrix FLC element, since the liquid crystal needs to respond within the selection time of one scanning line, the frame period cannot be reduced to (response speed of liquid crystal) × (the number of scanning lines) or less. There is a disadvantage that the frame period becomes longer as the number increases. On the other hand, the active matrix FL
In the C element, only charging / discharging of the pixel on the scanning line need be performed within one scanning line selection time, and after the selection period, the switching element of the pixel is turned off to hold the voltage applied to the liquid crystal. The response of the liquid crystal takes place within this holding time. Therefore, the frame period does not depend on the response speed of the liquid crystal, and even if the number of scanning lines increases, the frame can be operated at 33 ms used in a television.

【0003】アクティブマトリクスFLC素子の第2の
特徴は階調表示が容易なことである。アクティブマトリ
クスFLC素子の階調表示法の1つはEP284134
で述べられているもので、その原理は画素を予め一方の
安定状態にリセットしておき、次いで能動素子を通じて
画素電極に電荷量Qを与え、これによって一画素内にお
いて部分的にFLCの第2の安定状態へのスイッチング
を生じさせるというものである。この原理を利用した場
合、第2の安定状態へのスイッチングが生じた部分の面
積をa、FLCの自発分極の大きさをPSとすると、ス
イッチングによって2PS・aの電荷が移動し、これが
初めに与えた電荷Qを打消すまで第2の安定状態へのス
イッチングが続く。そして最終的に a=Q/2PS の面積が第2の安定状態になる。Qを変えることでaの
制御すなわち面積階調が実現される。
A second feature of the active matrix FLC element is that gradation display is easy. One of the gradation display methods of the active matrix FLC element is EP284134.
The principle is that the pixel is reset to one stable state in advance, and then the charge Q is applied to the pixel electrode through the active element, whereby the second portion of the FLC is partially applied within one pixel. Is switched to a stable state. When this principle is used, assuming that the area of the portion where the switching to the second stable state occurs is a and the magnitude of the spontaneous polarization of the FLC is P s , the charge of 2P S · a moves by the switching. Switching to the second stable state continues until the initially applied charge Q is canceled. The area of the finally a = Q / 2P S is second stable state. By changing Q, control of a, that is, area gradation is realized.

【0004】図7は、このような強誘電性液晶素子を構
成する強誘電性液晶セルの一具体例の断面図を示す。こ
の液晶セルは、TFT(薄膜トランジスタ)を用いたも
のである。
FIG. 7 is a sectional view of a specific example of a ferroelectric liquid crystal cell constituting such a ferroelectric liquid crystal element. This liquid crystal cell uses a TFT (thin film transistor).

【0005】図7において、ガラスやプラスチック等の
基板70aの上にゲート電極71や絶縁膜(水素原子を
ドーピングした窒化シリコン膜など)72を介して形成
した半導体膜(水素原子をドーピングしたアモルファス
シリコン膜等)73とこの半導体膜73に接する2つの
端子74,75とで構成したTFTと、TFTの端子7
5に接続した画素電極(ITO:Indium Tin
Oxideなど)76aが形成されている。
In FIG. 7, a semiconductor film (amorphous silicon doped with hydrogen atoms) is formed on a substrate 70a of glass or plastic through a gate electrode 71 and an insulating film (such as a silicon nitride film doped with hydrogen atoms) 72. Film) 73 and two terminals 74 and 75 in contact with the semiconductor film 73;
5 (ITO: Indium Tin)
Oxide) 76a is formed.

【0006】さらに、この上に、絶縁層(ポリイミド、
ポリアミド、ポリビニルアルコール、ポリパラキシリレ
ン、SiO2、またはTiO2)77aとアルミニウムや
クロムなどからなる光遮蔽膜78が設けられている。対
向基板となる基板70bの上には対向電極(ITO:I
ndium Tin Oxide)76bと絶縁膜77
bが形成されている。
Further, an insulating layer (polyimide,
A light shielding film 78 made of polyamide, polyvinyl alcohol, polyparaxylylene, SiO 2 , or TiO 2 ) 77a and aluminum or chromium is provided. A counter electrode (ITO: I
ndium Tin Oxide) 76b and insulating film 77
b is formed.

【0007】基板70aと70bの間には、強誘電性液
晶80が挟持されている。また、基板70aと70bの
周囲部には強誘電性液晶80を封止するためのシール材
81が設けられている。
[0007] A ferroelectric liquid crystal 80 is sandwiched between the substrates 70a and 70b. In addition, a seal member 81 for sealing the ferroelectric liquid crystal 80 is provided around the substrates 70a and 70b.

【0008】このようなセル構造の液晶素子の両側には
クロスニコル状態の偏光子82aと82bが配置され、
偏光子82bの背後には観察者Aが入射光I0よりの反
射光I1によって液晶素子の表示状態を見ることができ
るように反射板(乱反射性アルミニウムのシートまたは
板)83が設けられている。
On both sides of the liquid crystal element having such a cell structure, crossed Nicol polarizers 82a and 82b are arranged.
Polarized behind photon 82b by the reflecting plate (sheet or plate of diffuse aluminum) 83 is provided so as to be able to see the display state of the liquid crystal element observer A is the reflected light I 1 than the incident light I 0 I have.

【0009】なお、図7のTFTにおいて、端子74と
75に対応するソース電極およびドレイン電極という命
名は、電流が流れる向きを一方向に限定した場合のもの
である。FETは、一般に、ソースとドレインを入れ替
えた場合も同様に働かせることが可能である。
In the TFT of FIG. 7, the names of the source electrode and the drain electrode corresponding to the terminals 74 and 75 refer to the case where the direction of current flow is limited to one direction. In general, an FET can operate similarly when the source and the drain are exchanged.

【0010】[0010]

【発明が解決しようとする課題】ところで、本発明者ら
の実験によると、上記電荷変調による面積階調法には1
つ欠点がある。それは第1の安定状態から第2の安定状
態への移行が上記のように電荷を完全に打消すまでは進
行せず、途中で止まってしまうことである。この様子を
図8に示す。図8は、通常のテレビジョンで用いられて
いるのと同様に33ms周期でリセットと階調表示を繰
り返す場合の画素電極間電圧(図8(a))と透過光強
度(図8(b))の時間変化をプロットしたものであ
る。電圧は能動素子(例えばTFT)がオフになった直
後は急な減衰を示すが、やがて減衰が極めて緩やかにな
る。同様に能動素子がオフになった直後は急激に変化す
る透過光強度もやがてその変化が緩慢になってくる。す
なわち、電極間には電界が存在するにもかかわらず状態
間の反転が極めてゆっくりとしか進行しないか、または
停止してしまっていることがわかる。
According to experiments conducted by the present inventors, the area gray scale method based on the charge modulation has one problem.
There are two disadvantages. That is, the transition from the first stable state to the second stable state does not proceed until the electric charge is completely canceled as described above, but stops halfway. This is shown in FIG. FIG. 8 shows the voltage between the pixel electrodes (FIG. 8 (a)) and the transmitted light intensity (FIG. 8 (b)) when resetting and gradation display are repeated at a period of 33 ms, similar to that used in a normal television. ) Is plotted over time. The voltage shows a sharp decay immediately after the active element (for example, a TFT) is turned off, but the decay becomes extremely slow. Similarly, immediately after the active element is turned off, the intensity of the transmitted light, which changes abruptly, gradually becomes slow. That is, it can be seen that the reversal between the states progresses only very slowly or stops even though an electric field exists between the electrodes.

