JPS60203920A - Driving method of liquid crystal optical element - Google Patents

Driving method of liquid crystal optical element

Info

Publication number
JPS60203920A
JPS60203920A JP6133684A JP6133684A JPS60203920A JP S60203920 A JPS60203920 A JP S60203920A JP 6133684 A JP6133684 A JP 6133684A JP 6133684 A JP6133684 A JP 6133684A JP S60203920 A JPS60203920 A JP S60203920A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
phase
signal
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6133684A
Other languages
Japanese (ja)
Other versions
JPH0414766B2 (en
Inventor
Junichiro Kanbe
純一郎 神辺
Kazuo Yoshinaga
和夫 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6133684A priority Critical patent/JPS60203920A/en
Priority to US06/714,618 priority patent/US4712872A/en
Publication of JPS60203920A publication Critical patent/JPS60203920A/en
Publication of JPH0414766B2 publication Critical patent/JPH0414766B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13781Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering using smectic liquid crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To drive a liquid crystal optical element at a high speed with a low driving voltage by impressing the voltage exceeding the threshold of one polarity to selected non-linear type elements and impressing the voltage exceeding the threshold of the other polarity to the corresponding other non-linear type elements. CONSTITUTION:Elements having the voltage-current characteristic of a non-linear type are provided in accordance with the respective picture elements which are the intersected parts of a scanning electrode group 51(S1-S5,...) and a signal electrode group 52(I1-I5,...). A ferrodielectric liquid crystal is disposed between the groups 51 and 52. A scanning selection signal is made 2V0 voltage at a phase t1 and -2V0 at a phase t2. An information signal is added with a signal +V0 for image black and -V0 for white in synchronization with the scanning signal. The voltage of +3V0 in total is thus impressed to the picture element A at the phase t1 and the non-linear type element turns on by exceeding the threshould. The liquid crystal is held in one polarization state. The voltage of -3V0 is impressed to the picture element C and the liquid crystal is held in the other polarization state. The high-speed driving is thus made possible with the low driving voltage.

Description

【発明の詳細な説明】 本発明は、表示素子や光バルブ等の光学変調素子に係り
、詳しくは多数の画素を時分割駆動によって動作させる
に適した新規な液晶光学素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical modulation element such as a display element or a light valve, and more particularly to a novel liquid crystal optical element suitable for operating a large number of pixels by time-division driving.

従来、マトリクス状に多数個の画素を形成した液晶表示
素子の構成法として、次のものが挙げられるが、それぞ
れ欠点を有する。
Conventionally, the following methods have been used to construct a liquid crystal display element in which a large number of pixels are formed in a matrix, but each method has drawbacks.

1、単純電極マトリクスによる方法; 極めて作製が容易であるが、非選択点にも電界が印加さ
れてクロストークが止片、る。このため、画素容量を上
げることが出来ない。
1. Method using a simple electrode matrix: Although it is extremely easy to manufacture, an electric field is also applied to non-selected points, which prevents crosstalk. For this reason, it is not possible to increase the pixel capacity.

2、 各画素に対応したTPT (薄膜トランジスタ)
等の能動素子を設ける方法; 各能動素子が明確なスイッチング動作を行うためにクロ
ストークが生じることは避は得るが、能動素子の作製に
極めて精密なアライメント技術を要し、これを大画面の
液晶素子に適用しようとした場合には極めて高コストと
なる。
2. TPT (thin film transistor) corresponding to each pixel
A method of providing active elements such as the If it is applied to a liquid crystal element, the cost will be extremely high.

3、各画素に対応したMIM (金属/絶縁体/金属構
造)等の非線型素子を用いる方法;各非線型素子と各画
素に対応する液晶層との電気的マツチングが良好にとれ
る場合にはクロストークが防止され画素容量はある程度
大きくできるが、画素密度を上げようとした場合には各
画素の液晶ノーの静電容量が小さくなシ、電気的マツチ
ングをとるためには各非線型素子の静電容量もこれに応
じて小さくしなければならず、非線型素子が電荷保持機
能をもつためには、駆動条件の厳しさとともに作製上の
大きなネックとなっている。
3. Method using non-linear elements such as MIM (metal/insulator/metal structure) corresponding to each pixel; if good electrical matching can be achieved between each non-linear element and the liquid crystal layer corresponding to each pixel. Crosstalk can be prevented and the pixel capacitance can be increased to some extent, but when trying to increase the pixel density, the capacitance of each pixel's liquid crystal is small, and in order to achieve electrical matching, it is necessary to increase the pixel capacitance to some extent. The capacitance must be reduced accordingly, and in order for a nonlinear element to have a charge retention function, this becomes a major bottleneck in manufacturing along with severe driving conditions.

この非線型素子を用いた液晶の駆ルb方法に関しては、
多数の報告がある。例えば、I EEETransac
tions on Electron Devices
、 VoloED−28,No−6,JUNE 198
1に掲載されている。
Regarding the liquid crystal driving method using this nonlinear element,
There are many reports. For example, I EEET Transac
tions on Electron Devices
, VoloED-28, No-6, JUNE 198
It is published in 1.

