JPH0453292B2 - - Google Patents

Info

Publication number
JPH0453292B2
JPH0453292B2 JP59127415A JP12741584A JPH0453292B2 JP H0453292 B2 JPH0453292 B2 JP H0453292B2 JP 59127415 A JP59127415 A JP 59127415A JP 12741584 A JP12741584 A JP 12741584A JP H0453292 B2 JPH0453292 B2 JP H0453292B2
Authority
JP
Japan
Prior art keywords
liquid crystal
fet
terminal
electrode
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59127415A
Other languages
Japanese (ja)
Other versions
JPS617825A (en
Inventor
Shinjiro Okada
Yasuyuki Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59127415A priority Critical patent/JPS617825A/en
Priority to US06/724,828 priority patent/US4697887A/en
Publication of JPS617825A publication Critical patent/JPS617825A/en
Publication of JPH0453292B2 publication Critical patent/JPH0453292B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13781Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering using smectic liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3651Control of matrices with row and column drivers using an active matrix using multistable liquid crystals, e.g. ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶を用いた光シヤツターアレイ、画
像表示装置等の駆動方法に関するものであり、さ
らに詳しくは双安定性液晶、特に強誘電性液晶を
アクテイブマトリツクス構成により駆動する方法
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for driving optical shutter arrays, image display devices, etc. using liquid crystals, and more specifically relates to bistable liquid crystals, particularly ferroelectric liquid crystals. The present invention relates to a method of driving a liquid crystal using an active matrix configuration.

[従来の技術] 従来より、走査電極群と信号電極群をマトリク
ス状に構成し、その電極間に液晶化合物を充填
し、多数の画素を形成して画像或いは情報の表示
を行う液晶表示素子は、よく知られている。この
表示素子の駆動法としては、走査電極群に、順
次、周期的にアドレス信号を選択印加し、信号電
極群には所定の情報信号をアドレス信号と同期さ
せて並列的に選択印加する時分割駆動が採用され
ているが、この表示素子及びその駆動法は、以下
に述べる如き致命的とも言える大きな欠点を有し
ていた。
[Prior Art] Conventionally, liquid crystal display elements have been used to display images or information by configuring a scanning electrode group and a signal electrode group in a matrix, filling a liquid crystal compound between the electrodes, and forming a large number of pixels. ,well known. The driving method for this display element is a time-sharing method in which an address signal is selectively and periodically applied to a group of scanning electrodes, and a predetermined information signal is selectively applied in parallel to a group of signal electrodes in synchronization with the address signal. However, this display element and its driving method had major and fatal drawbacks as described below.

即ち、画素密度を高く、或いは画面を大きくす
るのが難しいことである。従来の液晶の中で応答
速度が比較的高く、しかも消費電力が小さいこと
から、表示素子として実用に供されているのは殆
どが、例えば、M.SchadtとW.Helfrich著、
“Applied Physics Letters”、Vol.18,No.4
(1971.2.15)、P.127〜128の“Voltage−
Dependent Optical Activity of a Twisted
Nematic Liquid crystal”に示されたTN
(twisted nematic)型の液晶を用いたものであ
り、この型の液晶は、無電界状態で正の誘電異方
性をもつ、ネマチツク液晶の分子が、液晶層厚方
向で捩れた構造(ヘリカル構造)を形成し、両電
極面でこの液晶の分子が互いに並行に配列した構
造を形成している。一方、電界印加状態では、正
の誘電異方性をもつネマチツク液晶が電界方向に
配列し、この結果光調変調を起すことができる。
この型の液晶を用いてマトリクス電極構造によつ
て表示素子を構成した場合、走査電極と信号電極
が共に選択される領域(選択点)には、液晶分子
を電極面に垂直に配列させるに要する閾値以上の
電圧が印加され、走査電極と信号電極が共に選択
されない領域(非選択点)には電圧は印加され
ず、したがつて液晶分子は電極面に対して並行な
安定配列を保つている。このような液晶セルの上
下に、互いにクロスニコル関係にある直線偏光子
を配置することにより、選択点では光が透過せ
ず、非選択点では光が透過するため、画像素子と
することが可能となる。然し乍ら、マトリクス電
極構造を構成した場合には、走査電極が選択さ
れ、信号電極が選択されない領域或いは、走査電
極が選択されず、信号電極が選択される領域(所
謂”半選択点”)にも有限の電界がかかつてしま
う。選択点にかかる電圧と、半選択点にかかる電
圧の差が充分に大きく、液晶分子を電界に垂直に
配列させるに要する電圧閾値がこの中間の電圧値
に設定されるならば、表示素子は正常に動作する
わけである。しかし、この方式において、走査線
数(N)を増やして行つた場合、画面全体(1フ
レーム)を走査する間に一つの選択点に有効な電
界がかかつている時間(duty比)は、1/Nの
割合で減少してしまう。このために、くり返し走
査を行つた場合の選択点と非選択点にかかる実効
値としての電圧差は、走査線数が増えれば増える
程小さくなり、結果的には画像コントラストの低
下やクロストークが避け難い欠点となつている。
このような現象は、双安定状態を有さない液晶
(電極面に対し、液晶分子が水平に配向している
のが安定状態であり、電界が有効に印加されてい
る間のみ垂直に配向する)を、時間的蓄積効果を
利用して駆動する(即ち、繰り返し走査する)と
きに生じる本質的には避け難い問題点である。こ
の点を改良するために、電圧平均化法、2周波駆
動法や多重マトリクス法等が既に提案されている
が、いずれの方法でも不充分であり、表示素子の
大画面化や高密度化は、走査線数が充分に増やせ
ないことによつて頭打ちになつているのが現状で
ある。
That is, it is difficult to increase the pixel density or enlarge the screen. Among conventional liquid crystals, most of them are in practical use as display elements because of their relatively high response speed and low power consumption.
“Applied Letter Physics”, Vol.18, No.4
(1971.2.15), P.127-128 “Voltage−
Dependent Optical Activity of a Twisted
TN shown in “Nematic Liquid crystal”
This type of liquid crystal has a structure (helical structure) in which the molecules of the nematic liquid crystal, which have positive dielectric anisotropy in the absence of an electric field, are twisted in the thickness direction of the liquid crystal layer. ), and the liquid crystal molecules form a structure in which they are arranged parallel to each other on both electrode surfaces. On the other hand, when an electric field is applied, nematic liquid crystals with positive dielectric anisotropy are aligned in the direction of the electric field, resulting in optical modulation.
When a display element is constructed using this type of liquid crystal with a matrix electrode structure, in the region where both the scanning electrode and the signal electrode are selected (selected point), there is a A voltage higher than the threshold is applied, and no voltage is applied to areas where neither the scanning electrode nor the signal electrode is selected (non-selected points), so the liquid crystal molecules maintain a stable alignment parallel to the electrode surface. . By arranging linear polarizers above and below such a liquid crystal cell in a cross Nicol relationship, light does not pass through selected points, but light passes through non-selected points, making it possible to use it as an image element. becomes. However, when a matrix electrode structure is configured, there may be an area where the scanning electrode is selected and the signal electrode is not selected, or an area where the scanning electrode is not selected and the signal electrode is selected (so-called "half-selected point"). The finite electric field becomes strong. If the difference between the voltage applied to the selected point and the voltage applied to the half-selected point is sufficiently large, and the voltage threshold required to align liquid crystal molecules perpendicular to the electric field is set to a voltage value in between, the display element will function normally. This is why it works. However, in this method, when the number of scanning lines (N) is increased, the time during which an effective electric field is applied to one selected point while scanning the entire screen (one frame) (duty ratio) is 1 /N. For this reason, when repeated scanning is performed, the effective voltage difference between selected points and non-selected points becomes smaller as the number of scanning lines increases, resulting in a decrease in image contrast and crosstalk. It has become an unavoidable drawback.
This phenomenon is caused by liquid crystals that do not have a bistable state (the stable state is when the liquid crystal molecules are aligned horizontally with respect to the electrode surface, and they are aligned vertically only while an electric field is effectively applied). ) is essentially an unavoidable problem that arises when driving using the temporal accumulation effect (that is, repeatedly scanning). In order to improve this point, voltage averaging method, dual frequency drive method, multiple matrix method, etc. have already been proposed, but all of these methods are insufficient, and it is difficult to increase the screen size and density of display elements. Currently, the number of scanning lines has reached a plateau due to the inability to increase the number of scanning lines sufficiently.