【0011】この現象があるために、液晶には常に残留
DC電界が掛かり続け、やがて液晶材の劣化を引き起こ
す。あるいは、図7に示すように電極と液晶との間に絶
縁層をおく構成の液晶素子においては、液晶中の不純物
イオンがDC電界によって絶縁層界面に付着し、前記D
C電界とは逆向きの電界を発生させるため、FLCの双
安定性を損なう方向に働く。
Due to this phenomenon, a residual DC electric field is constantly applied to the liquid crystal, and eventually causes the deterioration of the liquid crystal material. Alternatively, in a liquid crystal element having a configuration in which an insulating layer is provided between an electrode and a liquid crystal as shown in FIG. 7, impurity ions in the liquid crystal adhere to the interface of the insulating layer by a DC electric field, and
Since the electric field is generated in a direction opposite to the C electric field, it works in a direction that impairs the bistability of the FLC.

【0012】 本発明は、強誘電性液晶素子の液晶材料
が劣化したり、双安定性が失われない強誘電性液晶装置
を提供することを目的とする。
[0012] The present invention relates to a liquid crystal material or degradation of the ferroelectric liquid crystal device, and an object thereof is to provide a ferroelectric liquid crystal device <br/> that bistability is not lost.

【0013】[0013]

【課題を解決するための手段】 上記目的を達成するた
め本発明では、マトリクス状に配置された画素電極ごと
にスイッチング素子を設け、対向電極との間に強誘電性
液晶を挟持した強誘電性液晶素子、両電極間に画素全
体を強誘電性液晶の第一の安定状態にリセットするリセ
ット電圧、および該リセット電圧とは逆極性の、画素を
部分的に第二の安定状態に遷移させる信号電圧とを交互
に切り替えて印加する電圧印加手段と、一定周期ごとに
該リセット電圧を反転させる手段と、一定周期ごとに
号電圧を反転させる手段とを有する強誘電性液晶装置
であって、負極性リセット電圧印加後の正極性信号電圧
を印加した時の強誘電性液晶の状態反転率をT(V
)%とし、正極性リセット電圧印加後の負極性信号電
圧V を印加した時の強誘電性液晶の状態反転率をT
(V )%とした時、両者の間でT(V)+T
(V)=100%の関係を満たすようにしている。
In this onset bright order to achieve the above object, according to an aspect of the switching element provided for each pixel electrode arranged in a matrix, the intensity and sandwiching a ferroelectric liquid crystal between the counter electrode a ferroelectric liquid crystal device, the first reset voltage for resetting to a stable state of the ferroelectric liquid crystal to all the pixels between the electrodes, and the opposite polarity to the said reset voltage, a second stable state pixel partially voltage applying means for applying switching between signal voltage Ru to transition alternately, and means for inverting the reset voltage every predetermined period, the constant cycle
Ferroelectric liquid crystal device which have the means for inverting the signal voltage
A in the ferroelectric state inversion of the liquid crystal upon application of a positive polarity signal voltages V 1 after applying the negative polarity reset voltage T (V
1 )% , negative signal voltage after application of positive reset voltage
The ferroelectric state inversion of the liquid crystal upon application of pressure V 2 T
(V 2 )%, T (V 1 ) + T
Is the (V 2) = satisfy 100% of the relationship.

【0014】 本発明の好ましい実施例において、前記
周期は一画面の走査周期である。また、隣接する走査線
のリセット電圧は逆極性であり、前記第一の安定状態は
黒状態に対応する。さらに、前記信号電圧は階調情報を
含む信号電圧である。
In a preferred embodiment of the present invention,
The cycle is a scanning cycle of one screen. Also, adjacent scanning lines
Are of opposite polarity, and the first stable state is
Corresponds to the black state. Further, the signal voltage represents the gradation information.
Signal voltage.

【0015】[0015]

【作用】本発明によれば、一定周期ごとにリセット電圧
の極性および階調信号電圧の極性を反転させるため、液
晶に対して常にDC電界が掛かり続けるという事態を防
止することができる。
According to the present invention, since the polarity of the reset voltage and the polarity of the gradation signal voltage are inverted at regular intervals, it is possible to prevent a situation where a DC electric field is constantly applied to the liquid crystal.

【0016】 したがって、液晶材料の劣化およびFL
Cの双安定性の低下を防止することができる。また、個
々の画素内を負極性リセット電圧により100%を第一
の安定状態(例えば黒状態)に遷移させた後正極性信号
電圧V によりT(V )%だけ第二の安定状態(白状
態)に遷移させた場合と、正極性リセット電圧により画
素内の100%を第二の安定状態(白状態)に遷移させ
た後負極性信号電圧V によりT(V )%だけ第一の
安定状態(黒状態)に遷移させた場合とで、画素内にお
ける黒状態部分と白状態部分の面積比、すなわち画素輝
度(表示階調)を等しくしているため、リセット電圧と
信号電圧の極性を切り換えることによる輝度変化(フリ
ッカ)も発生しない。
Therefore, deterioration of the liquid crystal material and FL
It is possible to prevent a decrease in the bistability of C. Also, individual
100% first in each pixel by negative reset voltage
Signal after transition to a stable state (for example, black state)
The second stable state (white state) by T (V 1 )% by the voltage V 1
State) and a positive reset voltage.
Transition 100% of the element to the second stable state (white state)
Negatively charged by the signal voltage V 2 T (V 2)% by a first after
In the case of transition to the stable state (black state),
Area ratio of the black state part and the white state part
Because the degree (display gradation) is equal, the reset voltage and
Luminance change (freedom) by switching the polarity of the signal voltage
Does not occur.