David R,Baraff他による”The Op
timizationof Metal−Insula
tor→Ietal Non1inear Devic
egforUse in Multiplexed L
iquid Crystal Displays”に詳
しいみ いずれにしても、前記いずれの方法を用いても大画素容
量で、かつ大画面の表示が難しく、しかも比較的安価な
液晶素子は未だ出現していないのが現状である。
“The Op” by David R, Baraff et al.
Timization of Metal-Insula
tor→Ietal Non1inear Device
egforUse in Multiplexed L
If you are familiar with ``iquid Crystal Displays'', the current situation is that no matter which method is used, it is difficult to display a large screen with a large pixel capacity, and a relatively inexpensive liquid crystal element has not yet appeared. be.

従って、本発明の目的は、前記従来技術の問題点を克服
した大画素容量で、かつ大画面の表示或いは変調が可能
で、しかも比較的安価に製左 造することが可能な液晶素子の新しい駆動法戸供するこ
とにある。
Therefore, an object of the present invention is to provide a new liquid crystal element that overcomes the problems of the prior art, has a large pixel capacity, is capable of displaying or modulating a large screen, and can be manufactured at a relatively low cost. The driving method is to provide the door.

本発明の液晶光学素子は、液晶材料として、強誘電性液
晶という材料に特定化することにより、これを通常のフ
ォトリソグラフィー技術によっても達成し得る非線型素
子と組み合わせることにより、今までに得られなかった
大面積で、かつ高画素密度の液晶表示デバイスを提供し
得るものである。
The liquid crystal optical element of the present invention is produced by specifying a ferroelectric liquid crystal as the liquid crystal material, and by combining this with a nonlinear element that can also be achieved by ordinary photolithography technology. This makes it possible to provide a liquid crystal display device with a large area and high pixel density, which was previously unavailable.

強誘電液晶は2つの分極状態がそれぞれ記憶性を有する
ことができ、この場合には以下に述べる多大な効果を奏
することができる。
The ferroelectric liquid crystal can have memory properties for each of the two polarization states, and in this case, the following great effects can be achieved.

通常の液晶(例えば、ねじれネマチック液晶)と非線型
素子とからなる従来の液晶素子に於ては、画素ONの信
号によって非線型素子がON状態となシ、液晶層両端に
電荷が蓄積し、電圧が印加されて、画素に対応する液晶
がON状態となる。この後、信号がOFFされると、非
線型素子はOFF状態となシ液晶層両端に蓄積されてい
た電荷は非線型素子の静電容量と、液晶層の静電容量と
に容量分割される。このため、非線型素子の静電容量が
液晶層のそれに比べ充分に小さくない場合には、液晶層
の両端にある電荷盆は減少し、画素に対応する液晶をO
N状態に保持し続けることができなくなる。このため従
来の液晶素子では非線型素子の静電容量は、液高層のそ
れに対して通常1/10程度以下にする必要があり、そ
れ以上になると駆動条件のラチチュードが極めて狭くな
ってしまう。従って画素密度を上げようとした場合、画
素液晶の静電容量は小さくなるため非線型素子の静電容
量をさらに小さくする必要があり、通常のフォトリソグ
ラフィー技術で微小な非線型素子を構成することは困難
であった。
In a conventional liquid crystal element consisting of a normal liquid crystal (for example, twisted nematic liquid crystal) and a nonlinear element, the nonlinear element is turned on by a pixel ON signal, and charges accumulate at both ends of the liquid crystal layer. A voltage is applied, and the liquid crystal corresponding to the pixel is turned on. After this, when the signal is turned off, the nonlinear element is turned off, and the charge accumulated at both ends of the liquid crystal layer is capacitance-divided into the capacitance of the nonlinear element and the capacitance of the liquid crystal layer. . Therefore, if the capacitance of the nonlinear element is not sufficiently smaller than that of the liquid crystal layer, the charge basins at both ends of the liquid crystal layer will decrease, causing the liquid crystal corresponding to the pixel to become
It becomes impossible to keep it in the N state. For this reason, in conventional liquid crystal elements, the capacitance of the nonlinear element usually needs to be about 1/10 or less of that of the liquid layer, and if it exceeds that, the latitude of the driving conditions becomes extremely narrow. Therefore, when trying to increase pixel density, the capacitance of the pixel liquid crystal decreases, so it is necessary to further reduce the capacitance of the nonlinear element, and it is difficult to construct a minute nonlinear element using normal photolithography technology. was difficult.

一方、非線型素子の静電容量を°、画素液晶の静電容量
に比べ充分小さくした場合、信号がOFFされ、非線型
素子がOFFとなったときに、液晶層両端の蓄積電荷に
よって、液晶層に印加されている電圧は、はとんどその
まま非線型素子にも加わる。従って、液晶層をOFF状
態からON状態に切り換えるに要する電圧(液晶の閾値
)より非線型素子の閾値電圧が低い場合には非線型素子
がON状態となシ、液晶層に蓄積されていた電荷は非線
型素子を通って放電してしまう。或いは、非線型素子の
閾値電圧が液晶の閾値電圧よシ若干高い場合でも、その
後に続いて信号電極に印加される情報信号電圧によって
は、さらに非線型素子にかかる電圧が上昇して非線型素
子がON状態に戻る危険性が高い。このため記憶性のな
い通常の液晶と非線型素子との組みあわせによる従来の
液晶素子では、液晶の閾値電圧にくらべ非線型素子の閾
値電圧を充分に大きくする必要があり、駆動電圧の高圧
化を招く結果となる。
On the other hand, if the capacitance of the non-linear element is made sufficiently smaller than the capacitance of the pixel liquid crystal, when the signal is turned off and the non-linear element is turned off, the charges accumulated at both ends of the liquid crystal layer will cause the liquid crystal to The voltage applied to the layer is also directly applied to the nonlinear element. Therefore, if the threshold voltage of the nonlinear element is lower than the voltage required to switch the liquid crystal layer from the OFF state to the ON state (threshold value of the liquid crystal), the nonlinear element will not be in the ON state, and the charge accumulated in the liquid crystal layer discharges through the nonlinear element. Alternatively, even if the threshold voltage of the nonlinear element is slightly higher than that of the liquid crystal, depending on the information signal voltage that is subsequently applied to the signal electrode, the voltage applied to the nonlinear element may further increase, causing the nonlinear element to There is a high risk that it will return to the ON state. For this reason, in conventional liquid crystal elements that combine ordinary liquid crystals with no memory and nonlinear elements, it is necessary to make the threshold voltage of the nonlinear elements sufficiently larger than that of the liquid crystal, which increases the drive voltage. This results in