[発明が解決しようとする問題点] 本発明の目的は、前述したような従来の液晶表
示素子における問題点を悉く解決した新規な双安
定性液晶、特に強誘電性液晶素子の駆動法を提供
することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a novel method for driving a bistable liquid crystal, particularly a ferroelectric liquid crystal element, which solves all the problems of conventional liquid crystal display elements as described above. It's about doing.

即ち、本発明は電圧応答速度が早く、状態記憶
性を有する強誘電性液晶をアクテイブマトリツク
スにより2方向の電界を印加して明、暗の2つの
状態に駆動することにより、画素数の多い大画面
の表示及び高速度で画像を表示する強誘電性液晶
の駆動方法を提供することを目的とするものであ
る。
That is, the present invention has a fast voltage response speed and a ferroelectric liquid crystal that has state memory by applying electric fields in two directions using an active matrix to drive it into two states, bright and dark. The object of the present invention is to provide a method for driving a ferroelectric liquid crystal that displays images on a large screen and at high speed.

[問題点を解決するための手段]及び[作用] 本発明の液晶素子の駆動法は、ゲート端子及び
チヤネルの第一及び第二端子を有する電界効果型
トランジスタ(以下「FET」と記す)と、FET
の第一端子に接続された画素電極と、画素電極に
対向する対向電極と、画素電極と対向電極の間に
挟持され、画素電極と対向電極間に第一の電界を
印加することにより第一の安定な配向状態を生
じ、画素電極と対向電極間に第一の電界とは逆極
性の第二の電界を印加することにより第二の安定
な配向状態を生じる強誘電性液晶とからなる液晶
素子を複数の行及び列に沿つて配置し、液晶素子
のFETの第二端子を共通に接続し、列毎のFET
のゲート端子を走査信号線に接続し、対向電極を
行毎の液晶素子に対応して分割し、各対向電極を
表示信号線に接続した液晶装置をアクテイブマト
リクス駆動する駆動法であつて、 FETの第二端子の電位を常に一定に保ち、 前記各対向電極に、前記FETの第二端子との
電位差の絶対値が前記液晶のしきい値を越える電
位を付与する表示信号を印加し、この表示信号と
同期して、前記液晶素子のFETのゲート端子に、
前記第二端子の電位に対してゲートオン状態を取
り得る電位を付与する電圧信号を印加し、FET
のゲートをオン状態にして画素電極と対向電極間
に第一の電界を形成し、全ての前記液晶素子の前
記液晶を第一の配向状態に揃えるリフレツシユ操
作を行なつた後、 列毎に、列上の液晶素子のFETのゲート端子
に順次走査信号を印加し、該走査信号と同期し
て、選択された対向電極に、前記FETの第二端
子との電位差が前記リフレツシユ操作における電
位差とは逆極性で且つその絶対値が前記液晶のし
きい値を越える電位を付与する表示信号を印加
し、選択されなかつた対向電極に、前記第二端子
との電位差の絶対値が前記液晶のしきい値を越え
ない電位を付与する表示信号を印加し、該走査信
号は、該走査信号の印加された前記列上の液晶素
子のFETのゲート端子に、FETの第二端子の電
位に対してゲートオン状態を取り得る電位を付与
し、前記走査信号の印加された列上の液晶素子の
画素電極と選択された対向電極との間に第二の電
界を形成することを特徴とするものである。
[Means for Solving the Problems] and [Operation] The method for driving a liquid crystal element of the present invention uses a field effect transistor (hereinafter referred to as "FET") having a gate terminal and first and second terminals of a channel. , FET
A pixel electrode connected to the first terminal of a ferroelectric liquid crystal that produces a stable alignment state, and a ferroelectric liquid crystal that produces a second stable alignment state by applying a second electric field of opposite polarity to the first electric field between the pixel electrode and the counter electrode. The elements are arranged along multiple rows and columns, and the second terminals of the FETs of the liquid crystal elements are connected in common, and the FETs in each column are
A driving method in which the gate terminal of a FET is connected to a scanning signal line, a counter electrode is divided corresponding to each row of liquid crystal elements, and each counter electrode is connected to a display signal line to drive a liquid crystal device in an active matrix manner. The potential of the second terminal of the FET is always kept constant, and a display signal is applied to each of the counter electrodes to give a potential whose absolute value of the potential difference with the second terminal of the FET exceeds the threshold of the liquid crystal. In synchronization with the display signal, a signal is applied to the gate terminal of the FET of the liquid crystal element,
A voltage signal is applied to the potential of the second terminal to provide a potential that allows the gate to be turned on, and the FET
After performing a refresh operation in which the gates of the liquid crystal elements are turned on to form a first electric field between the pixel electrode and the counter electrode and the liquid crystals of all the liquid crystal elements are aligned in the first alignment state, for each column, A scanning signal is sequentially applied to the gate terminals of the FETs of the liquid crystal elements on the column, and in synchronization with the scanning signal, a potential difference between the potential difference with the second terminal of the FET and the second terminal of the FET is applied to the selected counter electrode in synchronization with the scanning signal. A display signal giving a potential of opposite polarity and whose absolute value exceeds the threshold of the liquid crystal is applied to the unselected counter electrode so that the absolute value of the potential difference with the second terminal exceeds the threshold of the liquid crystal. A display signal that applies a potential that does not exceed a value is applied, and the scanning signal is applied to the gate terminal of the FET of the liquid crystal element on the column to which the scanning signal is applied, and the gate is turned on with respect to the potential of the second terminal of the FET. A second electric field is formed between the pixel electrode of the liquid crystal element on the column to which the scanning signal is applied and the selected counter electrode by applying a potential that can take a state.