【0017】本発明の駆動方法で用いることができる双
安定性を有する強誘電性液晶としては、強誘電性を有す
るカイラルスメクチック液晶が最も好ましく、そのうち
カイラルスメクチックC相(SmC*)、H相(Sm
* )、I相(SmI*)、J相(SmJ*)、K相(S
mK*)、G相(SmG*)またはF相(SmF*)の液
晶が適している。この強誘電性液晶については、“LE
JOURNAL DEPHYSIQUE LETTE
RS”36(L−69)1975,「Ferroele
ctric Liquid Crystals」;“A
pplied Physics Letters ”
(11)1980「SubmicroSecond
Bistable Electrooptic Swi
tching in Liquid Crystal
s」;“固体物理”16(141)1981「液晶」等
に記載されており、本発明ではこれらに開示された強誘
電性液晶を用いることができる。
The dual drive that can be used in the driving method of the present invention
As a stable ferroelectric liquid crystal, it has ferroelectricity
Chiral smectic liquid crystal is most preferred, of which
Chiral smectic C phase (SmC*), H phase (Sm
H* ), I phase (SmI*), J phase (SmJ*), K phase (S
mK*), G phase (SmG*) Or F phase (SmF*) Liquid
Crystals are suitable. About this ferroelectric liquid crystal, "LE
 JOURNAL DEPHYSIQUE LETTE
RS "36(L-69) 1975, "Ferroele
tric Liquid Crystals ";" A
Applied Physics Letters "3
6(11) 1980 "SubmicroSecond
Bistable Electric Swi
tching in Liquid Crystal
s ";" Solid state physics "16(141) 1981 "Liquid crystal" etc.
In the present invention, the incentives disclosed therein are described.
An electrically conductive liquid crystal can be used.

【0018】本発明で用いられる強誘電性液晶化合物の
具体例としては、デシロキシベンジリデン−p’−アミ
ノ−2−メチルブチルシンナメート(DOBAMB
C)、ヘキシルオキシベンジリデン−p’−アミノ−2
−クロロプロピルシンナメート(HOBACPC)、4
−o−(2−メチル)ブチルレゾルシリデン−4’−オ
クチルアニリン(MBRA8)等が挙げられる。
Specific examples of the ferroelectric liquid crystal compound used in the present invention include desyloxybenzylidene-p'-amino-2-methylbutylcinnamate (DOBAMB).
C), hexyloxybenzylidene-p'-amino-2
-Chloropropylcinnamate (HOBACPC), 4
-O- (2-methyl) butyl resorcylidene-4'-octylaniline (MBRA8) and the like.

【0019】これらの材料を用いて液晶を構成する場
合、液晶化合物がSmC相C*やSmHC*相などのカイ
ラルスメクチック相となるような温度状態に保持するた
め、必要に応じて素子をヒータが埋め込まれた銅ブロッ
ク等により支持することができる。
When a liquid crystal is formed using these materials, the element is heated by a heater as necessary to maintain the liquid crystal compound in a temperature state such that the liquid crystal compound becomes a chiral smectic phase such as an SmC phase C * or SmHC * phase. It can be supported by an embedded copper block or the like.

【0020】図9は、強誘電性液晶セルの例を模式的に
描いたものである。91aと91b、In23、SnO
2あるいはITO(Indium Tin Oxid
e)等の薄膜からなる透明電極で被覆された基板(ガラ
ス板)であり、その間に液晶分子層92がガラス面に垂
直になるように配向したSmC*またはSmH* 等のカイ
ラルスメクチック相の液晶が封入されている。太線で示
した線93が液晶分子を表わしており、この液晶分子9
3はその分子に直交した方向に双極子モーメント(P
⊥)94を有している。基板91aと91b上の電極間
に一定の閾値以上の電圧を印加すると、液晶分子93の
らせん構造がほどけ、双極子モーメント(P⊥)94が
すべて電界方向に向くよう、液晶分子93は配向方向を
変えることができる。液晶分子93は細長い形状を有し
ており、その長軸方向と短軸方向で屈折率異方性を示
し、したがって、例えばガラス面の上下に互いにクロス
ニコルの偏光子を置けば、電圧印加極性によって光学特
性が変わる液晶光学変調素子となることは、容易に理解
される。さらに液晶セルの厚さを充分に薄く(例えば1
μm)した場合には、図10に示すように電界を印加し
ていない状態でも液晶分子はらせん構造がほどけて非ら
せん構造となり、その双極子モーメントPaまたはPb
は上向き(矢印104a)または下向き(矢印104
b)のどちらかの状態をとる。このようなセルに、図1
0に示す如く一定の閾値以上の極性の異なる電界Eaま
たはEbを不図示の電圧印加手段により付与すると、双
極子モーメントは、電界EaまたはEbの電界ベクトル
に対応して上向き104aまたは下向き104bと向き
を変え、それに応じて液晶分子は、第1の安定状態10
5aかあるいは第2の安定状態105bの何れか一方に
配向する。
FIG. 9 schematically shows an example of a ferroelectric liquid crystal cell.
It is what I drew. 91a and 91b, InTwoOThree, SnO
TwoAlternatively, ITO (Indium Tin Oxid)
e) Substrate covered with a transparent electrode consisting of a thin film (glass)
Liquid crystal molecule layer 92 is suspended on the glass surface
SmC oriented to be straight*Or SmH* Etc. Kai
Larsmectic phase liquid crystal is enclosed. Shown by bold line
The line 93 represents a liquid crystal molecule.
3 is a dipole moment (P
⊥) 94 is provided. Between electrodes on substrates 91a and 91b
When a voltage higher than a certain threshold is applied to the
The helical structure is released, and the dipole moment (P モ ー メ ン ト) 94 becomes
The liquid crystal molecules 93 change the alignment direction so that they all face the electric field direction.
Can be changed. The liquid crystal molecules 93 have an elongated shape.
And exhibits refractive index anisotropy in the major axis and minor axis directions.
And thus, for example, cross each other above and below the glass surface
If a Nicol polarizer is placed, the optical characteristics depend on the polarity of the applied voltage.
Easily become a liquid crystal optical modulator with changing properties
Is done. Further, the thickness of the liquid crystal cell is made sufficiently thin (for example, 1
μm), an electric field is applied as shown in FIG.
Even when the liquid crystal molecules are not in the helical state,
And the dipole moment Pa or Pb
Is upward (arrow 104a) or downward (arrow 104a).
Take either state of b). In such a cell, FIG.
As shown in FIG.
When Eb is applied by voltage applying means (not shown),
The pole moment is the electric field vector of the electric field Ea or Eb.
Corresponding to the direction of upward 104a or downward 104b
And the liquid crystal molecules accordingly change to the first stable state 10.
5a or the second stable state 105b
Orient.

【0021】このような強誘電性液晶を光学変調素子と
して用いることの利点は2つある。
The use of such a ferroelectric liquid crystal as an optical modulation element has two advantages.