いずれにしても、従来の液晶素子では、非線型素子の作
製上の困難さと、駆動法の厳しさが商品として高画素密
度化を達成することの妨げとなっていたが、液晶層の2
つ(ON、 OFF’ )の状態(強誘電液晶の2つの
分極状態に対応する。)がそれぞれ記憶性を有している
ならば、−担、液晶層に電圧が印加されて例えばON状
態にスイッチングがおこると、その後に電圧が解除され
ても、ON状態を保持することができるため、非線型素
子の静電容量は、画素液晶の静電容量と同程度あるいは
それ以下でさえ許容され、低い駆動電圧で高速の駆動を
達成することが可能となる。
In any case, in conventional liquid crystal devices, the difficulty in manufacturing nonlinear elements and the harshness of driving methods have hindered the achievement of high pixel density as commercial products.
If the two (ON, OFF') states (corresponding to the two polarization states of the ferroelectric liquid crystal) each have memory properties, then when a voltage is applied to the liquid crystal layer, the ON state can be changed, for example. When switching occurs, even if the voltage is subsequently removed, the ON state can be maintained, so the capacitance of the nonlinear element is allowed to be equal to or even lower than the capacitance of the pixel liquid crystal. It becomes possible to achieve high-speed driving with low driving voltage.

即ち、本発明は交差した走査電極群と信号電極群の交差
部を画素としたマトリクス電極構造の各画素に対応して
非線型の電圧−電流特性を有する素子(以下、非線型素
子という)を有し、前記走査電極群と信号電極群の間に
電界の向きに応じた2つの電気分極状態を有する強誘電
液晶を配置した液晶光学素子の駆動法であって、前記走
査電極群のうち選択された走査電極上の所定の画素に対
応する非線型素子に一方の極性の閾値を越える電圧を印
加して、前記画素に対応する強誘電液晶を一方の分極状
態に転移させる第1の位相と、前記走査電極上の前記所
定の画素とは別の画素に対応する非線型素子に他方の極
性の閾値を越える電圧を印加して前記別の画素に対応す
る強誘電液晶を他方の分極状態に転移させる第2の位相
を有する駆動法によって達成される。
That is, the present invention provides an element (hereinafter referred to as a nonlinear element) having a nonlinear voltage-current characteristic corresponding to each pixel of a matrix electrode structure in which the intersection of a scanning electrode group and a signal electrode group are pixels. A method for driving a liquid crystal optical element in which a ferroelectric liquid crystal having two electric polarization states depending on the direction of an electric field is arranged between the scanning electrode group and the signal electrode group, the method comprising: a first phase in which a voltage exceeding a threshold value of one polarity is applied to a nonlinear element corresponding to a predetermined pixel on the scan electrode, and the ferroelectric liquid crystal corresponding to the pixel is transferred to one polarization state; , applying a voltage exceeding a threshold of the other polarity to a nonlinear element corresponding to a pixel other than the predetermined pixel on the scanning electrode to change the ferroelectric liquid crystal corresponding to the other pixel to the other polarization state; This is achieved by a driving method with a second phase of transition.

尚、以下の実施例で詳述されるが、本発明の駆動法は、
従来のネマチック・コレステリック等の液晶と異シ、2
つの互いに逆極性の分極状態を有する強誘電液晶を用い
るため、本質的には直流駆動であることに大きな特徴を
有している。
As will be explained in detail in the following examples, the driving method of the present invention is as follows:
Different from conventional nematic/cholesteric liquid crystals, 2
Since it uses ferroelectric liquid crystals that have two mutually opposite polarization states, it has a major feature in that it is essentially DC driven.