本発明の駆動法で用いる強誘電性液晶として
は、加えられる電界に応じて第一の光学的安定状
態と第二の光学的安定状態とのいずれかを取る、
すなわち電界に対する双安定状態を有する物質、
特にこのような性質を有する液晶が用いられる。
本発明の駆動法で用いることができる双安定性を
有する強誘電性液晶としては、強誘電性を有する
カイラルスメクテイツク液晶が最も好ましく、そ
のうちカイラルスメクテイツクC相(SmC
又はH相(SmH)の液晶が適している、この
強誘電性液晶については、“LE JOURNAL DE
PHYSIOUE LETTERS”36(L−69)1975,
「Ferroelectric Liquid Crystals」;“Applied
physics Let−ters”36(11)1980,「Submicro
Second Bi−stable Electrooptic Switching in
Liquid Crystals」;“固体物理”16(141)1981
「液晶」等に記載されており、本発明ではこれら
に開示された強誘電性液晶を用いることができ
る。
The ferroelectric liquid crystal used in the driving method of the present invention takes either a first optically stable state or a second optically stable state depending on the applied electric field.
In other words, a substance that has a bistable state in response to an electric field,
In particular, liquid crystals having such properties are used.
As the ferroelectric liquid crystal having bistability that can be used in the driving method of the present invention, a chiral smectate liquid crystal having ferroelectricity is most preferable, and chiral smectate C phase (SmC * ) is the most preferable.
For information on this ferroelectric liquid crystal, for which H-phase (SmH * ) liquid crystal is suitable, please refer to “LE JOURNAL DE
PHYSIOUE LETTERS” 36 (L-69) 1975,
“Ferroelectric Liquid Crystals”; “Applied
physics Letters” 36 (11) 1980, “Submicro
Second Bi−stable Electrooptic Switching in
Liquid Crystals”; “Solid State Physics” 16 (141) 1981
The ferroelectric liquid crystals disclosed in these documents can be used in the present invention.

より具体的には、本発明法に用いられる強誘電
性液晶化合物の例としては、デシロキシベンジリ
デン−P′−アミノ−2−メチルブチルシンナメー
ト(DOBAMBC)、ヘキシルオキシベンジリデ
ン−P′−アミノ−2−クロロプロピルシンナメー
ト(HOBACPC)および4−o−(2−メチル)
−ブチルレゾルシリデン−4′−オクチルアニリン
(MBRA8)等が挙げられる。
More specifically, examples of ferroelectric liquid crystal compounds used in the method of the present invention include decyloxybenzylidene-P'-amino-2-methylbutylcinnamate (DOBAMBC), hexyloxybenzylidene-P'-amino- 2-chloropropyl cinnamate (HOBACPC) and 4-o-(2-methyl)
-butylresolcylidene-4'-octylaniline (MBRA8) and the like.

これらの材料を用いて、素子を構成する場合、
液晶化合物がSmC相又はSmH相となるよう
な温度状態に保持する為、必要に応じて素子をヒ
ーターが埋め込まれた銅ブロツク等により支持す
ることができる。
When constructing an element using these materials,
In order to maintain the temperature state such that the liquid crystal compound becomes the SmC * phase or the SmH * phase, the element can be supported by a copper block or the like in which a heater is embedded, if necessary.

第1図は、強誘電性液晶セルの例を模式的に描
いたものである。1と1′は、IN2O3、SnO2
ITO(Indium−Tin Oxide)等の透明電極がコー
トされた基板(ガラス板)であり、その間に液晶
分子層2がガラス面に垂直になるよう配向した
SmC相の液晶が封入されている。太線で示し
た線3が液晶分子を表わしており、この液晶分子
3は、その分子に直交した方向に双極子モーメン
ト(P⊥ )4を有している。基板1と1′上の電
極間に一定の閾値以上の電圧を印加すると、液晶
分子3のらせん構造がほどけ、双極子モーメント
(P⊥ )4はすべて電界方向に向くよう、液晶分
子3の配向方向を変えることができる。液晶分子
3は細長い形状を有しており、その長軸方向と短
軸方向で屈折率異方性を示し、従つて例えばガラ
ス面の上下に互いにクロスニコルの位置関係に配
置した偏光子を置けば、電圧印加極性によつて光
学特性が変わる液晶光学変調素子となることは、
容易に理解される。さらに液晶セルの厚さを充分
に薄くした場合(例えば1μ)には、第2図に示
すように電界を印加していない状態でも液晶分子
のらせん構造は、ほどけ(非らせん構造)、その
双極子モーメントP又はP′は上向き4a又は下向
4bのどちらかの状態をとる。このようなセルに
第2図に示す如く一定の閾値以上の極性の異なる
電界E又はE′を所定時間付与すると、双極子モー
メントは電界E又はE′の電界ベクトルに対応して
上向き4a又は、下向き4bと向きを変え、それ
に応じて液晶分子は第一の配向状態5かあるいは
第二の配向状態5′の何れか一方に配向する。
FIG. 1 schematically depicts an example of a ferroelectric liquid crystal cell. 1 and 1′ are IN 2 O 3 , SnO 2 and
A substrate (glass plate) coated with a transparent electrode such as ITO (Indium-Tin Oxide), between which a liquid crystal molecular layer 2 is oriented perpendicular to the glass surface.
SmC * phase liquid crystal is sealed. A thick line 3 represents a liquid crystal molecule, and this liquid crystal molecule 3 has a dipole moment (P⊥) 4 in a direction perpendicular to the molecule. When a voltage higher than a certain threshold is applied between the electrodes on the substrates 1 and 1', the helical structure of the liquid crystal molecules 3 is unraveled, and the liquid crystal molecules 3 are aligned so that all dipole moments (P⊥) 4 are directed in the direction of the electric field. Can change direction. The liquid crystal molecules 3 have an elongated shape and exhibit refractive index anisotropy in the long axis direction and the short axis direction. Therefore, for example, if polarizers are placed above and below the glass surface in a crossed nicol positional relationship with each other, polarizers can be placed above and below the glass surface. For example, a liquid crystal optical modulation element whose optical properties change depending on the polarity of applied voltage is
easily understood. Furthermore, when the thickness of the liquid crystal cell is made sufficiently thin (for example, 1μ), the helical structure of the liquid crystal molecules unravels (non-helical structure) even when no electric field is applied, as shown in Figure 2, and its bipolar structure The child moment P or P' takes either an upward direction 4a or a downward direction 4b. As shown in FIG. 2, when an electric field E or E' with a different polarity above a certain threshold value is applied to such a cell for a predetermined period of time, the dipole moment will move upward 4a or The direction is changed from the downward direction 4b, and accordingly, the liquid crystal molecules are aligned in either the first alignment state 5 or the second alignment state 5'.