【0022】第1に、応答速度が極めて速いこと、第2
に液晶分子の配向が双安定性を有することである。第2
の点を、例えば図10によってさらに説明すると、電界
Eaを印加すると液晶分子は第1の安定状態105aに
配向するが、この状態は電界を切っても安定である。ま
た、逆向きの電界Ebを印加すると、液晶分子は第2の
安定状態105bに配向してその分子の向きを変える
が、やはり電界を切ってもこの状態に留っている。ま
た、与える電界EaまたはEbが一定の閾値を越えない
限り、それぞれの配向状態にやはり維持されている。こ
のような応答速度の速さと、双安定性が有効に実現され
るにはセルとしては出来るだけ薄い方が好ましく、一般
的には0.5μm〜20μm、特に1μm〜5μmが適
している。この種の強誘電性液晶を用いたマトリクス電
極構造を有する液晶−電気光学装置は、例えばクラーク
とラガバルにより米国特許第4367924号明細書で
提案されている。
First, the response speed is extremely fast.
Another problem is that the orientation of the liquid crystal molecules has bistability. Second
If the electric field Ea is applied, the liquid crystal molecules are oriented to the first stable state 105a. This state is stable even when the electric field is turned off. When an electric field Eb in the opposite direction is applied, the liquid crystal molecules are oriented to the second stable state 105b and change the direction of the molecules, but remain in this state even after the electric field is turned off. As long as the applied electric field Ea or Eb does not exceed a certain threshold value, the respective alignment states are also maintained. In order to effectively realize such a high response speed and bistability, it is preferable that the cell is as thin as possible, and generally, 0.5 μm to 20 μm, particularly 1 μm to 5 μm is suitable. A liquid crystal-electro-optical device having a matrix electrode structure using a ferroelectric liquid crystal of this type has been proposed, for example, by Clark and Lagabal in U.S. Pat. No. 4,367,924.

【0023】本発明は、アクティブマトリックスを構成
するTFT等のFET(電界効果トランジスタ)構造の
素子がドレイン電極とソース電極との間に印加される電
圧を逆にすると、ドレインおよびソースとしてのそれぞ
れの電極の役割が逆転した状態のFETとして正常に動
作することに基づいている。アクティブマトリックスを
構成する素子としては、FET構造の素子であればアモ
ルファスシリコンTFT、多結晶シリコンTFT等のい
ずれであっても使用し得る。またFET構造以外のスイ
ッチング素子であっても、正負いずれの印加電圧に対し
ても動作し得る素子、例えばバイポーラトランジスタも
同様に使用し得る。さらには、MIM(Metal−I
nsulator−Metal)やダイオード等の2端
子のスイッチング素子を用いることも可能である。
According to the present invention, when an element having an FET (field effect transistor) structure such as a TFT constituting an active matrix reverses a voltage applied between a drain electrode and a source electrode, the respective elements as a drain and a source can be used. This is based on the fact that the function of the electrode normally operates as the FET in a state where the role is reversed. As an element constituting the active matrix, any element such as an amorphous silicon TFT and a polycrystalline silicon TFT can be used as long as the element has an FET structure. In addition, a switching element other than the FET structure, which can operate for both positive and negative applied voltages, for example, a bipolar transistor, can also be used. Furthermore, MIM (Metal-I
It is also possible to use a two-terminal switching element such as an nsulator (metal) or a diode.

【0024】N型FETは、VDをドレイン電圧、VG
ゲート電圧、VSをソース電圧、VPをゲート・ソース間
の閾値電圧とすると、VD>VSで、VG>VS+VPのと
き導通状態となり、VG<VS+VPのとき非導通状態と
なる。
[0024] N-type FET, the drain voltage V D, the gate voltage V G, the source voltage V S, when the V P and the threshold voltage between the gate and source, with V D> V S, V G > V becomes conductive when the S + V P, the non-conducting state when V G <V S + V P .

【0025】P型FETにおいては、VD<VSとする
と、VG<VS+VPで導通状態となり、VG>VS+VP
非導通状態となる。
In the P-type FET, when V D <V S , the conduction state is established when V G <V S + V P , and the conduction state is established when V G > V S + V P.

【0026】P型であってもN型であってもFETの端
子のいずれがドレインとして作用し、いずれがソースと
して作用するかは、電圧の印加の方向によって定まる。
すなわち、N型では電圧の低い方がソースとして作用
し、P型では電圧の高い方がソースとして作用する。
Which terminal of the FET functions as a drain and which functions as a source, whether it is a P-type or an N-type, depends on the direction of voltage application.
That is, in the N-type, the lower voltage acts as a source, and in the P-type, the higher voltage acts as a source.

【0027】強誘電性液晶素子においては、液晶セルに
印加する、正、負の電圧に対していずれを「明」状態と
し、いずれを「暗」状態とするかは、セルの上下に配置
するクロスニコル状態にした一対の偏光子の偏光軸と、
液晶分子長軸との向きにより自由に設定できる。
In a ferroelectric liquid crystal element, which of a “bright” state and a “dark” state with respect to positive and negative voltages applied to a liquid crystal cell is disposed above and below the cell. Polarization axes of a pair of polarizers in a crossed Nicols state,
It can be set freely according to the direction of the liquid crystal molecule long axis.

【0028】本発明は、液晶セルに印加される電界をア
クティブマトリックスの各素子の端子間電圧を制御する
ことによって制御し表示を行なうものであるから、各信
号の電圧レベルは以下の実施例にとらわれることなく、
各信号の電位差を相対的に維持すれば、実施することが
できる。
According to the present invention, the electric field applied to the liquid crystal cell is controlled by controlling the voltage between the terminals of each element of the active matrix, and the display is performed. Without being caught
This can be achieved if the potential difference between the signals is relatively maintained.

【0029】実施例1図1は、本発明の一実施例に係る
FLCパネルおよびそれを駆動する駆動系の構成を示
す。同図において、1はTFTを能動素子とするアクテ
ィブマトリクス駆動方式のFLCパネル、2はシフトレ
ジスタおよびホールド回路等からなるXドライバ、3は
シフトレジスタおよびラッチ等から成るYドライバ、4
はタイミングコントローラ、5はビデオ信号の極性反転
回路、6はリセット信号の極性反転回路、7はビデオ信
号とリセット信号との切換回路である。
Embodiment 1 FIG. 1 shows a configuration of an FLC panel and a drive system for driving the FLC panel according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an active matrix drive type FLC panel using a TFT as an active element, 2 denotes an X driver including a shift register and a hold circuit, 3 denotes a Y driver including a shift register and a latch, 4
Is a timing controller, 5 is a polarity inversion circuit of a video signal, 6 is a polarity inversion circuit of a reset signal, and 7 is a switching circuit for switching between a video signal and a reset signal.