本発明の液晶光学素子で用いる強誘電性液晶としては、
カイラルスメクチックC(SmC*)又はH相(SmH
)の液晶が適している。この強誘電性液晶ニツイテハ、
”LE JOTIRNAL DE PfffSIQUE
LETTER8″36 (L−69) 1975 、 
[Ferroe/ectricLiquid 0r)y
staesJ ; ”Applied Pbysics
 Letters”36 (11) 1980 rSu
bmicro 5econd B15tab/eEl!
ectrooptic Switching in L
iquid CrystaesJ ;”固体物理”16
 (141)1981 F液晶」等に記載されておシ、
本発明ではこれらに開示された強誘電性液晶を用いるこ
とができる〇よシ具体的には、本発明法に用いられる強
誘電性液晶化合物の例としては、デシロキシベンジリデ
ン−P′−アミノ−2−メチルブテルシンナメー) (
DOBAMBC) 、ヘキシルオキシペンシリテン−P
′−アミノ−2−クロロプロピルシンナメート(HOB
ACPC)および4− o −(2−メチル)−ブテル
レゾルシリデンー4′−オクチルア=リン(MBRA8
)等が挙げられる。
The ferroelectric liquid crystal used in the liquid crystal optical element of the present invention includes:
Chiral smectic C (SmC*) or H phase (SmH
) LCD is suitable. This ferroelectric liquid crystal,
”LE JOTIRNAL DE PffffSIQUE
LETTER8″36 (L-69) 1975,
[Ferroe/electricLiquid 0r)y
staesJ; ”Applied Pbysics
Letters”36 (11) 1980 rSu
bmicro 5econd B15tab/eEl!
electrooptic Switching in L
iquid CrystaesJ; “Solid State Physics” 16
(141) 1981 F LCD” etc.
In the present invention, the ferroelectric liquid crystals disclosed in these documents can be used. Specifically, examples of the ferroelectric liquid crystal compounds used in the method of the present invention include decyloxybenzylidene-P'-amino- 2-methylbutercinname) (
DOBAMBC), hexyloxypensyritene-P
'-Amino-2-chloropropyl cinnamate (HOB
ACPC) and 4-o-(2-methyl)-buterresol cylidene-4'-octyla-phosphorus (MBRA8
) etc.

これらの材料を用いて、素子を構成する場合、液晶化合
物が、SmC*相又はSmE*相となるような温度状態
に保持する為、必要に応じて素子をヒーターが埋め込ま
れた銅ブロック等にょシ支持することができる。
When constructing an element using these materials, in order to maintain the temperature at which the liquid crystal compound becomes the SmC* phase or the SmE* phase, the element may be placed in a copper block etc. with a heater embedded in it, as necessary. can be supported.

第3図は、強―電性液晶セルの例を模式的に描すたもノ
テあル。21と21は、In2O5s 5n01やI 
To (Indium−Tin 0xide )等の透
明電極がコートされた基板(ガラス板)でLJ)、その
間に液晶分子層22がガラス面に垂直になるよう配向し
たS m C相の液晶が封入されている。太線で示した
線23が液晶分子を表わしており、この液晶分子23は
その分子に直交した方向に双極子モーメン)24(PA
)を有している。基板21と21′上の電極間に一定の
閾値以上の電圧を印加すると、液晶分子23のらせん構
造がほどけ、双極子モーメント24はすべて電界方向に
向くよう、液晶分子23は配向方向を変えることかでき
る。液晶分子23は細長い形状を有してお夛、その長軸
方向と短軸方向で屈折率異方性を示し、従って例えば、
ガラス面の上下に互いにクロスニコルの偏光子を置けば
、電圧印加極性によって光学特性が変わる液晶変調素子
となることは、容易に理解される。さらに液晶セルの厚
さを充分に薄くした場合(例えば1μ)には、第4図に
示すように電界を印加していない状態でも液晶分子のら
せん構造はほどけ、その双極子モーメンt−p又はP′
は上向き(34)又は下向き(34’ )のどちらかの
電気分極状態をとる。このようなセルに第3図に示す如
く一定の闇値以上の極性の異る電界E又はE′を与えて
やると、双極子モーメントは電界E又はE′のべ 電界ベクトルに対応して上向き34又は下向き34′と
向きを変え、それに応じて液晶分子は第1の安定状[1
33かあるいは第2の安定状態33′の何れか一方に配
向する。しかも、第1及び第2の状態は電界が切られた
後でも記憶性を有し、それぞれの状態に留っていること
ができる。
Figure 3 is a schematic diagram of an example of a ferroelectric liquid crystal cell. 21 and 21 are In2O5s 5n01 and I
A substrate (glass plate) coated with a transparent electrode such as Indium-Tin Oxide (LJ) is used, and an S m C phase liquid crystal in which the liquid crystal molecular layer 22 is oriented perpendicular to the glass surface is sealed between them. There is. A thick line 23 represents a liquid crystal molecule, and this liquid crystal molecule 23 has a dipole moment) 24 (PA) in the direction perpendicular to the molecule.
)have. When a voltage higher than a certain threshold is applied between the electrodes on the substrates 21 and 21', the helical structure of the liquid crystal molecules 23 is unraveled, and the liquid crystal molecules 23 change their alignment direction so that all the dipole moments 24 are oriented in the direction of the electric field. I can do it. The liquid crystal molecules 23 have an elongated shape and exhibit refractive index anisotropy in the long axis direction and the short axis direction, and therefore, for example,
It is easily understood that if crossed Nicol polarizers are placed above and below a glass surface, a liquid crystal modulation element whose optical characteristics change depending on the polarity of applied voltage is obtained. Furthermore, when the thickness of the liquid crystal cell is made sufficiently thin (for example, 1μ), the helical structure of the liquid crystal molecules is unraveled even when no electric field is applied, as shown in Figure 4, and its dipole moment t-p or P′
takes either an upward (34) or downward (34') electric polarization state. When such a cell is given an electric field E or E' with a different polarity above a certain dark value as shown in Figure 3, the dipole moment will be directed upward in response to the electric field vector of the electric field E or E'. 34 or downward 34', and accordingly the liquid crystal molecules are in the first stable state [1
33 or the second stable state 33'. Furthermore, the first and second states have a memorability property and can remain in their respective states even after the electric field is turned off.