このような強誘電性液晶を光学変調素子として
用いることの利点は2つある。第1に、応答速度
が極めて速いこと、第2に液晶分子の配向が双安
定状態を有することである。第2の点を例えば第
2図によつて説明すると、電界Eを印加すると液
晶分子は第一の配向状態5に配向するが、この状
態は電界を切つても安定である。又、逆向きの電
界E′を印加すると、液晶分子は第二の配向状態
5′に配向して、その分子の向きを変えるが、や
はり電界を切つてもこの状態に留つている。又、
与える電界Eが一定の閾値を越えない限り、それ
ぞれの配向状態にやはり維持されている。このよ
うな応答速度の速さと、双安定性が有効に実現さ
れるには、セルとしては出来るだけ薄い方が好ま
しく、一般的には、0.5μ〜20μ、特に1μ〜5μが適
している。この種の強誘電性液晶を用いたマトリ
クス電極構造を有する液晶−電気光学装置は、例
えばクラークとラガバルにより、米国特許第
4367924号明細書で提案されている。
There are two advantages to using such a ferroelectric liquid crystal as an optical modulation element. Firstly, the response speed is extremely fast, and secondly, the alignment of liquid crystal molecules has a bistable state. The second point will be explained with reference to FIG. 2, for example. When the electric field E is applied, the liquid crystal molecules are aligned in the first alignment state 5, and this state remains stable even when the electric field is turned off. Further, when an electric field E' in the opposite direction is applied, the liquid crystal molecules are aligned to the second alignment state 5' and the orientation of the molecules is changed, but they remain in this state even after the electric field is turned off. or,
As long as the applied electric field E does not exceed a certain threshold value, each orientation state is maintained. In order to effectively realize such fast response speed and bistability, it is preferable that the cell be as thin as possible, and generally 0.5μ to 20μ, particularly 1μ to 5μ is suitable. A liquid crystal-electro-optical device having a matrix electrode structure using this type of ferroelectric liquid crystal is disclosed in US Pat.
It is proposed in the specification of No. 4367924.

本発明は、アクテイブマトリツクスを構成する
TFT(薄膜トランジスタ)等のFET構造の素子
が、チヤネルの2端子に印加される電圧を逆にす
る事により、いずれをドレインとしていずれをソ
ースとしても使用しうるという事にもとづいてい
る。本発明においては、チヤネルの2端子の内、
画素電極に接続する端子を第一端子、もう一方の
走査信号線に接続する端子を第二端子として便宜
上区別した。本発明において、アクテイブマトリ
ツクスを構成する素子としてFET構造の素子で
あればアモルフアスシリコンTFT、多結晶シリ
コンTFT等のいずれであつても使用しうる。又
FET構造以外のバイポーラトランジスタであつ
ても同様に行う事も可能である。
The present invention constitutes an active matrix.
It is based on the fact that an FET structure element such as a TFT (thin film transistor) can be used as either the drain or the source by reversing the voltages applied to the two terminals of the channel. In the present invention, among the two terminals of the channel,
For convenience, the terminal connected to the pixel electrode was referred to as a first terminal, and the terminal connected to the other scanning signal line was referred to as a second terminal. In the present invention, any element having an FET structure, such as an amorphous silicon TFT or a polycrystalline silicon TFT, can be used as the element constituting the active matrix. or
It is also possible to perform the same operation with bipolar transistors other than FET structures.

N型FETは、VDをドレイン電圧、VGをゲート
電圧、VSをソース電圧、VPをゲートソース間の
閾値電圧とするとVD>VSであり、VG>VS+VP
時導通状態となり、VG<VS+VPの時非導通状態
となる。
In an N-type FET, where V D is the drain voltage, V G is the gate voltage, V S is the source voltage, and V P is the threshold voltage between the gate and source, V D > V S , and V G > V S + V P. It becomes conductive when V G <V S +V P, and becomes non-conductive when V G <V S +V P.

P型FETにおいてはVD<VSとし、VG<VS
VPで導通状態となり、VG>VS+VPで非導通状態
となる。
For P-type FET, V D <V S and V G <V S +
It becomes conductive when V P and becomes non-conductive when V G > V S +V P.

P型であつてもN型であつてもFETの端子の
いずれがドレインとして作用し、いずれがソース
として作用するかは、電圧の印加の方向によつて
定まる。すなわちN型では電圧の低い方がソース
であり、P型では電圧の高い方がソースとして作
用する。
Whether the FET is P-type or N-type, which terminal of the FET acts as the drain and which acts as the source is determined by the direction of voltage application. That is, for N type, the lower voltage side acts as a source, and for P type, the higher voltage side acts as a source.

強誘電性液晶においては、液晶セルに印加す
る、正、負の電圧に対していずれを「明」状態と
し、いずれを「暗」状態とするかはセルの上下に
配置するクロスニコル状態にした一対の偏光子の
偏光軸と、液晶分子長軸との向きにより自由に設
定できる。
In the case of ferroelectric liquid crystals, the cross-Nicol state placed above and below the cell determines which is in the "bright" state and which is in the "dark" state in response to positive and negative voltages applied to the liquid crystal cell. It can be freely set depending on the direction of the polarization axes of the pair of polarizers and the long axis of the liquid crystal molecules.

本発明は液晶セルに印加される電界をアクテイ
ブマトリツクスの各素子の端子間電圧を制御する
事によつて制御し、表示を行なうものであるか
ら、各信号の電圧レベルは以下の実施例にとらわ
れる事なく、各信号の電位差を相対的に維持すれ
ば、実施する事が可能である。
Since the present invention controls the electric field applied to the liquid crystal cell by controlling the voltage between the terminals of each element of the active matrix to perform display, the voltage level of each signal is determined according to the following example. Regardless, it can be implemented as long as the potential difference between each signal is maintained relatively.

[実施例] 次に、本発明のアクテイブマトリツクスによる
強誘電性液晶の駆動方法の具体例を第3図〜第7
図に基づいて説明する。
[Example] Next, a specific example of a method for driving a ferroelectric liquid crystal using an active matrix of the present invention is shown in FIGS. 3 to 7.
This will be explained based on the diagram.