【0030】本実施例では、タイミングコントローラお
よびYドライバにより、図2(b)に示したような、第
1のゲートパルスとこれより若干(Tdだけ)タイミ
ングの遅れた第2のゲートパルスを発生させ、これを
順次の水平周期で各ゲートライン9に印加している。一
つのラインまたは画素に注目すれば、次のゲートパルス
迄はフレーム周期Tfとなり、図2(b)のパルスと
はこれに対応している。そして,このゲートパルス
,,,,……の各タイミングに合わせて、Xド
ライバへの入力信号ライン10への出力がそれぞれ負極
性リセット電圧、正極性階調信号電圧、正極性リセット
電圧、負極性階調信号電圧、……(この後は同様の繰り
返し)となるように極性反転回路5,6と切換回路7の
動作タイミングがコントロールされる。したがって前記
注目画素には図2(a)で示したような駆動信号がTF
Tを通して印加される。さらに、この各信号の無印加時
にTFTはオフ状態となっていることと、前述したFL
Cの自発分極PSによる電荷の打消し作用により、容量
性負荷としての注目画素における電極間電圧波形は図2
(c)の如くになる。
In this embodiment, as shown in FIG. 2B, the timing controller and the Y driver generate the first gate pulse and the second gate pulse slightly delayed (by Td) from the first gate pulse. This is applied to each gate line 9 in a sequential horizontal cycle. Paying attention to one line or pixel, the frame period is Tf until the next gate pulse, and the pulse in FIG. 2B corresponds to this. The outputs to the input signal line 10 to the X driver are respectively set to the negative reset voltage, the positive gray scale signal voltage, the positive reset voltage, the negative reset voltage in accordance with the timing of the gate pulse,. The operation timings of the polarity inverting circuits 5 and 6 and the switching circuit 7 are controlled so as to obtain a gradation signal voltage,... Therefore, a drive signal as shown in FIG.
Applied through T. Further, the TFT is off when no signal is applied, and the above-mentioned FL
The cancellation effect of the charge due to the spontaneous polarization P S and C, the interelectrode voltage waveform at the pixel of interest as a capacitive load 2
(C).

【0031】図2(c)において、は負極性リセット
に対応し、この時画素内のFLCは全て第1の安定状態
に戻り、時間Tdの間に図3(a)の如き全面黒状態と
なる。その後、正極性階調信号の印加()により、電
荷Q(=CV1,C:画素の電極間容量、V1:階調信号
電圧)が画素に与えられると、前述した如くa=Q/2
Sに相当する面積(ドメイン)が白表示に反転し(図
3(b))、この時電荷QがFLCのPSにより打消さ
れるため、電圧の減衰12(図2(c))が発生する。
この状態が(Tf−Td)なる時間続き(但しTf>>
Td)階調状態を表示する。この時の反転率をT
(V1)[%]とすればT(V1)=a/S(S:画素全
体の面積)となる、これは透過率にほぼ等しい。
In FIG. 2 (c), corresponds to the negative polarity reset. At this time, all FLCs in the pixel return to the first stable state, and during the time Td, the FLC in the entire pixel becomes the black state as shown in FIG. 3 (a). Become. Thereafter, when a charge Q (= CV 1 , C: inter-electrode capacitance of the pixel, V 1 : gradation signal voltage) is applied to the pixel by application of the positive polarity gradation signal (), a = Q / 2
The area (domain) corresponding to P S is inverted to white display (FIG. 3B). At this time, the charge Q is canceled by the P S of the FLC, so that the voltage decay 12 (FIG. 2C) occurs. Occur.
This state lasts for (Tf-Td) (where Tf >>
Td) Display gradation state. The reversal rate at this time is T
If (V 1 ) [%], T (V 1 ) = a / S (S: total area of the pixel), which is almost equal to the transmittance.

【0032】次に、の状態に移る。は正極性リセッ
トに対応し、この時、画素内のFLCは全て第2の安定
状態に移り、図3(c)の如く、全面白状態となる。そ
して、負極性階調信号の印加()により、電荷Q(=
CV2)が画素に与えられ、a=Q/2PSに相当する面
積(ドメイン)が今度は図3(d)の如く黒表示に反転
する。14はこの時生じる電圧減衰を表わしている。こ
の時の反転率をa/S=T(V2)とすれば、透過率は
100−T(V2)となる。したがって、前述した正極
性階調信号時と負極性階調信号時とでは信号電圧に対す
る透過率の関係が相補的となる。そこで、例えば所定の
透過率を出すための正極性階調信号V1と負極性階調信
号−V2との関係はT(V1)+T(V2)=100とな
る。そしてこの、、およびの過程が繰り返され
て、FLCパネルの表示が行なわれる。特に、および
のリセットに要する時間Tdと階調信号パルス印加時
間の和を水平走査時間内に抑えれば、およびの表示
状態がフレーム周期分維持され、リセットによる画素全
面白または黒表示の影響はほとんど表われない。
Next, the operation moves to the state (1). Corresponds to a positive polarity reset. At this time, all FLCs in the pixel shift to the second stable state, and as shown in FIG. Then, the charge Q (=
CV 2) is applied to the pixel, the area corresponding to a = Q / 2P S (domain) in turn is inverted to black display as shown in FIG. 3 (d). Reference numeral 14 denotes the voltage decay occurring at this time. Assuming that the reversal rate at this time is a / S = T (V 2 ), the transmittance is 100−T (V 2 ). Therefore, the relationship between the signal voltage and the transmittance at the time of the positive gradation signal and the time of the negative gradation signal are complementary. Therefore, for example, the relationship between the positive gradation signal V 1 and the negative gradation signal −V 2 for obtaining a predetermined transmittance is T (V 1 ) + T (V 2 ) = 100. These steps and are repeated to display the FLC panel. In particular, if the sum of the time Td required for resetting and the application time of the grayscale signal pulse is suppressed within the horizontal scanning time, the display state of and is maintained for the frame period, and the effect of white or black display on the entire pixel due to resetting is reduced. Hardly ever.