以上のように、強誘電液晶は電気分極状態に記憶性を有
しているため新規な駆動方式による大画素密度の画像素
子とすることができる。しかし、通常上記閾値は極めて
鋭いものとはいい難く、シかも印加電圧波形く限定して
言うならばパルス中に依存する。又、この閾値の不明確
さは基板の処理条件、温度液晶材料に依存する。
As described above, since the ferroelectric liquid crystal has the ability to memorize the electric polarization state, it can be used as an image element with a large pixel density using a novel driving method. However, the above-mentioned threshold value is usually not extremely sharp, and may depend on the applied voltage waveform, specifically, during the pulse. Moreover, the uncertainty of this threshold value depends on the processing conditions of the substrate, the temperature of the liquid crystal material.

従って、仁れを時分割方式によってより安定に駆動しよ
うとした場合には、見かけ上閾値特性を明確にするため
の非線型素子との組みあわせによって、強誘電液晶の記
憶性を最大限に生かし得る、大画素容量素子及びその駆
動法を提供しうろことが明らかになった。
Therefore, when attempting to more stably drive the ferroelectric liquid crystal using a time-division method, it is necessary to maximize the memorability of the ferroelectric liquid crystal by combining it with a nonlinear element to clarify the apparent threshold characteristics. It has become clear that it is possible to provide a large pixel capacitive element and a method for driving the same.

又、本発明で用いられる非線型素子としては、前述のM
IMの他にp−n接合ダイオードを適正に逆バイアスし
たもの、p −n接合ダイオードを方向を逆にして直列
接続したもの、ショットキーダイオードを適正に逆バイ
アスしたもの、ショツ]・キーダイオードを方向を逆に
して直列接続したもの等を用いることができる。
Further, as the nonlinear element used in the present invention, the above-mentioned M
In addition to IM, there are p-n junction diodes with proper reverse bias, p-n junction diodes connected in series with their directions reversed, Schottky diodes with proper reverse bias, and short-key diodes. It is also possible to use a device connected in series with the direction reversed.

第1図と第2図は、本発明の液晶素子の構造を模式的に
示したもので、非線型素子としてMIM構造を用いた例
で示したものである。第1回置は本発明の液晶素子の断
面図であって、第1図(B)はそこで用いたMIM構造
の拡大断面図である。図中、1とfはそれぞれ対向する
基板(ガラス基板、プラスチック基板)、2は熱酸化さ
れた厚さ400人のTa (Ta、05 )層、3は表
面が陽極酸化された層8を有する厚さ2000人のTa
 (タンタル)層、4は、厚さ1000人のCr (ク
ロム)導電層である。MIMm造は、金属層となるTa
層3、絶縁体層となる陽極酸化されたTa層8と金属層
となるCr導電層4の積層構造を有している。5は、厚
さ1000人のITO膜であって、これによって一つの
画素面積が規定される。又、6は対向電極のITOパタ
ーンである。MIMが形成された基板1及び導電パター
ンが形成された基板2は、必要に応じてラビング或いは
SiO等の材料を斜方蒸着することによる配向処理が施
されてもよい。7は、強誘電性液晶(例えば、前述のD
OBAMBC)であシ、その液晶層は1.5μ厚とする
ことができる。この際、温度は70°0にコントロール
されている。
FIGS. 1 and 2 schematically show the structure of a liquid crystal element according to the present invention, and show an example in which an MIM structure is used as a nonlinear element. The first illustration is a cross-sectional view of the liquid crystal element of the present invention, and FIG. 1(B) is an enlarged cross-sectional view of the MIM structure used therein. In the figure, 1 and f have opposing substrates (glass substrate, plastic substrate), 2 has a thermally oxidized Ta (Ta,05) layer with a thickness of 400 nm, and 3 has a layer 8 whose surface is anodized. Thickness 2000 people Ta
The tantalum (tantalum) layer 4 is a 1000 nm thick Cr (chromium) conductive layer. The MIM structure uses Ta as the metal layer.
The layer 3 has a laminated structure of an anodized Ta layer 8 serving as an insulator layer and a Cr conductive layer 4 serving as a metal layer. Reference numeral 5 indicates an ITO film having a thickness of 1000 mm, which defines the area of one pixel. Further, 6 is an ITO pattern of a counter electrode. The substrate 1 on which the MIM is formed and the substrate 2 on which the conductive pattern is formed may be subjected to alignment treatment by rubbing or oblique vapor deposition of a material such as SiO, as necessary. 7 is a ferroelectric liquid crystal (for example, the above-mentioned D
OBAMBC), the liquid crystal layer of which can be 1.5μ thick. At this time, the temperature was controlled at 70°0.

第2図は、第1図に示した液晶素子の平面図である。第
5図以降に本発明の駆動実施例を示す。
FIG. 2 is a plan view of the liquid crystal element shown in FIG. 1. Driving embodiments of the present invention are shown from FIG. 5 onwards.