第3図はアクテイブマトリツクスの回路図、第
4図は対応画素の番地を示す説明図及び第5図は
対応画素の表示例を示す説明図である。
FIG. 3 is a circuit diagram of an active matrix, FIG. 4 is an explanatory diagram showing addresses of corresponding pixels, and FIG. 5 is an explanatory diagram showing an example of display of corresponding pixels.

6は走査電極群であり、7は表示電極群であ
る。
6 is a scanning electrode group, and 7 is a display electrode group.

第6図aは走査信号を示す図であつて、位相
t1,t2,…においてそれぞれ選択された走査電極
に印加される電気信号とそれ以外の走査電極(選
択されない走査電極)に印加される電気信号を示
している。第6図bは、表示信号を示す図であつ
て位相t1,t2,…においてそれぞれ選択された表
示電極と選択されない表示電極に与えられる電気
信号を示している。
FIG. 6a is a diagram showing the scanning signal, and the phase
The electrical signals applied to the selected scan electrode and the electrical signals applied to the other scan electrodes (unselected scan electrodes) at t 1 , t 2 , . . . are shown. FIG. 6b is a diagram illustrating display signals, and shows electrical signals applied to selected display electrodes and unselected display electrodes in phases t 1 , t 2 , . . . , respectively.

第6図においては、それぞれ横軸が時間を、縦
軸が電圧を表す。例えば、動画を表示するような
場合には、走査電極群6は逐次、周期的に選択さ
れる。選択された走査電極GNに与えられる電気
信号は、第6図aに示される如く位相(時間)t1
では、0であり、位相(時間)t2では、+VGであ
る。
In FIG. 6, the horizontal axis represents time and the vertical axis represents voltage. For example, when displaying a moving image, the scanning electrode groups 6 are sequentially and periodically selected. The electrical signal applied to the selected scanning electrode G N has a phase (time) t 1 as shown in FIG. 6a.
, it is 0, and at phase (time) t 2 it is +V G.

一方、それ以外の選択されない走査電極GN+1′,
GN+2は第6図aに示す如く位相t1,t2では0であ
る。また、位相t1において選択された表示電極
CN,CN+1,CN+2に与えられる電気信号は、第6
図bに示される如く−VGであり、位相t2において
選択された表示電極CN,CN+2に与えられる電気
信号は+VCである。また位相t2において選択され
ない表示電極CN+1に与えられる電気信号は0であ
る。以上に於て各々の電圧値は、以下の関係を満
足する所望の値に設定される。
On the other hand, the other unselected scanning electrodes G N+1 ′,
G N+2 is 0 at phases t 1 and t 2 as shown in FIG. 6a. Also, the display electrode selected in phase t 1
The electrical signals given to C N , C N+1 and C N+2 are the 6th
As shown in FIG. b, the electric signal is -V G and the electric signal applied to the selected display electrodes C N and C N+2 at phase t 2 is +V C. Further, the electric signal applied to the unselected display electrode C N+1 during phase t 2 is zero. In the above, each voltage value is set to a desired value that satisfies the following relationship.

走査電極m=1〜N(Nは走査線数)ラインに
表示電極n=1〜M(Mは表示線数)の信号線で、
全面に「明」をリフレツシユ、次いで走査電極m
=qのラインに表示電極n=lで「暗」の書込み
をする場合、 VGn−VP>VLC+VS(m=q,n=l)(m=q,
n≠l) VS−VLC>VCo(m=1〜N,n=1〜M) VS−VLC<VCo(m=q,n=l)(m≠q,n=
l) VGn−VP<VCo(m≠q,n≠l) 但し、各記号は下記の事項を表わす。
Scanning electrodes m = 1 to N (N is the number of scanning lines) lines and display electrodes n = 1 to M (M is the number of display lines) signal lines,
Refresh “bright” on the entire surface, then scan electrode m
When writing "dark" on the line =q with display electrode n=l, V Gn -V P >V LC +V S (m=q, n=l) (m=q,
n≠l) V S -V LC >V Co (m=1~N, n=1~M) V S -V LC <V Co (m=q, n=l) (m≠q, n=
l) V Gn −V P <V Co (m≠q, n≠l) However, each symbol represents the following items.

VGn:ゲート電極(走査信号)電圧 VCo:対向電極(表示信号)電圧 VS:ソース又はドレイン電極(共通端子)電
圧 VLC:強誘電性液晶の閾値電圧の絶対値 VP:ゲート、ソース間の閾値 以上の動作を、q=1〜Nまで繰返し書込みを
行う。
V Gn : Gate electrode (scanning signal) voltage V Co : Opposite electrode (display signal) voltage V S : Source or drain electrode (common terminal) voltage V LC : Absolute value of threshold voltage of ferroelectric liquid crystal V P : Gate, The operation above the threshold between sources is repeatedly written from q=1 to N.

この様な電気信号が与えられたときの各画素の
うち、例えば第4図中の画素の書込み動作を第7
図に示す。第7図においてはそれぞれ横軸が時間
を縦軸がON(暗)上側、OFF(明)下側の各表示
状態を表わす。すなわち、第6図及び第7図より
明らかな如く、位相t1において選択された走査線
及び表示線の交点にあるすべての画素PN,N
PN+2,N+2には、閾値−VLCを越える−VLC>−VS
VCが印加される。したがつて、第4図において
全画素PN,N′PN+2,N+2は配向状態を変え、「明」に
リフレツシユされる。次に、位相t2において、選
択された走査線及び表示線の交点にある画素
PN,N,PN+2,Nには閾値VLCを越える電圧VLC<VS
VCが印加される。したがつて画素PN,N,PN+2,N
「暗」に転移(スイツチ)する。位相t3以降の動
作は、位相t2の場合と同じように、選択された走
査線及び表示線に対応する画素に順次「暗」が書
込まれていく。以上の各動作でわかる通り、選択
された走査電極線上に表示電極が選択されたか否
かに応じて、選択された場合には液晶分子は第一
の配向状態あるいは第二の配向状態に配向を揃
え、画素はON(暗)あるいはOFF(明)となり、
選択されない場合にはすべての画素に印加される
電圧は、いずれも閾値電圧を越えない。従つて、
第7図に示される如く、選択された走査線上以外
の各画素における液晶分子は配向状態を変えるこ
となく前回走査されたときの信号状態に対応した
配向を、そのまま保持している。即ち、走査電極
が選択されたときにその1ライン分の信号の書き
込みが行われ、1フレームが終了して次回選択さ
れるまでの間は、その信号状態を保持し得るわけ
である。従つて、走査電極数が増えても、実質的
なデユーテイ比はかわらず、コントラストの低下
は全く生じない。
Among the pixels when such an electric signal is applied, for example, the writing operation of the pixel in FIG.
As shown in the figure. In FIG. 7, the horizontal axis represents time, and the vertical axis represents display states of ON (dark) upper side and OFF (bright) lower side. That is, as is clear from FIGS. 6 and 7, all pixels P N,N ~ at the intersection of the scanning line and display line selected at phase t 1
For P N+2,N+2 , the threshold value −V LC is exceeded −V LC > −V S
V C is applied. Therefore, in FIG. 4, all pixels P N, N'P N+2,N+2 change their orientation and are refreshed to "bright". Then, at phase t 2 , the pixel at the intersection of the selected scan line and display line
P N,N , P N+2,N has a voltage exceeding the threshold V LC V LC <V S
V C is applied. Therefore, pixels P N,N and P N+2,N transition (switch) to "dark". In the operation after phase t3 , "dark" is sequentially written in pixels corresponding to the selected scanning line and display line, as in the case of phase t2 . As can be seen from the above operations, depending on whether or not a display electrode is selected on the selected scanning electrode line, if a display electrode is selected, the liquid crystal molecules are aligned in the first alignment state or the second alignment state. alignment, the pixels will be ON (dark) or OFF (bright),
When not selected, the voltages applied to all pixels do not exceed the threshold voltage. Therefore,
As shown in FIG. 7, the liquid crystal molecules in each pixel other than on the selected scanning line maintain the orientation corresponding to the signal state when scanned last time without changing the orientation state. That is, when a scanning electrode is selected, a signal for one line is written, and the signal state can be maintained until the next selection after one frame is completed. Therefore, even if the number of scanning electrodes increases, the actual duty ratio remains unchanged and the contrast does not deteriorate at all.