【0033】実際には階調信号電圧と透過率の関係は必
ずしも直線的ではなく図4に示すように非線形である。
図4は黒の状態にある画素に電圧V(電荷CV)を与え
たときの白状態への反転面積率をプロットしたものであ
る。白の状態にある画素に−Vの電圧を与えて黒に反転
させるときの面積率は白と黒の状態が対称なので図4の
曲線を反転させたものになる。いずれも反転は印加電圧
に直線的に比例していない。このようになる理由は必ず
しも明らかではないが、ドメインの反転が弱い電界に対
してほとんど進行しないことが関与していると思われ
る。しかし、印加電圧Vと反転面積率T(V)の関係が
直線的でなくても、図4に示すようにV1とV2を選んで
やればT(V1)+T(V2)=100の関係が満足され
る。すなわ、例えば70%の中間調レベルを表示させた
いときは、黒リセット白書き込みの電圧を図4のT1
70%を与える電圧V1に設定し、反対側の白リセット
黒書き込みの電圧をT2=30%を与える電圧V2(ただ
し極性は負)に設定する。このように任意の反転特性T
(V)に対して本発明の方法が適用できることは明らか
である。
In practice, the relationship between the gradation signal voltage and the transmittance is not necessarily linear, but is non-linear as shown in FIG.
FIG. 4 is a plot of the inversion area ratio to a white state when a voltage V (charge CV) is applied to a pixel in a black state. The area ratio when applying a voltage of -V to a pixel in the white state and inverting it to black is obtained by inverting the curve in FIG. 4 because the white and black states are symmetric. In each case, the inversion is not linearly proportional to the applied voltage. Although the reason for this is not necessarily clear, it seems to be related to the fact that domain inversion hardly proceeds for a weak electric field. However, the relationship of the applied voltage V and the inverting area ratio T (V) is not linear, do it select the V 1 and V 2 as shown in FIG. 4 T (V 1) + T (V 2) = 100 relationships are satisfied. That is, for example, when it is desired to display a halftone level of 70%, the black reset white writing voltage is set to T 1 = T 1 in FIG.
Set voltages V 1 to provide a 70%, set to a voltage V 2 to provide a T 2 = 30% of the voltage of the white reset black writing on the opposite side (where polarity negative). Thus, an arbitrary inversion characteristic T
It is clear that the method of the present invention can be applied to (V).

【0034】また、このリセットおよび階調信号の正極
性、負極性の反転周期を水平走査周期とし、隣り合う走
査ラインのリセット電圧が逆極性になるように駆動すれ
ば、リセット時の全面白および黒表示が平均化され、フ
リッカ等がより目立たなくなる。
If the reset and the inversion cycle of the positive and negative polarities of the gradation signal are set as the horizontal scanning cycle, and the driving is performed so that the reset voltages of the adjacent scanning lines have the opposite polarities, the whole white and black areas at the time of resetting can be obtained. Black display is averaged, and flicker and the like become less noticeable.

【0035】このような、駆動法を採ると、図2(c)
から判かるように、FLC層に掛かるDC電界が正また
は負の一方向に片寄らず平均化されるため、前述した不
純物イオンの付着および液晶材の劣化が防止され、長期
に亘り、安定した表示が行なえる。
When such a driving method is adopted, FIG.
As can be seen from the above, since the DC electric field applied to the FLC layer is averaged without being biased in one of the positive and negative directions, the above-described adhesion of impurity ions and the deterioration of the liquid crystal material are prevented, and a stable display is performed over a long period of time. Can be done.

【0036】以上の書き込み方式において図2(a)の
各パルス幅を5μS、リセットパルス、の高さを7
v(ボルト)、図2(b)のTaを200μS、Tfを
33mSに設定し、階調信号パルスの高さを図4の特性
曲線から上で述べたように選んだところ、ほぼ0%から
100%までの中間調レベルが安定に表示できた。
In the above writing method, each pulse width in FIG. 2A is 5 μS, and the height of the reset pulse is 7
v (volts), Ta in FIG. 2B was set to 200 μS, Tf was set to 33 mS, and the height of the gradation signal pulse was selected from the characteristic curve of FIG. 4 as described above. Halftone levels up to 100% could be displayed stably.

【0037】実施例2図5は本発明の別の実施例で、図
1と異なり2端子のスイッチング素子を用いたものであ
る。スイッチング素子としてはMIM素子、ダイオー
ド、それらを複数個組み合せたものなどが考えられる
が、以下ではMIMを例にとって説明する。MIMの一
方の端子は画素電極51に、他の端子は走査信号ライン
59につながれ、対向基板側にはストライプ状に情報信
号電極58がパターニングされている。本実施例で用い
たMIMは五酸化タンタルの薄膜をタンタルで挟んだ構
成のもので、約1vのしきい値を持っている。図6は本
実施例の駆動信号のタイミングを示すもので(a)は情
報信号電極58に与える電圧、(b)は走査信号ライン
59に与える電圧、(c)は画素の両端に現われる電圧
波形である。のリセット時には走査ライン59に負の
電圧−7vが印加され情報電極に0vが与えられる。
の書き込み時には走査信号ラインに正の選択電圧+7v
が印加され情報電極に階調レベルに応じて0vから+7
vの電圧が与えられる。反対の周期、では、と
逆極性のパルスが印加されるが、ただし階調信号レベル
はと逆極性であるばかりでなく振幅も一般には違って
いてT(V1)+T(V2)=100%を満たすように選
ばれるのは実施例1と同じである。
Embodiment 2 FIG. 5 shows another embodiment of the present invention, which differs from FIG. 1 in that a two-terminal switching element is used. As the switching element, an MIM element, a diode, and a combination of a plurality of them can be considered. One terminal of the MIM is connected to the pixel electrode 51, the other terminal is connected to the scanning signal line 59, and the information signal electrode 58 is patterned in a stripe pattern on the counter substrate side. The MIM used in this embodiment has a structure in which a thin film of tantalum pentoxide is sandwiched between tantalums and has a threshold of about 1 v. FIGS. 6A and 6B show the timing of the drive signal according to the present embodiment. FIG. 6A shows a voltage applied to the information signal electrode 58, FIG. 6B shows a voltage applied to the scanning signal line 59, and FIG. 6C shows a voltage waveform appearing at both ends of the pixel. It is. At the time of reset, a negative voltage -7v is applied to the scanning line 59, and 0v is applied to the information electrode.
During writing, a positive selection voltage +7 V is applied to the scanning signal line.
Is applied to the information electrode from 0 V to +7 according to the gradation level.
v. In the opposite period, a pulse of the opposite polarity is applied, except that the grayscale signal level is not only of the opposite polarity but also has a different amplitude, and T (V 1 ) + T (V 2 ) = 100. % Is the same as in Example 1.

【0038】比較例1 図8に示す一方極性のリセット方式で駆動したところ、
2ないし3秒で表示が消えてしまった。この時のパルス
幅とフレーム周期は実施例1と同じであった。表示が消
えてしまったのは残留DC電圧のために液晶内でイオン
が移動して書き込み電界とは逆側に内蔵電界を作り、実
効的な書き込み電界が減少したためである。
COMPARATIVE EXAMPLE 1 When driven by the one-polarity reset method shown in FIG.
The display disappeared in a few seconds. The pulse width and the frame period at this time were the same as in the first embodiment. The display disappears because ions move in the liquid crystal due to the residual DC voltage and create a built-in electric field on the side opposite to the writing electric field, thereby reducing the effective writing electric field.