第5図は表示形態例であって、各画素には第1図で示し
た非線型素子が設けられている。51(81〜Ss〜・
・)は走査電極群、52(11〜1.〜・・・)は信号
電極群である。斜線部は「黒」の表示を、白部は「白」
の表示を示すものとする。
FIG. 5 shows an example of a display format, in which each pixel is provided with the nonlinear element shown in FIG. 1. 51 (81~Ss~・
) is a scanning electrode group, and 52 (11 to 1. to . . . ) is a signal electrode group. The shaded area indicates “black” and the white area indicates “white”
shall be shown.

第6図は第1の実施例であり、S、〜S、は各走査電極
に加えられる電気信号を、■1・−■、は各信号電極に
加えられる情報に応じた電気信号を、A、Cはそれぞれ
の画素に加えられる電圧(即ち、非線型素子と液晶層に
印加される電圧の和)を示したものである。
FIG. 6 shows the first embodiment, where S, ~S, represent electrical signals applied to each scanning electrode, ■1・-■ represent electrical signals corresponding to information applied to each signal electrode, and A , C indicates the voltage applied to each pixel (that is, the sum of the voltages applied to the nonlinear element and the liquid crystal layer).

走査選択信号は、第1の位相(tl)に於て電圧2Vo
 s第2の位相(t2)に於て一2Voの交番する波形
である。第6図では1. = 1.の例が図示されてい
る。又、非走査電極は電気信号Oである。
The scan selection signal has a voltage of 2Vo in the first phase (tl).
It is a waveform of -2Vo alternating in the second phase (t2). In Figure 6, 1. = 1. An example is illustrated. Further, the non-scanning electrode receives an electrical signal O.

一方、情報信号は、画像「黒」に対して、+V。On the other hand, the information signal is +V for the image "black".

「白」に対して−Voの信号が走査信号と同期して加え
られる0これによシ画素Aに於ては、図上位相t1に於
て、直列結合にある非線型素子と液晶層には合わせて+
3Voの電圧が印加され、非線型素子は闇値を越えてO
N状態となり、液晶層に正の高い電圧が加わるため、一
方の電気分極状態(これを黒とする)に転移する。又、
画素Cに於ては、図上位相t、′において、直列結合に
ある非線型素子と液晶層には、合わせて−3Voの電圧
が印加され、非線型素子は逆の閾値を越えてON状態と
なり、液晶層に負の高い電圧が加わるため、他方の電気
分極状態(これを白とする)に転移する。又、画素A及
びCに於て、上記の特定の期間以外のいずれの期間に於
ても、直列結合にある非線型素子と液晶層には絶対値が
Voの電圧しか印加されないため、非線型素子がON状
態になり、かつ液晶層に高圧が付加されることはなく、
Aは「黒」、Cは「白」に対応した表示が達成され、保
持される。これによって、全フレームの走査によって静
止画メモリを得ることも可能であるし、繰シ返し走査す
ることによって、動画を得ることも可能である0 第7図は、第2の駆動実施例を示したものであって信号
電極側に補助信号を与える期間△tを設けること以外は
、実施例1と全く同じである。信号電極に与える補助信
号は、本駆動方法が本質的には直流的な駆動方法である
ため、一つの信号電極上の画素で連続して黒又は白の電
圧が印加され続け、その結果非線型素子の劣化や液晶層
の分極状態が反転されてしまうという危険性を避けるた
めのものである。本実施例に於ては、補助信号を与える
期間Δtに於て、書き込み期間1. +1.に於て信号
電極に印加された信号の極性を反転した信号が信号電極
に印加されている。
The -Vo signal is applied to "white" in synchronization with the scanning signal.As a result, in pixel A, at phase t1 in the figure, the nonlinear element and liquid crystal layer connected in series are connected. together +
A voltage of 3Vo is applied, and the nonlinear element exceeds the dark value and becomes O
Since the liquid crystal layer becomes N state and a high positive voltage is applied to the liquid crystal layer, it transitions to one electric polarization state (this is black). or,
In pixel C, at phase t,' in the figure, a total voltage of -3Vo is applied to the nonlinear element and the liquid crystal layer that are connected in series, and the nonlinear element exceeds the opposite threshold and is in the ON state. Since a high negative voltage is applied to the liquid crystal layer, it transitions to the other electrical polarization state (this is white). In addition, in pixels A and C, only a voltage with an absolute value of Vo is applied to the nonlinear element and the liquid crystal layer in series connection in any period other than the above-mentioned specific period, so the nonlinear The element is in the ON state and no high pressure is applied to the liquid crystal layer.
A display corresponding to "black" for A and "white" for C is achieved and maintained. With this, it is possible to obtain a still image memory by scanning all frames, and it is also possible to obtain a moving image by repeatedly scanning. FIG. 7 shows a second driving embodiment. This embodiment is exactly the same as the first embodiment except that a period Δt is provided for applying an auxiliary signal to the signal electrode side. Since this driving method is essentially a direct current driving method, the auxiliary signal applied to the signal electrode is continuously applied with a black or white voltage to each pixel on one signal electrode, resulting in non-linearity. This is to avoid the risk of deterioration of the element or inversion of the polarization state of the liquid crystal layer. In this embodiment, in the period Δt during which the auxiliary signal is applied, the write period 1. +1. A signal whose polarity is inverted from that of the signal applied to the signal electrode is applied to the signal electrode.

非線型素子は、作製パラメータ(非線型素子の面積、絶
縁層の厚さ等)を変化することにより、閾値が5v〜2
0Vのものが得られた。
By changing the manufacturing parameters (area of the nonlinear element, thickness of the insulating layer, etc.), the nonlinear element can have a threshold value of 5V to 2V.
A voltage of 0V was obtained.

又、用いた液晶(DOBAMBC)の2つの電気分極状
態相互の転移のための閾値は、設定されたパルス巾によ
シ異な9、又、幅を有するがパルス巾50μSee〜5
00μsecに対して、約30V〜9Vであった。以上
の条件のもと、VoO値としては、5■〜20Vのはん
いで選択することにより良好な動作を示した。
In addition, the threshold value for mutual transition between the two electric polarization states of the liquid crystal (DOBAMBC) used varies depending on the set pulse width.
It was about 30V to 9V for 00μsec. Under the above conditions, good operation was achieved by selecting a VoO value of 5 - 20V.

【図面の簡単な説明】[Brief explanation of the drawing]

第1回置は本発明で用いる液晶光学素子の断面図、第1
図(B)はその拡大断面図である。第2図は、第1図に
示す液晶光学素子の平面図である。第3図及び第4図は
、本発明で用いる液晶光学素子を模式的に表わす斜視図
である。第5図は、本発明の液晶光学素子で用いるマト
リクス画素構造を表わす平面図である。第6図及び第7
図は、それぞれ本発明の駆動法の実施態様を表わす説明
図である。 1、f;基板 2;熱酸化されたTa層 3;Ta層 4 ; Cr層 8:陽極酸化されたTa層 5.6;ITO膜 7;強誘電液晶層。 特許出願人 キャノン株式会社 第1図(△) 第7図6少 第、2図 第B図
The first position is a cross-sectional view of the liquid crystal optical element used in the present invention.
Figure (B) is an enlarged sectional view thereof. FIG. 2 is a plan view of the liquid crystal optical element shown in FIG. 1. 3 and 4 are perspective views schematically showing a liquid crystal optical element used in the present invention. FIG. 5 is a plan view showing a matrix pixel structure used in the liquid crystal optical element of the present invention. Figures 6 and 7
The figures are explanatory diagrams each showing an embodiment of the driving method of the present invention. 1, f; substrate 2; thermally oxidized Ta layer 3; Ta layer 4; Cr layer 8: anodized Ta layer 5.6; ITO film 7; ferroelectric liquid crystal layer. Patent applicant: Canon Co., Ltd. Figure 1 (△) Figure 7 Figure 6 Small, Figure 2 Figure B

Claims (7)

【特許請求の範囲】[Claims] (1) 交差した走査電極群と信号電極群の交差部を画
素としたマトリクス電極構造の各画素に対応して非線型
の電圧−電流特性を有する素子(以下、非線型素子とい
う)を有し、前記走査電極群と信号電極群の間に電界の
向きに応じた2つの電気分極状態を有する強誘電液晶を
配置した液晶光学素子の駆動法であって、前記走査電極
群のうち選択された走査電極上の所定の画素に対応する
非線型素子に一方の極性の閾値を越える電圧を印加して
、前記画素に対応する強誘電液晶を一方の分極状態に転
移させる第1の位相と、前記走査電極上の前記所定の画
素とは別の画素に対応する非線型素子に他方の極性の閾
値を越える電圧を印加して前記側の画集に対応する強誘
電液晶を他方の分極状態に転移させる第2の位相を有す
ることを特徴とする液晶光学素子の駆動法。
(1) An element having a nonlinear voltage-current characteristic (hereinafter referred to as a nonlinear element) is provided corresponding to each pixel of a matrix electrode structure in which pixels are the intersections of crossed scanning electrode groups and signal electrode groups. , a method for driving a liquid crystal optical element in which a ferroelectric liquid crystal having two electric polarization states depending on the direction of an electric field is arranged between the scanning electrode group and the signal electrode group, the method comprising: a first phase in which a voltage exceeding a threshold of one polarity is applied to a nonlinear element corresponding to a predetermined pixel on the scanning electrode to transfer the ferroelectric liquid crystal corresponding to the pixel to one polarization state; Applying a voltage exceeding a threshold of the other polarity to a nonlinear element corresponding to a pixel other than the predetermined pixel on the scanning electrode to transfer the ferroelectric liquid crystal corresponding to the image collection on the side to the other polarization state. A method for driving a liquid crystal optical element characterized by having a second phase.
(2) 前記走査電極群の選択された走査電極に電圧の
異なる位相を有する電気信号を印加し、且つ前記信号電
極群の選択された信号電極と選択されない信号電極にそ
れぞれ電圧の異なる電気信号を与える特許請求の範囲第
1項記載の液晶光学素子の駆動法。
(2) Applying electrical signals having different voltage phases to selected scanning electrodes of the scanning electrode group, and applying electrical signals having different voltages to the selected signal electrodes and unselected signal electrodes of the signal electrode group. A method for driving a liquid crystal optical element according to claim 1.
(3) 前記走査電極群の選択された走査電極に電圧極
性の異なる位相を有する電気信号を印加し、且つ前記信
号電極群の選択された信号電極と選択されない信号電極
にそれぞれ電圧極性の異なる電気信号を与える特許請求
の範囲第1項記載の液晶光学素子の駆動法。
(3) Applying electrical signals having different voltage polarities and phases to selected scanning electrodes of the scanning electrode group, and applying electrical signals having different voltage polarities to the selected signal electrodes and unselected signal electrodes of the signal electrode group. A method for driving a liquid crystal optical element according to claim 1, which provides a signal.
(4) 前記強誘電性液晶がスメクテイツク相を有する
液晶である特許請求の範囲第1項記載の液晶光学素子の
駆動法。
(4) The method for driving a liquid crystal optical element according to claim 1, wherein the ferroelectric liquid crystal is a liquid crystal having a smectic phase.
(5) 前記スメクテイツク相を有する液晶がカイラル
スメクテイツク相を有する液晶である特許請求の範囲第
4項記載の液晶光学素子の駆動法。
(5) The method for driving a liquid crystal optical element according to claim 4, wherein the liquid crystal having a smectic phase is a liquid crystal having a chiral smectic phase.
(6) 前記カイラルスメクティック相を有する液晶が
らせん構造を形成していない液晶相である特許請求の範
囲第5項記載の液晶光学素子の駆動法。
(6) The method for driving a liquid crystal optical element according to claim 5, wherein the liquid crystal having a chiral smectic phase is a liquid crystal phase that does not form a helical structure.
(7) 前記カイラルスメクティック相を有する液晶が
C相又はH相である特許請求の範囲第5項記載の液晶光
学素子の駆動法。
(7) The method for driving a liquid crystal optical element according to claim 5, wherein the liquid crystal having a chiral smectic phase is a C phase or an H phase.
JP6133684A 1984-03-26 1984-03-28 Driving method of liquid crystal optical element Granted JPS60203920A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6133684A JPS60203920A (en) 1984-03-28 1984-03-28 Driving method of liquid crystal optical element
US06/714,618 US4712872A (en) 1984-03-26 1985-03-21 Liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6133684A JPS60203920A (en) 1984-03-28 1984-03-28 Driving method of liquid crystal optical element

Publications (2)

Publication Number Publication Date
JPS60203920A true JPS60203920A (en) 1985-10-15
JPH0414766B2 JPH0414766B2 (en) 1992-03-13

Family

ID=13168188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6133684A Granted JPS60203920A (en) 1984-03-26 1984-03-28 Driving method of liquid crystal optical element

Country Status (1)

Country Link
JP (1) JPS60203920A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169883A (en) * 1985-01-23 1986-07-31 株式会社半導体エネルギー研究所 Liquid crystal display unit
JPS63217329A (en) * 1987-03-05 1988-09-09 Canon Inc Liquid crystal device
JPS63231421A (en) * 1987-03-20 1988-09-27 Seiko Epson Corp Method for driving liquid crystal light valve
JPH01182885A (en) * 1988-01-14 1989-07-20 Asahi Glass Co Ltd Picture display device
JPH02125225A (en) * 1988-10-05 1990-05-14 Philips Gloeilampenfab:Nv Driving of display device
US4932759A (en) * 1985-12-25 1990-06-12 Canon Kabushiki Kaisha Driving method for optical modulation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169883A (en) * 1985-01-23 1986-07-31 株式会社半導体エネルギー研究所 Liquid crystal display unit
US4932759A (en) * 1985-12-25 1990-06-12 Canon Kabushiki Kaisha Driving method for optical modulation device
JPS63217329A (en) * 1987-03-05 1988-09-09 Canon Inc Liquid crystal device
JPS63231421A (en) * 1987-03-20 1988-09-27 Seiko Epson Corp Method for driving liquid crystal light valve
JPH01182885A (en) * 1988-01-14 1989-07-20 Asahi Glass Co Ltd Picture display device
JPH02125225A (en) * 1988-10-05 1990-05-14 Philips Gloeilampenfab:Nv Driving of display device

Also Published As

Publication number Publication date
JPH0414766B2 (en) 1992-03-13

Similar Documents

Publication Publication Date Title
EP0228557B1 (en) Optical modulation device and driving method therefor
US4973135A (en) Active matrix display panel having plural stripe-shaped counter electrodes and method of driving the same
US4712872A (en) Liquid crystal device
US4818078A (en) Ferroelectric liquid crystal optical modulation device and driving method therefor for gray scale display
JPS6186732A (en) Liquid crystal element for time division drive
US5541747A (en) Electro-optical device utilizing a liquid crystal having a spontaneous polarization
JPS6261931B2 (en)
EP0542518A2 (en) Liquid crystal element and driving method thereof
JP2805253B2 (en) Ferroelectric liquid crystal device
JPS6033535A (en) Driving method of optical modulating element
JPS60203920A (en) Driving method of liquid crystal optical element
JPH0412458B2 (en)
JPS614021A (en) Driving method of liquid crystal element
JPH0414767B2 (en)
JPS6031121A (en) Driving method of optical modulating element
JPS62134691A (en) Liquid crystal unit
JPS60262136A (en) Driving method of liquid-crystal element
JPS60262135A (en) Driving method of liquid-crystal element
JPS60262134A (en) Driving method of liquid-crystal element
JPH0823636B2 (en) Driving method of optical modulator
JPS617828A (en) Driving method of liquid-crystal element
JPH075433A (en) Method for driving liquid crystal electrooptic device
JPH0453293B2 (en)
JPS60262137A (en) Driving method of liquid-crystal element
JPH075434A (en) Method for driving liquid crystal electrooptic device