第5図に於て、走査電極GN,GN+1,GN+2,…
と表示電極CN,CN+1,CN+2,…の交点で形成す
る画素のうち、斜線部の画素は「暗」状態に、白
地で示した画素は「明」状態に対応するものとす
る。今、第5図中の表示電極CN上の表示に注目
すると、走査電極GN,GN+2に対応する画素では
「暗」状態であり、それ以外の画素は「明」状態
である。前記、位相t1〜t4の各動作によつて、第
5図の表示パターンが完成する。
In FIG. 5, scanning electrodes G N , G N+1 , G N+2 ,...
Among the pixels formed at the intersections of the display electrodes C N , C N+1 , C N+2 , ..., the pixels in the shaded areas correspond to the "dark" state, and the pixels shown in white correspond to the "bright" state. shall be taken as a thing. Now, if we pay attention to the display on the display electrode C N in Fig. 5, we can see that the pixels corresponding to the scanning electrodes G N and G N+2 are in the "dark" state, and the other pixels are in the "bright" state. . The display pattern shown in FIG. 5 is completed by each of the operations in phases t1 to t4 .

本発明の強誘電性液晶の駆動方法において、走
査電極と信号電極の配置は任意であり、例えば第
9図a,bに示すように一例に画素を配置するこ
とも可能であり、この様に配置するとシヤツター
アレイ等として利用することができる。
In the method for driving a ferroelectric liquid crystal of the present invention, the arrangement of the scanning electrode and the signal electrode is arbitrary. For example, it is possible to arrange the pixels as shown in FIGS. 9a and 9b. When arranged, it can be used as a shutter array, etc.

次に、以上に説明した実施例において、強誘電
性液晶としてDOBAMBCを駆動するのに好まし
い具体的数値を示すと、例えば 入力周波数fp=1×104〜1×106Hz 10<|VG|<60V(波高値) 0.3|VS|<10V(波高値) が挙げられる。
Next, in the embodiment described above, preferred specific values for driving DOBAMBC as a ferroelectric liquid crystal are as follows: For example, input frequency f p =1×10 4 to 1×10 6 Hz 10<|V Examples include G | <60V (peak value) 0.3 | V S | <10V (peak value).

第9図は本発明において使用されるTFTにお
けるFETの構成を示す断面図、第10図はTFT
を用いた強誘電性液晶セルの断面図、第11図は
THT基板の斜視図、第12図はTFT基板の平面
図、第13図は第12図のA−A′線で切断した
部分断面図、第14図は第12図のB−B′線で
切断した部分断面図であり、以上に示す各図はい
ずれも本発明の一実施態様を示すものである。
FIG. 9 is a cross-sectional view showing the structure of the FET in the TFT used in the present invention, and FIG.
Figure 11 is a cross-sectional view of a ferroelectric liquid crystal cell using
Fig. 12 is a perspective view of the THT substrate, Fig. 12 is a plan view of the TFT substrate, Fig. 13 is a partial sectional view taken along line A-A' in Fig. 12, and Fig. 14 is a partial sectional view taken along line B-B' in Fig. 12. It is a partially cutaway sectional view, and each of the figures shown above shows one embodiment of the present invention.

第10図は、本発明の方法で用いうる液晶素子
の1つの具体例を表わしている。ガラス、プラス
チツク等の基板20の上にゲート電極24、絶縁
膜22(水素原子をドーピングした窒化シリコン
膜など)を介して形成した半導体膜16(水素原
子をドーピングしたアモルフアスシリコン)と、
この半導体膜16に接する2つの端子8と11で
構成したTFTと、TFTの端子11と接続した画
素電極12(ITO;Indnium Tin Oxide)が形
成されている。さらに、この上に絶縁層13(ポ
リイミド、ポリアミド、ポリビニルアルコール、
ポリパラキシリレン、SiO,SiO2)とアルミニウ
ムやクロムなどからなる光遮蔽膜9が設けられて
いる。対向基板となる基板20′の上には対向電
極21(ITO;Indnium Tin Oxide)と絶縁膜
22が形成されている。
FIG. 10 shows one specific example of a liquid crystal element that can be used in the method of the invention. A semiconductor film 16 (amorphous silicon doped with hydrogen atoms) formed on a substrate 20 of glass, plastic, etc. via a gate electrode 24 and an insulating film 22 (such as a silicon nitride film doped with hydrogen atoms);
A TFT composed of two terminals 8 and 11 in contact with this semiconductor film 16 and a pixel electrode 12 (ITO; Indnium Tin Oxide) connected to the terminal 11 of the TFT are formed. Furthermore, an insulating layer 13 (polyimide, polyamide, polyvinyl alcohol,
A light shielding film 9 made of polyparaxylylene, SiO, SiO 2 ), aluminum, chromium, or the like is provided. A counter electrode 21 (ITO; Indnium Tin Oxide) and an insulating film 22 are formed on a substrate 20' serving as a counter substrate.

この基板20と20′の間には、前述の強誘電
性液晶23が挟持されている。又、この基板20
と20′の周囲部には強誘電性液晶23を封止す
るためのシール材25が設けられている。
The aforementioned ferroelectric liquid crystal 23 is sandwiched between the substrates 20 and 20'. Also, this board 20
A sealing material 25 for sealing the ferroelectric liquid crystal 23 is provided around the ferroelectric liquid crystal 23 and 20'.

この様なセル構造の液晶素子の両側にはクロス
ニコル状態の偏光子19と19′が配置され、観
察者Aが入射光I0よりの反射光I1によつて表示状
態を見ることができる様に偏光子19′の背後に
反射板18(乱反射性アルミニウムシート又は
板)が設けられている。
Polarizers 19 and 19' in a crossed Nicol state are arranged on both sides of a liquid crystal element having such a cell structure, and the viewer A can see the display state by the reflected light I1 from the incident light I0 . Similarly, a reflective plate 18 (diffuse reflective aluminum sheet or plate) is provided behind the polarizer 19'.

又、上記の各図においてソース電極、ドレイン
電極とは、ドレインからソースへ電流が流れる場
合に限定した命名である。FETの働きではソー
スがドレインとして働く場合も可能である。
Further, in each of the above figures, the terms "source electrode" and "drain electrode" are used only when current flows from the drain to the source. In the function of FET, it is also possible for the source to function as the drain.

[発明の効果] 上記の構造よりなる本発明の強誘電性液晶の駆
動方法を用いることにより、アクテイブマトリツ
クスに画素数の多い大画面の表示及び高速度で鮮
明な画像を表示することができる。
[Effects of the Invention] By using the method for driving the ferroelectric liquid crystal of the present invention having the above structure, it is possible to display a large screen with a large number of pixels in the active matrix and to display clear images at high speed. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明の方法に用いる強
誘電性液晶を模式的に表わす斜視図、第3図は本
発明の方法に用いるマトリツクス電極の回路図、
第4図は対応画素の番地を示す説明図、第5図は
対応画素の表示例を示す説明図、第6図a及びb
は走査電極及び表示電極に印加する電気信号を表
わす説明図、第7図は各画素への書込み動作を表
わす説明図、第8図a及びbはアクテイブマトリ
ツクス回路と画素配置の例を示す配線図、第9図
はTFTにおけるFETの構成を示す断面図、第1
0図はTFTを用いた強誘電性液晶セルの断面図、
第11図はTFT基板の斜視図、第12図はTFT
基板の平面図、第13図はA−A′線部分断面図
及び第14図はB−B′部分断面図である。 1,1′……透明電極がコートされた基板、2
……液晶分子層、3……液晶分子、4……双極子
モーメント(P⊥ )、4a……上向き双極子モー
メント、4b……下向き双極子モーメント、5…
…第一の配向状態、5′……第二の配向状態、6
(SN,SN+1,SN+2)……走査電極群(走査電極)、
7(CN,CN+1,CN+2)……信号電極群(信号電
極)、8……ソース電極(ドレイン電極)、9……
光遮蔽膜、10……n+層、11……ドレイン電
極(ソース電極)、12……画素電極、13……
絶縁層、14……基板、15……半導体直下の光
遮蔽膜、16……半導体、17……ゲート配線部
の透明電極、18……反射板、19,19′……
偏光板、20,20′……ガラス、プラスチツク
等の透明基板、21……対向電極、22……絶縁
膜、23……強誘電性液晶層、24……ゲート電
極、25……シール材、26……薄膜半導体、2
7……ゲート配線、28……パネル基板、29…
…光遮断効果を有するゲート部、1′〜M′……走
査電極、1〜N……表示電極、L……共通電極、
LC……液晶、FET……電界効果トランジスタ。
1 and 2 are perspective views schematically showing a ferroelectric liquid crystal used in the method of the present invention, and FIG. 3 is a circuit diagram of a matrix electrode used in the method of the present invention.
FIG. 4 is an explanatory diagram showing addresses of corresponding pixels, FIG. 5 is an explanatory diagram showing display examples of corresponding pixels, and FIGS. 6 a and b.
7 is an explanatory diagram showing the electric signals applied to the scanning electrode and the display electrode, FIG. 7 is an explanatory diagram showing the writing operation to each pixel, and FIGS. 8 a and b are wiring diagrams showing an example of the active matrix circuit and pixel arrangement. Figure 9 is a cross-sectional view showing the configuration of FET in TFT.
Figure 0 is a cross-sectional view of a ferroelectric liquid crystal cell using TFT.
Figure 11 is a perspective view of the TFT substrate, Figure 12 is the TFT
A plan view of the substrate, FIG. 13 is a partial sectional view taken along the line A-A', and FIG. 14 is a partial sectional view taken along the line B-B'. 1, 1'...Substrate coated with transparent electrode, 2
...Liquid crystal molecule layer, 3...Liquid crystal molecule, 4...Dipole moment (P⊥), 4a...Upward dipole moment, 4b...Downward dipole moment, 5...
...first orientation state, 5'...second orientation state, 6
(S N , S N+1 , S N+2 )...Scan electrode group (scan electrode),
7 (C N , C N+1 , C N+2 )...Signal electrode group (signal electrode), 8... Source electrode (drain electrode), 9...
Light shielding film, 10... n + layer, 11... drain electrode (source electrode), 12... pixel electrode, 13...
Insulating layer, 14...Substrate, 15...Light shielding film directly under semiconductor, 16...Semiconductor, 17...Transparent electrode in gate wiring section, 18...Reflector, 19, 19'...
Polarizing plate, 20, 20'... Transparent substrate such as glass or plastic, 21... Counter electrode, 22... Insulating film, 23... Ferroelectric liquid crystal layer, 24... Gate electrode, 25... Sealing material, 26...Thin film semiconductor, 2
7... Gate wiring, 28... Panel board, 29...
...Gate portion having a light blocking effect, 1' to M'... Scanning electrode, 1 to N... Display electrode, L... Common electrode,
LC...Liquid crystal, FET...Field effect transistor.

Claims (1)

【特許請求の範囲】 1 ゲート端子及びチヤネルの第一及び第二端子
を有する電界効果型トランジスタ(以下「FET」
と記す)と、FETの第一端子に接続された画素
電極と、画素電極に対向する対向電極と、画素電
極と対向電極の間に挟持され、画素電極と対向電
極間に第一の電界を印加することにより第一の安
定な配向状態を生じ、画素電極と対向電極間に第
一の電界とは逆極性の第二の電界を印加すること
により第二の安定な配向状態を生じる強誘電性液
晶とからなる液晶素子を複数の行及び列に沿つて
配置し、液晶素子のFETの第二端子を共通に接
続し、列毎のFETのゲート端子を走査信号線に
接続し、対向電極を行毎の液晶素子に対応して分
割し、各対向電極を表示信号線に接続した液晶装
置をアクテイブマトリクス駆動する駆動法であつ
て、 FETの第二端子の電位を常に一定に保ち、 前記各対向電極に、前記FETの第二端子との
電位差の絶対値が前記液晶のしきい値を越える電
位を付与する表示信号を印加し、この表示信号と
同期して、前記液晶素子のFETのゲート端子に、
前記第二端子の電位に対してゲートオン状態を取
り得る電位を付与する電圧信号を印加し、FET
のゲートをオン状態にして画素電極と対向電極間
に第一の電界を形成し、全ての前記液晶素子の前
記液晶を第一の配向状態に揃えるリフレツシユ操
作を行なつた後、 列毎に、列上の液晶素子のFETのゲート端子
に順次走査信号を印加し、該走査信号と同期し
て、選択された対向電極に、前記FETの第二端
子との電位差が前記リフレツシユ操作における電
位差とは逆極性で且つその絶対値が前記液晶のし
きい値を越える電位を付与する表示信号を印加
し、選択されなかつた対向電極に、前記第二端子
との電位差の絶対値が前記液晶のしきい値を越え
ない電位を付与する表示信号を印加し、該走査信
号は、該走査信号の印加された前記列上の液晶素
子のFETのゲート端子に、FETの第二端子の電
位に対してゲートオン状態を取り得る電位を付与
し、前記走査信号の印加された列上の液晶素子の
画素電極と選択された対向電極との間に第二の電
界を形成することを特徴とする液晶装置の駆動
法。
[Claims] 1. A field effect transistor (hereinafter referred to as "FET") having a gate terminal and first and second terminals of a channel.
), a pixel electrode connected to the first terminal of the FET, a counter electrode facing the pixel electrode, and a first electric field sandwiched between the pixel electrode and the counter electrode, and a first electric field between the pixel electrode and the counter electrode. A ferroelectric material that produces a first stable alignment state by applying a ferroelectric field, and a second stable alignment state by applying a second electric field of opposite polarity to the first electric field between the pixel electrode and the counter electrode. Liquid crystal elements consisting of liquid crystals are arranged along multiple rows and columns, the second terminals of the FETs of the liquid crystal elements are connected in common, the gate terminals of the FETs in each column are connected to the scanning signal line, and the counter electrodes are connected to the scanning signal line. This is a driving method in which a liquid crystal device is divided into rows corresponding to liquid crystal elements and each counter electrode is connected to a display signal line, and the liquid crystal device is driven in an active matrix, and the potential of the second terminal of the FET is always kept constant. A display signal is applied to each counter electrode to provide a potential whose absolute value of the potential difference with the second terminal of the FET exceeds the threshold of the liquid crystal, and in synchronization with this display signal, the FET of the liquid crystal element is to the gate terminal,
A voltage signal is applied to the potential of the second terminal to provide a potential that allows the gate to be turned on, and the FET
After performing a refresh operation in which the gates of the liquid crystal elements are turned on to form a first electric field between the pixel electrode and the counter electrode and the liquid crystals of all the liquid crystal elements are aligned in the first alignment state, for each column, A scanning signal is sequentially applied to the gate terminals of the FETs of the liquid crystal elements on the column, and in synchronization with the scanning signal, a potential difference between the potential difference with the second terminal of the FET and the second terminal of the FET is applied to the selected counter electrode in synchronization with the scanning signal. A display signal giving a potential of opposite polarity and whose absolute value exceeds the threshold of the liquid crystal is applied to the unselected counter electrode so that the absolute value of the potential difference with the second terminal exceeds the threshold of the liquid crystal. A display signal that applies a potential that does not exceed a value is applied, and the scanning signal is applied to the gate terminal of the FET of the liquid crystal element on the column to which the scanning signal is applied, and the gate is turned on with respect to the potential of the second terminal of the FET. Driving a liquid crystal device characterized by applying a potential that can take a state and forming a second electric field between a pixel electrode of a liquid crystal element on a column to which the scanning signal is applied and a selected counter electrode. Law.
JP59127415A 1984-04-28 1984-06-22 Driving method of liquid-crystal element Granted JPS617825A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59127415A JPS617825A (en) 1984-06-22 1984-06-22 Driving method of liquid-crystal element
US06/724,828 US4697887A (en) 1984-04-28 1985-04-18 Liquid crystal device and method for driving the same using ferroelectric liquid crystal and FET's

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127415A JPS617825A (en) 1984-06-22 1984-06-22 Driving method of liquid-crystal element

Publications (2)

Publication Number Publication Date
JPS617825A JPS617825A (en) 1986-01-14
JPH0453292B2 true JPH0453292B2 (en) 1992-08-26

Family

ID=14959395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127415A Granted JPS617825A (en) 1984-04-28 1984-06-22 Driving method of liquid-crystal element

Country Status (1)

Country Link
JP (1) JPS617825A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204681A (en) * 1985-03-07 1986-09-10 キヤノン株式会社 Liquid crystal panel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614029A (en) * 1984-06-19 1986-01-09 Canon Inc Driving method of liquid crystal element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614029A (en) * 1984-06-19 1986-01-09 Canon Inc Driving method of liquid crystal element

Also Published As

Publication number Publication date
JPS617825A (en) 1986-01-14

Similar Documents

Publication Publication Date Title
US4973135A (en) Active matrix display panel having plural stripe-shaped counter electrodes and method of driving the same
US4697887A (en) Liquid crystal device and method for driving the same using ferroelectric liquid crystal and FET&#39;s
US4747671A (en) Ferroelectric optical modulation device and driving method therefor wherein electrode has delaying function
US4770501A (en) Optical modulation device and method of driving the same
JP2805253B2 (en) Ferroelectric liquid crystal device
JPS60262133A (en) Driving method of liquid-crystal element
JPS614021A (en) Driving method of liquid crystal element
JPS60230121A (en) Driving method of liquid crystal element
JPH0453293B2 (en)
JPS614026A (en) Driving method of liquid crystal element
JPH0453292B2 (en)
JPH028814A (en) Liquid crystal device
JPS60262136A (en) Driving method of liquid-crystal element
JPH0414766B2 (en)
JPS60262134A (en) Driving method of liquid-crystal element
JPH0452924B2 (en)
JPH0453294B2 (en)
JPH0452923B2 (en)
JPS617829A (en) Driving method of liquid-crystal element
JPS619624A (en) Driving method of liquid crystal element
JPS60262135A (en) Driving method of liquid-crystal element
JPS63316024A (en) Optical modulating element
JPH0453291B2 (en)
JPS60262137A (en) Driving method of liquid-crystal element
JPS617828A (en) Driving method of liquid-crystal element