【0039】比較例2 実施例1と同じ図2の駆動波形を用い、ただし正側の反
転率T(V1)が70%、負側の反転率T(V2)が25
%になるように書き込みもに電圧を設定したところ、フ
リッカが目立ち表示品質が低下した。また、正側の反転
率T(V1)を70%、負側の反転率T(V2)を35%
に設定してもフリッカが見えた。
COMPARATIVE EXAMPLE 2 The same drive waveforms as in FIG. 2 were used as in Example 1, except that the positive side reversal rate T (V 1 ) was 70% and the negative side reversal rate T (V 2 ) was 25.
%, The voltage was set for writing, but flicker was noticeable and the display quality was degraded. Further, the reversal rate T (V 1 ) on the positive side is 70%, and the reversal rate T (V 2 ) on the negative side is 35%.
Flicker was visible even when set to.

【0040】[0040]

【発明の効果】以上説明したように、一定周期毎にリセ
ット電圧の極性、および階調信号の極性を反転させるこ
とにより、液晶材の劣化および不純物イオンによるFL
Cの双安定性の低下を防止することが可能になる。
As described above, by inverting the polarity of the reset voltage and the polarity of the gradation signal at regular intervals, the deterioration of the liquid crystal material and the FL caused by impurity ions are reduced.
It becomes possible to prevent a decrease in the bistability of C.

【0041】また、これら極性反転の周期を水平周期と
し、隣接する走査線のリセット電圧を互いに逆極性とな
るように駆動することにより、フリッカ等を防止するこ
とができる。
By setting the polarity inversion cycle to be a horizontal cycle and driving the reset voltages of adjacent scanning lines to have opposite polarities, flicker and the like can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係るFLCパネルおよ
び駆動系のブロック図である。
FIG. 1 is a block diagram of an FLC panel and a drive system according to a first embodiment of the present invention.

【図2】第1の実施例に係る駆動方法における諸信号波
形図である。
FIG. 2 is a diagram illustrating various signal waveforms in the driving method according to the first embodiment.

【図3】第1の実施例における所定画素(注目画素)の
表示状態図である。
FIG. 3 is a display state diagram of a predetermined pixel (pixel of interest) in the first embodiment.

【図4】強誘電性液晶素子における諧調信号と透過率の
関係を示す図である。
FIG. 4 is a diagram showing a relationship between a gradation signal and transmittance in a ferroelectric liquid crystal element.

【図5】本発明の第2の実施例に係るFLCパネルおよ
び駆動系のブロック図である。
FIG. 5 is a block diagram of an FLC panel and a drive system according to a second embodiment of the present invention.

【図6】第2の実施例に係る駆動方法における諸信号波
形図である。
FIG. 6 is a diagram illustrating various signal waveforms in the driving method according to the second embodiment.

【図7】FLC素子の層構成図である。FIG. 7 is a layer configuration diagram of an FLC element.

【図8】電荷変調による面積階調法における特性図であ
る。
FIG. 8 is a characteristic diagram in the area gradation method by charge modulation.

【図9】強誘電性液晶セルの例を模式的に示した図であ
る。
FIG. 9 is a diagram schematically showing an example of a ferroelectric liquid crystal cell.

【図10】強誘電性液晶分子が非らせん構造をとってい
る場合の、強誘電性液晶セルの例を模式的に示した図で
ある。
FIG. 10 is a diagram schematically illustrating an example of a ferroelectric liquid crystal cell in a case where ferroelectric liquid crystal molecules have a non-helical structure.

【符号の説明】[Explanation of symbols]

1 FLCパネル 2 Xドライバ 3 Yドライバ 4 タイミングコントローラ 5,6 極性反転回路 7 切換回路 8 信号ライン 9 ゲートライン 10 信号線 12,14 電圧減衰曲線 51,76a 画素電極 58,76b 情報信号電極(対向電極) 59 走査信号ライン 70a,70b 基板 71 ゲート電極 72 絶縁膜 73 半導体膜 74 ソース(ドレイン)端子 75 ドレイン(ソース)端子 77a 絶縁層 77b 絶縁膜 78 光遮蔽膜 80 強誘電性液晶 81 シール材 82a,82b 偏光子 83 反射板 91a,91b 基板 92 液晶分子層 Reference Signs List 1 FLC panel 2 X driver 3 Y driver 4 Timing controller 5, 6 Polarity inversion circuit 7 Switching circuit 8 Signal line 9 Gate line 10 Signal line 12, 14 Voltage decay curve 51, 76a Pixel electrode 58, 76b Information signal electrode (counter electrode) 59) scanning signal line 70a, 70b substrate 71 gate electrode 72 insulating film 73 semiconductor film 74 source (drain) terminal 75 drain (source) terminal 77a insulating layer 77b insulating film 78 light shielding film 80 ferroelectric liquid crystal 81 sealing material 82a, 82b Polarizer 83 Reflector 91a, 91b Substrate 92 Liquid Crystal Molecular Layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−249897(JP,A) 特開 昭63−244021(JP,A) (58)調査した分野(Int.Cl.6,DB名) G02F 1/133 G09G 3/18 G09G 3/36──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-249897 (JP, A) JP-A-63-244021 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G02F 1/133 G09G 3/18 G09G 3/36

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マトリクス状に配置された画素電極ごと
にスイッチング素子を設け、対向電極との間に強誘電性
液晶を挟持した強誘電性液晶素子、 両電極間に画素全体を強誘電性液晶の第一の安定状態に
リセットするリセット電圧と、前記リセット電圧とは逆
極性の、画素を部分的に第二の安定状態に遷移させる信
号電圧とを交互に切り替えて印加する電圧印加手段と、 一定周期ごとに該リセット電圧を反転させる手段と、 一定周期ごとに該信号電圧を反転させる手段とを有する
強誘電性液晶装置であって、 負極性リセット電圧印加後の正極性信号電圧V を印加
した時の強誘電性液晶の状態反転率をT(V )%と
し、正極性リセット電圧印加後の負極性信号電圧V
印加した時の強誘電性液晶の状態反転率をT(V )%
とした時、両者の間で T(V)+T(V)=100% の関係を満たすように前記電圧V およびV を設定し
てなる強誘電性液晶装置
1. A switching element provided for each pixel electrode arranged in a matrix, a ferroelectric liquid crystal device which sandwiches a ferroelectric liquid crystal between the counter electrode, ferroelectric whole pixels between the electrodes a reset voltage for resetting the first stable state of the liquid crystal, said reset voltage of opposite polarity is switched alternately and signal <br/> No. voltages Ru to transition to the second stable state pixels partially to chromatic voltage applying means for applying, and means for inverting the reset voltage every predetermined period, and means for inverting the signal voltage every constant period
A ferroelectric liquid crystal device, applies a positive polarity signal voltages V 1 after applying the negative polarity reset voltage
A ferroelectric state inversion of the liquid crystal T when the (V 1)% and
And, a negative polarity signal voltage V 2 after positive resetting voltage applied
The state reversal rate of the ferroelectric liquid crystal when applied is T (V 2 )%
When a was, between them T (V 1) + T ( V 2) = the set of voltages V 1 and V 2 so as to satisfy 100% of the relationship
Consisting of Te ferroelectric liquid crystal devices.
【請求項2】 前記周期が一画面の走査周期である請求
項1記載の強誘電性液晶装置
2. The ferroelectric liquid crystal device according to claim 1, wherein said period is a scanning period of one screen.
【請求項3】 隣接する走査線のリセット電圧が逆極性
である請求項1または2記載の強誘電性液晶装置
3. A ferroelectric liquid crystal device of the reset voltage of the adjacent scanning lines have opposite polarities according to claim 1 or 2.
【請求項4】 前記第一の安定状態が黒状態に対応する
請求項1〜3のいずれか1つに記載の強誘電性液晶
4. A ferroelectric liquid crystal instrumentation according to any one of claims 1-3, wherein said first stable state corresponds to the black state
Place .
【請求項5】 前記信号電圧が階調情報を含む信号電圧
である請求項1〜4のいずれか1つに記載の強誘電性液
晶装置。
5. The signal voltage according to claim 1, wherein said signal voltage includes gradation information.
The ferroelectric liquid according to any one of claims 1 to 4,
Crystal equipment.
【請求項6】 前記スイッチング素子がMIMである請
求項1〜5のいずれか1つに記載の強誘電性液晶装置
6. The method according to claim 1, wherein said switching element is an MIM.
The ferroelectric liquid crystal device according to claim 1 .
JP3074205A 1990-03-20 1991-03-15 Ferroelectric liquid crystal device Expired - Fee Related JP2805253B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3074205A JP2805253B2 (en) 1990-03-20 1991-03-15 Ferroelectric liquid crystal device
EP91104222A EP0448032B1 (en) 1990-03-20 1991-03-19 Method of driving ferroelectric liquid crystal element and ferroelectric liquid crystal display
AT91104222T ATE140097T1 (en) 1990-03-20 1991-03-19 METHOD FOR CONTROLLING A FERROELECTRIC LIQUID CRYSTAL ELEMENT AND FERROELECTRIC LIQUID CRYSTAL DISPLAY
DE69120564T DE69120564T2 (en) 1990-03-20 1991-03-19 Method for driving a ferroelectric liquid crystal element and ferroelectric liquid crystal display

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7051190 1990-03-20
JP2-70511 1990-03-20
JP3074205A JP2805253B2 (en) 1990-03-20 1991-03-15 Ferroelectric liquid crystal device

Publications (2)

Publication Number Publication Date
JPH04218023A JPH04218023A (en) 1992-08-07
JP2805253B2 true JP2805253B2 (en) 1998-09-30

Family

ID=26411663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3074205A Expired - Fee Related JP2805253B2 (en) 1990-03-20 1991-03-15 Ferroelectric liquid crystal device

Country Status (4)

Country Link
EP (1) EP0448032B1 (en)
JP (1) JP2805253B2 (en)
AT (1) ATE140097T1 (en)
DE (1) DE69120564T2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2746486B2 (en) * 1991-08-20 1998-05-06 シャープ株式会社 Ferroelectric liquid crystal device
JP2806098B2 (en) * 1991-10-09 1998-09-30 松下電器産業株式会社 Driving method of display device
JPH05241138A (en) * 1991-12-06 1993-09-21 Canon Inc Liquid crystal optical element
JP2866518B2 (en) * 1992-01-17 1999-03-08 シャープ株式会社 Driving method of antiferroelectric liquid crystal device
JPH07120722A (en) * 1993-06-30 1995-05-12 Sharp Corp Liquid crystal display element and its driving method
US5767829A (en) * 1994-08-23 1998-06-16 U.S. Philips Corporation Liquid crystal display device including drive circuit for predetermining polarization state
JP3534086B2 (en) * 2001-04-27 2004-06-07 松下電器産業株式会社 Driving method of liquid crystal display device
US6989812B2 (en) 2001-02-05 2006-01-24 Matsushita Electric Industrial Co., Ltd. Liquid crystal display unit and driving method therefor
US8564514B2 (en) 2001-04-18 2013-10-22 Fujitsu Limited Driving method of liquid crystal display device and liquid crystal display device
TWI404011B (en) 2009-03-18 2013-08-01 Pervasive Display Co Ltd Non-volatile display module and non-volatile display apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2173336B (en) * 1985-04-03 1988-04-27 Stc Plc Addressing liquid crystal cells
JP2733222B2 (en) * 1987-03-31 1998-03-30 キヤノン株式会社 Liquid crystal device
NL8700627A (en) * 1987-03-17 1988-10-17 Philips Nv METHOD FOR CONTROLLING A LIQUID CRYSTAL DISPLAY AND ASSOCIATED DISPLAY.
NL8802436A (en) * 1988-10-05 1990-05-01 Philips Electronics Nv METHOD FOR CONTROLLING A DISPLAY DEVICE

Also Published As

Publication number Publication date
DE69120564D1 (en) 1996-08-08
DE69120564T2 (en) 1996-12-19
ATE140097T1 (en) 1996-07-15
JPH04218023A (en) 1992-08-07
EP0448032A3 (en) 1992-11-19
EP0448032B1 (en) 1996-07-03
EP0448032A2 (en) 1991-09-25

Similar Documents

Publication Publication Date Title
US5227900A (en) Method of driving ferroelectric liquid crystal element
JPH0544009B2 (en)
JPS6261931B2 (en)
JP2805253B2 (en) Ferroelectric liquid crystal device
JPH07191304A (en) Liquid crystal electrooptical device
JP3305990B2 (en) Liquid crystal display device and driving method thereof
JPS6244247B2 (en)
US6232943B1 (en) Liquid crystal display
JPH0764056A (en) Anti-ferroelectric liquid crystal display element and driving method therefor
JPS60203920A (en) Driving method of liquid crystal optical element
JPS614021A (en) Driving method of liquid crystal element
JPH0412458B2 (en)
JPH0414767B2 (en)
JP2566149B2 (en) Optical modulator
JP2505744B2 (en) Method for manufacturing electrode substrate and optical modulation element
JPH0453293B2 (en)
JPH0422493B2 (en)
JPS60262136A (en) Driving method of liquid-crystal element
JPH0799415B2 (en) Liquid crystal device
JPS619624A (en) Driving method of liquid crystal element
JPH0453294B2 (en)
JPS60262134A (en) Driving method of liquid-crystal element
JPH0452924B2 (en)
JPH0453292B2 (en)
JPS60262135A (en) Driving method of liquid-crystal element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100724

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees