JPS6033535A - Driving method of optical modulating element - Google Patents

Driving method of optical modulating element

Info

Publication number
JPS6033535A
JPS6033535A JP14295483A JP14295483A JPS6033535A JP S6033535 A JPS6033535 A JP S6033535A JP 14295483 A JP14295483 A JP 14295483A JP 14295483 A JP14295483 A JP 14295483A JP S6033535 A JPS6033535 A JP S6033535A
Authority
JP
Japan
Prior art keywords
signal
liquid crystal
electrode group
scanning
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14295483A
Other languages
Japanese (ja)
Other versions
JPS6244247B2 (en
Inventor
Junichiro Kanbe
純一郎 神辺
Kazuharu Katagiri
片桐 一春
Shuzo Kaneko
金子 修三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP14295483A priority Critical patent/JPS6033535A/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to US06/598,800 priority patent/US4655561A/en
Priority to DE3448307A priority patent/DE3448307C2/de
Priority to GB08410068A priority patent/GB2141279B/en
Priority to DE3448304A priority patent/DE3448304C2/de
Priority to DE19843414704 priority patent/DE3414704A1/en
Priority to DE3448303A priority patent/DE3448303C2/de
Priority to DE3448306A priority patent/DE3448306C2/de
Priority to DE3448305A priority patent/DE3448305C2/de
Priority to FR8406275A priority patent/FR2544884B1/en
Publication of JPS6033535A publication Critical patent/JPS6033535A/en
Priority to GB08619692A priority patent/GB2180385B/en
Priority to GB08619691A priority patent/GB2180384B/en
Priority to GB08619831A priority patent/GB2180386B/en
Priority to GB08712391A priority patent/GB2191623B/en
Priority to GB08712392A priority patent/GB2190530B/en
Publication of JPS6244247B2 publication Critical patent/JPS6244247B2/ja
Priority to US07/139,162 priority patent/US5448383A/en
Priority to US07/557,643 priority patent/US5418634A/en
Priority to SG5291A priority patent/SG5291G/en
Priority to SG6191A priority patent/SG6191G/en
Priority to SG6591A priority patent/SG6591G/en
Priority to SG6491A priority patent/SG6491G/en
Priority to SG10391A priority patent/SG10391G/en
Priority to SG116/91A priority patent/SG11691G/en
Priority to HK708/91A priority patent/HK70891A/en
Priority to HK709/91A priority patent/HK70991A/en
Priority to HK715/91A priority patent/HK71591A/en
Priority to HK707/91A priority patent/HK70791A/en
Priority to HK706/91A priority patent/HK70691A/en
Priority to HK705/91A priority patent/HK70591A/en
Priority to US08/440,321 priority patent/US5812108A/en
Priority to US08/444,899 priority patent/US5548303A/en
Priority to US08/444,746 priority patent/US5592192A/en
Priority to US08/444,898 priority patent/US5825390A/en
Priority to US08/465,225 priority patent/US5565884A/en
Priority to US08/465,090 priority patent/US5831587A/en
Priority to US08/465,058 priority patent/US5696525A/en
Priority to US08/463,780 priority patent/US5621427A/en
Priority to US08/463,781 priority patent/US5841417A/en
Priority to US08/462,974 priority patent/US5886680A/en
Priority to US08/465,357 priority patent/US5696526A/en
Priority to US08/462,978 priority patent/US5790449A/en
Priority to US08/863,598 priority patent/US6091388A/en
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3622Control of matrices with row and column drivers using a passive matrix
    • G09G3/3629Control of matrices with row and column drivers using a passive matrix using liquid crystals having memory effects, e.g. ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/04Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with macromolecular additives; with layer-forming substances
    • G03C1/047Proteins, e.g. gelatine derivatives; Hydrolysis or extraction products of proteins
    • G03C2001/0471Isoelectric point of gelatine
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0205Simultaneous scanning of several lines in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/04Partial updating of the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/065Waveforms comprising zero voltage phase or pause
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2014Display of intermediate tones by modulation of the duration of a single pulse during which the logic level remains constant
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

PURPOSE:To enable a bistable state by applying selectively information signals to a signal electrode group in synchronization with a sacnning electrode then having a signal application period when the signals different from the previously applied information signals are applied prior to application of the information signals. CONSTITUTION:A liquid crystal molecular layer 12 is vertically oriented to the plane of glass and is sealed between glass base plates 11 and 11' which are coated with transparent electrodes. When a voltage of a specified threshold or above is impressed between the electrodes on the plates 11 and 11', the spiral structure of liquid crystal molecules 13 are unraveled and the orienting direction of the molecules 13 can be changed in such a way that all dipole moments 14 are directed toward the electric field. The molecules 13 have a slender shape and exhibit refractive anisotropy in the long axis direction and short axis direction thereof. Therefore if polarizers disposed in the positional relation of crossed nicols with each other are placed on the top and bottom of the glass surfaces, the liquid crystal optical modulating element of which the optical characteristic changes with the impressed polarity of the voltage. The optical modulating element has the advantages that the response speed is fast and that the orientation of the liquid crystal molecules has a bistable state.

Description

【発明の詳細な説明】 本発明は、液晶素子などの光学変調素子の駆動法に係り
、詳しくは表示素子やシャッターアレイ等の光学変調素
子に用いる液晶素子の時分割駆動法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for driving an optical modulation element such as a liquid crystal element, and more particularly to a time division driving method for a liquid crystal element used in an optical modulation element such as a display element or a shutter array.

従来より、走査電極群と信号電極群をマ) IJクス状
に構成し、その電極間に液晶化合物を充填し、多数の画
素を形成して画像或いは情報の表示を行う液晶表示素子
は、よく知られている。
Conventionally, liquid crystal display elements that display images or information by configuring a scanning electrode group and a signal electrode group in a matrix shape and filling a liquid crystal compound between the electrodes to form a large number of pixels are often used. Are known.

この表示素子の駆動法としては、走査電極群に、順次、
周期的にアドレス信号を選択印加し、信号電極群には所
定の情報信号をアドレス信号と同期させて並列的に選択
印加する時分割駆動が採用されているが、この表示素子
及びその駆動法は、以下に述べる如き致命的とも言える
大きな欠点を有していた。
As a method of driving this display element, the scanning electrode group is sequentially
Time-division driving is adopted in which an address signal is selectively applied periodically and a predetermined information signal is selectively applied in parallel to a group of signal electrodes in synchronization with the address signal, but this display element and its driving method are However, it had major and fatal flaws as described below.

即ち、画素密度を高く、或いは画面を大きくするのが難
しいことである。従来の液晶の中で応答速度が比較的高
く、シかも消費電力が小さいことから、表示素子として
実用に供されているのは殆んどが、例えば、M、5ch
adtとW、He1frich著、ApPlied P
hysics Letters 、Vol、18.No
、4(1971,2,15)、P、 127−128の
Voltage−Dependent 0ptical
 Activityof a TwistedNema
tic Liquid Crystal ”に示された
TN(twisted nematic ) 型の液晶
を用いたものであり、この型の液晶は、無電界状態で正
の誘電異方性をもつ、ネマチック液晶の分子が、液晶層
厚方向で捩れた構造(ヘリカル構造)を形成し、両電極
面でこの液晶の分子が互いに並行に配列した構造を形成
している。一方、電界印加状態では、正の誘電異方性を
もつネマチック液晶が電界方向に配列し、この結果光調
変調を起すことができる。この型の液晶を用いてマトリ
クス電極構造によって表示素子を構成した場合、走査電
極と信号電極が共に選択される領域(選択点)には、液
晶分子を電極面に垂直に配列させるに要する閾値以上の
電圧が印加され、走査電極と信号電極が共に選択されな
い領域(非選−択点)には電圧は印加されず、したがっ
て液晶分子は電極面に対して並行な安定配列を保ってい
る。このような液晶セルの上下に、互いにクロスニコル
関係にある直線偏光子を配置することにより、選択点で
は光が透過せず、非選択点では光が透過するため、画像
素子とすることが可能とがる。然し乍ら、マトリクス電
極構造を構成した場合には、走査電極が選択され、信号
電極が選択されない領域或いは、走査電極が選択されず
、信号電極が選択される領域(所謂“半選択点゛)にも
有限の電界がかかつてしまう。選択点にかかる電圧と、
半選択点にかかる電圧の差が充分に大きく、液晶分子を
電界に垂直に配列させるに要する電圧閾値がこの中間の
電圧値に設定されるならば、表示素子は正常に動作する
わけである。しかし、この方式において、走査線数(N
)を増やして行った場合、画面全体(1フレーム)を走
査する間に一つの選択点に有効な電界がかかつている時
間(duty比)は、1/Nの割合で減少してしまう。
That is, it is difficult to increase the pixel density or enlarge the screen. Among conventional liquid crystals, most of them are practically used as display elements because they have relatively high response speed and low power consumption, for example, M, 5ch.
adt and W, He1frich, ApPlied P
hysics Letters, Vol. 18. No
, 4 (1971, 2, 15), P, 127-128 Voltage-Dependent 0ptical
Activity of a TwistedNema
This type of liquid crystal uses a TN (twisted nematic) type liquid crystal shown in ``Tic Liquid Crystal.'' In this type of liquid crystal, molecules of nematic liquid crystal, which has positive dielectric anisotropy in the absence of an electric field, form a liquid crystal layer. It forms a twisted structure (helical structure) in the thickness direction, and the molecules of this liquid crystal are arranged parallel to each other on both electrode surfaces.On the other hand, when an electric field is applied, it has a positive dielectric anisotropy. Nematic liquid crystals are aligned in the direction of the electric field, and as a result light modulation can occur.When a display element is constructed using this type of liquid crystal with a matrix electrode structure, the area where both the scanning electrode and the signal electrode are selected ( A voltage higher than the threshold required to align the liquid crystal molecules perpendicularly to the electrode surface is applied to the selected points (selected points), and no voltage is applied to areas where neither the scanning electrode nor the signal electrode is selected (non-selected points). Therefore, the liquid crystal molecules maintain a stable alignment parallel to the electrode plane.By arranging linear polarizers in a cross-Nicol relationship above and below such a liquid crystal cell, it is possible to prevent light from passing through at selected points. First, since light passes through non-selected points, it can be used as an image element.However, when a matrix electrode structure is configured, scanning electrodes are selected and signal electrodes are not selected in areas or scanning A finite electric field is also present in a region where no electrode is selected and a signal electrode is selected (so-called "half-selected point"). The voltage applied to the selected point and
If the difference in voltage applied to the half-selection point is sufficiently large and the voltage threshold required to align liquid crystal molecules perpendicular to the electric field is set to an intermediate voltage value, the display element will operate normally. However, in this method, the number of scanning lines (N
), the time during which an effective electric field is applied to one selected point (duty ratio) while scanning the entire screen (one frame) decreases at a rate of 1/N.

このために、くり返し走査を行った場合の選択点と非選
択点にかかる実効値としての電圧差は、走査線数が増え
れば増える程小さくなり、結果的には画像コントラスト
の低下やクロストークが避は難い欠点となっている。こ
のような現像は、双安定状態を有さない液晶(電極面に
対し、液晶分子が水平に配向しているのが安定状態であ
り、電界が有効に印加されている間のみ垂直に配向する
)を、時間的蓄積効果を利用して駆動する(即ち、繰り
返し走査する)ときに生じる本質的には避は難い問題点
である。この点を改良するために、電圧平均化法、2周
波駆動法や多重マトリクス法等が既に提案されているが
、いずれの方法でも不充分であり、表示素子の大画面化
や高密度化は、走査線数が充分に増やせないことによっ
て頭打ちになっているのが現状である0 本発明の目的は、前述したような従来の液晶表示素子に
おける問題点を悉く解決した新規な光学変調素子、特に
液晶素子の駆動法を提供することにある。
For this reason, when repeated scanning is performed, the effective voltage difference between selected points and non-selected points becomes smaller as the number of scanning lines increases, resulting in a decrease in image contrast and crosstalk. This is a drawback that is difficult to avoid. This type of development requires liquid crystals that do not have a bistable state (the stable state is when the liquid crystal molecules are aligned horizontally with respect to the electrode surface, and they are aligned vertically only while an electric field is effectively applied). ) is essentially an unavoidable problem that arises when driving using the temporal accumulation effect (that is, repeatedly scanning). In order to improve this point, voltage averaging method, dual frequency drive method, multiple matrix method, etc. have already been proposed, but all of these methods are insufficient, and it is difficult to increase the screen size and density of display elements. At present, the number of scanning lines has reached a plateau due to the inability to increase the number of scanning lines sufficiently.The object of the present invention is to provide a novel optical modulation element that solves all the problems of conventional liquid crystal display elements as described above. In particular, it is an object of the present invention to provide a method for driving a liquid crystal element.

本発明の別の目的は、高速応答性を有する液晶素子の駆
動法を提供することにある。
Another object of the present invention is to provide a method for driving a liquid crystal element having high-speed response.

本発明の他の目的は、高密度の画素を有する液晶素子の
駆動法を提供することにある。
Another object of the present invention is to provide a method for driving a liquid crystal device having high density pixels.

さらに、本発明の他の目的は、クロストークな発生しな
い液晶素子の駆動法を提供することにある。
Furthermore, another object of the present invention is to provide a method for driving a liquid crystal element that does not cause crosstalk.

さらに、本発明の他の目的は、部分的な書き換えが可能
なディスプレイ装置に適した液晶素子の駆動法を提供す
ることにある。
Furthermore, another object of the present invention is to provide a method for driving a liquid crystal element suitable for a partially rewritable display device.

さらに、本発明の他の目的は、電界に対し双安定性を有
する液晶、特に強誘電性を有するカイラルスメクテイツ
クC相又はH相の液晶を用いた液晶素子の新規な駆動法
を提供することにある。
Furthermore, another object of the present invention is to provide a novel method for driving a liquid crystal device using a liquid crystal that is bistable with respect to an electric field, particularly a chiral smect C-phase or H-phase liquid crystal that has ferroelectricity. There is a particular thing.

さらに、本発明の他の目的は、高密度の画素と大面積の
画面を有する液晶素子に適した新規外駆動法を提供する
ことにある。
Furthermore, another object of the present invention is to provide a novel driving method suitable for a liquid crystal device having a high density of pixels and a large screen area.

さらに本発明の特定の目的は、強誘電性液晶を使用する
表示素子のマトリクス電極による安定な駆動法を提供す
ることにある。
Furthermore, a specific object of the present invention is to provide a stable driving method using a matrix electrode of a display element using ferroelectric liquid crystal.

本発明の光学変調素子の駆動法は、前述の目的を達成す
るために開発されたものであシ、より詳しくは、走査電
極群と信号電極群を有するマ) IJクス電極構造を有
し、該走査電極群には周期的に走査信号を順次選択印加
し、該信号電極群には前記走査信号と同期させて情報信
号を選択印加することによって、前記走査電極群と信号
電極群の間に配置した電界に対して双安定状態を有する
光学変調物質の光学変調をなす光学変調素子の駆動法に
おいて、前記走査電極群のうち選択された走査電極に印
加する走査信号と同期させて前記信号電極群に情報信号
を選択印加した後で、且つ次に選択される走査電極に印
加する走査信号と同期させて前記信号電極群に次の情報
信号を選択印加する前に、前記信号電極群に選択印加し
た情報信号と異なる信号を印加する補助信号印加期間を
有する点に特徴を有している。
The method for driving an optical modulation element of the present invention was developed to achieve the above-mentioned object, and more specifically, it has an IJ electrode structure having a scanning electrode group and a signal electrode group, By selectively and sequentially applying a scanning signal to the scanning electrode group periodically and selectively applying an information signal to the signal electrode group in synchronization with the scanning signal, a gap is created between the scanning electrode group and the signal electrode group. In a method for driving an optical modulation element that performs optical modulation of an optical modulation substance having a bistable state with respect to an arranged electric field, the signal electrode is synchronized with a scanning signal applied to a scanning electrode selected from the scanning electrode group. After selectively applying an information signal to the signal electrode group and before selectively applying the next information signal to the signal electrode group in synchronization with the scanning signal applied to the next selected scan electrode, It is characterized in that it has an auxiliary signal application period in which a signal different from the applied information signal is applied.

その具体例の詳細は、図面を参照しつつ、後程説明する
Details of the specific example will be explained later with reference to the drawings.

本発明の駆動法で用いる光学変調物質としては、加えら
れる電界に応じて第1の光学的安定状態と第2の光学的
安定状態とのいずれかを取る、すなわち電界に対する双
安定状態を有する物質、特にこのような性質を有する液
晶、が用いられる。
The optical modulation material used in the driving method of the present invention is a material that takes either a first optically stable state or a second optically stable state depending on the applied electric field, that is, a material that has a bistable state with respect to the electric field. In particular, liquid crystals having such properties are used.

本発明の駆動法で用いることができる双安定性を有する
液晶としては、強誘電性を有するカイラルスメクテイツ
ク液晶が最も好ましく、そのうちカイラルスメクテイツ
クC相(、SmO*)又H相(SmH)の液晶が適して
いる。この強誘電性液晶については、” LE JOU
RNAL DEPHYSIQUE LETTER8″並
(L−69) 1975゜rFerroelectri
c Liquid Crystals J ’。
As the liquid crystal having bistability that can be used in the driving method of the present invention, a chiral smectic liquid crystal having ferroelectricity is most preferable, and among these, a chiral smectic liquid crystal having a chiral smectic C phase (SmO*) or an H phase (SmH ) is suitable. Regarding this ferroelectric liquid crystal, please refer to "LE JOU"
RNAL DEPHYSIQUE LETTER 8″ average (L-69) 1975°rFerroelectri
c Liquid Crystals J'.

rSubmicro 5econd B1−5tabl
e Electrool)tieSwitching 
in Liquid Crystals J ; ’固
体物理3川(141)1981 F液晶」等に記載され
ており、本発明ではこれらに開示された強誘電性液晶を
用いることができる。
rSubmicro 5econd B1-5table
eElectrool)tieSwitching
In Liquid Crystals J; ``Solid State Physics Mikawa (141) 1981 F Liquid Crystals'', etc., and the ferroelectric liquid crystals disclosed therein can be used in the present invention.

より具体的には、本発明法に用いられる強誘電性液晶化
合物の例としては、デシロキシベンジリデン−P−アミ
ノ−2−メチルブチルシンナメー) (DOBAMBC
)、ヘキシルオキシベンジリデン−P−アミノ−2−ク
ロロプロピルシンナメート(HOBACPC)および4
−o−(2一メチル)−プチルレゾルシリデンー4−オ
クチルアニリン(MBRA8) 等が挙げられる。
More specifically, as an example of the ferroelectric liquid crystal compound used in the method of the present invention, decyloxybenzylidene-P-amino-2-methylbutylcinname) (DOBAMBC
), hexyloxybenzylidene-P-amino-2-chloropropylcinnamate (HOBACPC) and 4
-o-(2-methyl)-butyl resol cylidene-4-octylaniline (MBRA8) and the like.

これらの材料を用いて、素子を構成する場合、液晶化合
物が、SmC*相又はSmH*相となるような温度状態
に保持する為、必要に応じて素子をヒーターが埋め込ま
れた銅ブロック等により支持することができる。
When constructing an element using these materials, in order to maintain the temperature state such that the liquid crystal compound becomes the SmC* phase or SmH* phase, the element may be placed in a copper block with a heater embedded, etc., as necessary. can be supported.

第1図は、強誘電性液晶セルの例を模式的に描いたもの
である011と11′は、In20g、SnO2やI 
T O(Inrtium−Tin 0xide )等の
透明電極がコートされた幕板(ガラス板)であり、その
間に液晶分子層12がガラス面に垂直になるよう配向し
たSmC*相の液晶が封入されている。
Figure 1 schematically depicts an example of a ferroelectric liquid crystal cell.
It is a curtain plate (glass plate) coated with a transparent electrode such as T O (Inrtium-Tin Oxide), and an SmC* phase liquid crystal in which the liquid crystal molecular layer 12 is oriented perpendicular to the glass surface is sealed in between. There is.

太線で示した線13が液晶分子を表わしており、この液
晶分子13は、その分子に直交した方向に双極子モーメ
ント(Pl)14を有している。
A thick line 13 represents a liquid crystal molecule, and this liquid crystal molecule 13 has a dipole moment (Pl) 14 in a direction perpendicular to the molecule.

釣板11と11上の電極間に一定の閾値以上の電圧を印
加すると、液晶分子13のらせん構造がほどけ、双極子
モーメント(P、1)14はすべて電界方向に向くよう
、液晶分子13の配向方向を変えることができ乙。液晶
分子13は細長い形状を有;7ており、その長袖方向と
短軸方向で屈折率異方性を示し、従って例えばガラス面
の上下に互いにクロスニコルの位置関係に配置した偏光
子を置けば、電圧印加極性によって光学特性が変わる液
晶光学変調素子となることは、容易に理解される。さら
に液晶セルの厚さを充分に薄くした場合(例えば1μ)
には、第2図に示すように電界を印加していない状態で
も液晶分子のらせん構造は、はどけ、その双極子モーメ
ン)P又はP′は上向き(24)又は下向(24’ )
のどちらかの状態をとる。このようなセルに第2図に示
す如く一定の閾値以上の極性の異なる電界E又はE′を
所定時間付力すると、双極子モーメントは電界E又はE
′の電界ベクトルに対応して上向き24又は、下向き2
4′と向きを変え、それに応じて液晶分子は第1の安定
状態23かあるいは第2の安定状態23′の何れか1方
に配向する。
When a voltage higher than a certain threshold is applied between the electrodes on the fishing plates 11 and 11, the helical structure of the liquid crystal molecules 13 is unraveled, and the liquid crystal molecules 13 are adjusted so that all the dipole moments (P, 1) 14 are directed in the direction of the electric field. The orientation direction can be changed. The liquid crystal molecules 13 have an elongated shape; 7, and exhibit refractive index anisotropy in the long axis direction and the short axis direction. Therefore, for example, if polarizers are placed above and below the glass surface in a crossed nicol positional relationship, It is easily understood that the liquid crystal optical modulation element is a liquid crystal optical modulation element whose optical characteristics change depending on the polarity of applied voltage. Furthermore, when the thickness of the liquid crystal cell is made sufficiently thin (for example, 1μ)
As shown in Figure 2, even when no electric field is applied, the helical structure of the liquid crystal molecules is released, and its dipole moment) P or P' is directed upward (24) or downward (24').
take either of the following states. When an electric field E or E' with a different polarity above a certain threshold value is applied to such a cell for a predetermined time as shown in FIG.
′ upward 24 or downward 2
4', and accordingly the liquid crystal molecules are aligned in either the first stable state 23 or the second stable state 23'.

このような強誘電性液晶を光学変調素子として用いるこ
との利点は2つある。第1に、応答速度が極めて速いこ
と、第2に液晶分子の配向が双安定状態を有することで
ある。第2の点を例えば第2図によって説明すると、電
界Eを印加すると液晶分子は第1の安定状態23に配向
するが、この状態は電界を切っても安定である。
There are two advantages to using such a ferroelectric liquid crystal as an optical modulation element. Firstly, the response speed is extremely fast, and secondly, the alignment of liquid crystal molecules has a bistable state. To explain the second point with reference to FIG. 2, for example, when the electric field E is applied, the liquid crystal molecules are oriented in a first stable state 23, and this state remains stable even when the electric field is turned off.

又、逆向きの電界Eを印加すると、液晶分子は第2の安
定状態23′に配向して、その分子の向きを変えるが、
やはシミ界を切ってもこの状態に留っている。又、与え
る電界Eが一定の閾値を越えない限り、それぞれの配向
状態にやはシ維持さ−れている。このような応答速度の
速さと、双安定性が有効に実現されるには、セルとじて
は出来るだけ薄い方が好ましく、一般的には、0.5μ
〜20μ、特に1μ〜5μが適している。
Moreover, when an electric field E in the opposite direction is applied, the liquid crystal molecules are oriented to the second stable state 23' and the orientation of the molecules is changed.
Even after breaking out of the Shimi world, it remains in this state. Further, as long as the applied electric field E does not exceed a certain threshold value, each orientation state is maintained. In order to effectively realize such fast response speed and bistability, it is preferable for the cell to be as thin as possible, and generally, the thickness is 0.5μ.
-20μ, especially 1μ-5μ are suitable.

この種の強誘電性液晶を用いだマ) IJクス電極構造
を有する液晶−電気光学装置は、例えばクラークとラガ
バルによシ、米国特許第4367924号明細書で提案
されている。
A liquid crystal-electro-optical device using this type of ferroelectric liquid crystal and having an IJ electrode structure has been proposed, for example, by Clark and Lagabar, US Pat. No. 4,367,924.

次に強誘電性液晶の駆動法の具体例を、第3図〜第5図
を用いて説明する。
Next, a specific example of a method for driving a ferroelectric liquid crystal will be explained using FIGS. 3 to 5.

第3図は、中間に強誘電性液晶化合物(図示せず)が挾
まれたマトリクス電極構造を有するセル31の模式図で
ある。32は、走査電極群であり、33は信号電極群で
ある。最初に走査電極SIが選択された場合について述
べる。第4図(a)と第4図(b)は走査信号であって
、それぞれ選択された走査電極S、に印加される電気信
号とそれ以外の走査電極(選択されない走査型′@)S
t 、Ss 、84・・・に印加される電気信号を示し
ている。第4図(c)と第4図(d)は、情報信号であ
ってそれぞれ選択された信号電極1. 、 I9.1.
と選択されない信号電極I、 、 、T、に与えられる
電気信号を示している。
FIG. 3 is a schematic diagram of a cell 31 having a matrix electrode structure in which a ferroelectric liquid crystal compound (not shown) is sandwiched between. 32 is a scanning electrode group, and 33 is a signal electrode group. First, the case where scan electrode SI is selected will be described. FIG. 4(a) and FIG. 4(b) are scanning signals, which are electrical signals applied to the selected scanning electrode S and the other scanning electrodes (unselected scanning type '@) S, respectively.
t, Ss, 84... are shown. FIG. 4(c) and FIG. 4(d) show information signals from selected signal electrodes 1. , I9.1.
, and electrical signals given to unselected signal electrodes I, , , T, are shown.

第4図および第5図においては、それぞれ横軸が時間を
、縦軸が電圧を表す。例えば、動画を表示するような場
合には、走査電極群32は逐次、周期的に選択される。
In FIGS. 4 and 5, the horizontal axis represents time and the vertical axis represents voltage, respectively. For example, when displaying a moving image, the scanning electrode groups 32 are sequentially and periodically selected.

今、所定の電圧印加時間1+又はt、に対して双安定性
を有する液晶セルの、第1の安定状態を与えるだめの閾
値室を 圧、、−V thlとし、第2の安定状態を与えるだめ
の閾値電圧を−1−V th、とすると、選択された走
査電極32 (s、 )に与えられる電極信号は、第4
図(a)に示される如く位相(時間) 1+では、2V
を、位相(時間)11では、−2vとなるような交番す
る電圧である。このように選択された走査電極に互いに
電圧の異なる複数の位相間隔を有する電気信号を印加す
ると、光学的「暗」あるいは「明」状態に相当する液晶
の第1あるいは第2の安定状態間での状態変化を、速や
かに起させることができるという重要な効果が得られる
。− 一方、それ以外の走査電極S2〜S、・・・は第4図缶
)に示す如くアース状態となっており、電気信号0であ
る。また、選択された信号電極11゜T、 、 I、に
与えられる電気信号は、第4図(c>に示される如くv
であり、また選択されない信号電極■2.■4に与えら
れる電気信号は、第4図(d)に示される如<−Vであ
る。以上に於て各々の電圧値は、以下の関係を満足する
所望の値に設定される。
Now, for a predetermined voltage application time 1+ or t, the threshold chamber for providing the first stable state of a liquid crystal cell having bistability is set to pressure , -V thl, and the second stable state is provided. Assuming that the threshold voltage of the terminal is −1−V th, the electrode signal given to the selected scanning electrode 32 (s, ) is the fourth
As shown in figure (a), at phase (time) 1+, 2V
is an alternating voltage that becomes -2V at phase (time) 11. When electrical signals having multiple phase intervals with mutually different voltages are applied to the scanning electrodes selected in this way, the difference between the first or second stable state of the liquid crystal corresponding to the optical "dark" or "bright" state is generated. The important effect is that a change in state can be caused quickly. - On the other hand, the other scanning electrodes S2 to S, . . . are in a grounded state as shown in FIG. Further, the electric signal given to the selected signal electrodes 11°T, , I, as shown in FIG.
and unselected signal electrode ■2. (2) The electrical signal applied to 4 is <-V as shown in FIG. 4(d). In the above, each voltage value is set to a desired value that satisfies the following relationship.

V < V th* < 3 V −3v<、−vth、<−v この様な電気信号が与えられたときの各画素のうち、例
えば第3図中の画素人とBにそれぞれ印加され、る電圧
波形を第5図の(a)と6)に示す。
V < V th* < 3 V -3v<, -vth, <-v Among each pixel when such an electric signal is applied, for example, the voltage applied to each pixel and B in FIG. The voltage waveforms are shown in FIGS. 5(a) and 6).

すなわち、第5図値)と(b)より明らかな如く、選択
された走査線上にある画素Aでは、位相t、に於て、閾
値V th2を越える電圧3Vが印加される。又、同一
走査線上に存在する画素Bでは位相t1に於て閾値−v
 th、を越える電圧−3vが印加される。従って、選
択された走査電極線上に於て、信号電極が選択されたか
否かに応じて、選択された場合には、液晶分子は第1の
安定状態に配向を揃え、選択されない場合には第2の安
定状態に配向を揃える。
That is, as is clear from FIG. 5) and (b), a voltage of 3 V exceeding the threshold value V th2 is applied to the pixel A on the selected scanning line at phase t. In addition, for pixel B existing on the same scanning line, the threshold value -v at phase t1
A voltage of -3V exceeding th is applied. Therefore, depending on whether or not a signal electrode is selected on the selected scanning electrode line, if the signal electrode is selected, the liquid crystal molecules are aligned in the first stable state, and if not selected, the liquid crystal molecules are aligned in the first stable state. Align the orientation to the stable state of 2.

一方、第5図(C)と(d)に示される如く、選択され
ない走査線上では、すべての画素に印加される電圧は■
又は−■であって、いずれも閾値電圧を越えない。従っ
て、選択された走査線上以外の各画素における液晶分子
は、配向状態を変えることなく前回走査されたときの信
号状態に対応した配向を、そのまま保持している。即ち
、走査電極が選択されたときにその1ライン分の信号の
書き込みが行われ、1フレームが終了して次回選択され
るまでの間は、その信号状態を保持し得るわけである。
On the other hand, as shown in FIGS. 5(C) and (d), on unselected scanning lines, the voltage applied to all pixels is
or -■, neither of which exceeds the threshold voltage. Therefore, the liquid crystal molecules in each pixel other than on the selected scanning line maintain the orientation corresponding to the signal state when scanned last time without changing the orientation state. That is, when a scanning electrode is selected, a signal for one line is written, and the signal state can be maintained until the next selection after one frame is completed.

従って、走査電極数が増えても、実質的なデユーティ比
はかわらず、コントラストの低下は全く生じない。
Therefore, even if the number of scanning electrodes increases, the actual duty ratio does not change and the contrast does not deteriorate at all.

次に、ディスプレイ装置として駆動を行った場合の実際
に1生じ得る問題点について考えてみる0第3図に於て
、走査電極S、 −Sl・・ と信号電極上、〜I、・
・・の交点で形成する画素のうち、斜線部の画素は「明
」状態に、白地で示した画素は「暗」状態に対応するも
のとする。今、第3図中の信号電極■1上の表示に注目
すると、走査電極S、に対応する画素(4)では「明」
状態であり、それ以外の画素(B)はすべて「暗」状態
である。
Next, let's consider the problems that may actually occur when driving a display device. In Figure 3, on the scanning electrodes S, -Sl... and on the signal electrodes, ~I,...
Among the pixels formed at the intersections of . Now, if we pay attention to the display on the signal electrode ■1 in FIG. 3, we can see that the pixel (4) corresponding to the scanning electrode
All other pixels (B) are in the "dark" state.

この場合の駆動法の1実施例として、走査信号と信号電
極I、に与えられる情報信号及び画素人に印加される電
圧を時系列的に表したものが第6図(a)である。
As an example of the driving method in this case, FIG. 6(a) shows a time-series representation of the scanning signal, the information signal applied to the signal electrode I, and the voltage applied to the pixel.

例えば第6図(a)のようにして、駆動した場合、走査
信号S1が走査されたとき、時間t、に於て画素Aには
、閾値v thtを越える電圧3■が印加されるため、
前歴に関係なく、画素人は一方向の安定状態、即ち「明
」状態に転移(スイッチ)する。その後は、s、〜ss
・・・が走査される間は第6図(a)に示される如<−
Vの電圧が印加され続けるが、これは閾値−v th、
を越えないため、画素人は「明」状態を保ち得る。然し
乍ら、このように1つの信号電極上で一方の信号(今の
場合「暗」に対応)が与えられ続けるような情報の表示
を行う場合には、走査線数が極めて多く、シかも高速駆
動がめられるときには問題が生じ得ることを次のデータ
で示す。
For example, when driven as shown in FIG. 6(a), when the scanning signal S1 is scanned, a voltage 3■ exceeding the threshold value v tht is applied to the pixel A at time t.
Regardless of prior history, the pixel person transitions (switches) to a stable state in one direction, the "bright" state. After that, s, ~ss
. . is scanned, as shown in FIG. 6(a).
A voltage of V continues to be applied, which is the threshold value −v th,
, the pixel can maintain a "bright" state. However, when displaying information in which one signal (corresponding to "dark" in this case) is continuously given on one signal electrode, the number of scanning lines is extremely large, and high-speed driving may be required. The following data shows that problems can arise when

第7図は、強誘電液晶材料としてDOBAMBC(第7
図中の72)及びHOBACPC(第7図中の71)を
用いたときのスイッチングに要する電圧閾値(vth)
の印加時間依存性をプ四ットしたものである。いずれも
、液晶の厚さは1.6μで、温度は70℃にコントロー
ルされている。本実験の場合は、液晶を封入すべき両側
の基板には、ITOが蒸着されたガラス板であり、V 
thl 〜、V tht (ミV1:h)であった。
Figure 7 shows DOBAMBC (7th grade) as a ferroelectric liquid crystal material.
Voltage threshold (vth) required for switching when using 72) in the figure and HOBACPC (71 in Figure 7)
It is a four-dimensional plot of the application time dependence of In both cases, the liquid crystal thickness is 1.6μ, and the temperature is controlled at 70°C. In the case of this experiment, the substrates on both sides in which the liquid crystal is to be sealed are glass plates on which ITO is vapor-deposited, and the V
thl~, Vtht (miV1:h).

第7図より明らかな如く、閾値vthは印加時間依存性
を持っており、さらに印加時間が短い程、急勾配になる
ことが理解される。このことから、゛第6図(a)に於
いて実施した如き駆動方法をとり、これを走査線数が極
めて多く、シかも高速で駆動する素子に適用し′た場合
には、例えば画素人はS、走査時に於て「明」状態にス
イッチされてもS、走査以降常に−Vの電圧が印加され
続けるため、一画面の走査が終了する途中で画素人が「
暗」状態に反転してしまう危険性をもっていることがわ
かる。
As is clear from FIG. 7, the threshold value vth is dependent on the application time, and it is understood that the shorter the application time, the steeper the slope becomes. From this, if we take the driving method as shown in FIG. 6(a) and apply it to an element that has an extremely large number of scanning lines and is driven at high speed, S, even if it is switched to the "bright" state during scanning, the voltage of -V is always applied after scanning, so the pixel person is "
It can be seen that there is a danger of reversing to a "dark" state.

このような現象を防ぐ駆動形態として、例えば第6図(
b)に示した方法を用いることができる。
As a drive form to prevent such a phenomenon, for example, Fig. 6 (
The method shown in b) can be used.

この方法は、走査信号及び情報信号を連続的に送るので
はなく、補助信号印加期間として所定の時間的間隔△t
を設け、この期間に信号電極をアース状態とする補助信
号を与える態様を表わしている。この補助信号印加期間
では走査電極も同様にアース状態とされるため走査電極
と信号電極間に印加される電圧は0ボルトで、第7図に
示す強誘電性液晶の閾値電圧における電圧印加時の依存
性を実質的に解消することができる。従って、画素人で
生じた「明」状態が「暗」状態に反転することを防ぐこ
とができる。
This method does not send the scanning signal and the information signal continuously, but instead uses a predetermined time interval Δt as the auxiliary signal application period.
This represents a mode in which an auxiliary signal is provided to ground the signal electrode during this period. During this auxiliary signal application period, the scanning electrode is also grounded, so the voltage applied between the scanning electrode and the signal electrode is 0 volts. Dependency can be virtually eliminated. Therefore, it is possible to prevent the "bright" state generated in the pixel from being reversed to the "dark" state.

又、同様のことが他の画素についても言える。Moreover, the same thing can be said about other pixels.

本発明は、前述したとおり強誘電性液晶が第7図に示す
特性を持っているにもかかわらず一度書き込まれた情報
が次の書き込みが行なわれるまでの期間に亘ってその情
報を維持することができる点に特徴を有している。
As described above, the present invention has the advantage that although the ferroelectric liquid crystal has the characteristics shown in FIG. 7, once written information is maintained over a period until the next writing is performed. It is characterized by the ability to

本発明のよシ好ましい具体例は、第8図のタイムチャー
トで表わされる信号を走査電極と信号電極群に印加する
ことによって実施することができる。
A particularly preferred embodiment of the present invention can be implemented by applying signals represented by the time chart of FIG. 8 to the scanning electrodes and the signal electrode group.

第8図で示す■を液晶材料、液厚、設定温度や基板の表
面処理条件等によって適宜決定される所定の電圧値とし
て表わし、走査信号は、±2■の交番するパルスである
。該パルスに同期させて情報信号が信号電極群に送られ
るが、これは「明」又は「暗」の情報に対応してそれぞ
れ+V又は−■の電圧である。今、走査信号を時系列的
に見て、5n(n番目の走査電極)と、Sn++ (n
 + 1番目の走査電極)が選択される間に補助信号印
加期間として時間間隔Δtを設ける。そして、この間に
信号電極群にはSn走査時の信号と逆極性の補助信号を
送ると各信号電極に与えられる時系列信号は、例えば第
8図の■、〜工1に示すようなものとなる。すなわち、
第8図中の1 、2’、 3’、 4’、 5’の補助
信号がそれぞれ情報信号1,2,3,4.5の極性と逆
転した極性となっている。このために、例えば第8図中
の画素Aに印加される電圧を時系列的に見ると1つの信
号電極に同一情報信号が連続的に与えられても、実際に
画素人に印加される電圧はvth以下の電圧が交番して
いるだめ、強誘電性液晶における閾値電圧に対する電圧
印加時間の依存性が解消されてS、走査時に形成された
所望の(この場合は「明」)情報が次の書き込みが行な
われる壕での間に反転する心配はないO 第9図(a)は、第8図に示した駆動形態で、強誘電液
晶セルを駆動する場合の電気系統図を簡略化して示した
ものである。走査電極群に与える信号は、クロック発生
器より発生したクロック信号(C8)を走査電極を選択
する走査電極セレクタに送り、これを走査電極ドライバ
に送ることによって形成される。
8 in FIG. 8 is expressed as a predetermined voltage value appropriately determined depending on the liquid crystal material, liquid thickness, set temperature, substrate surface treatment conditions, etc., and the scanning signal is an alternating pulse of ±2. An information signal is sent to the signal electrode group in synchronization with the pulse, and this is a voltage of +V or -■ corresponding to "bright" or "dark" information, respectively. Now, looking at the scanning signal in time series, 5n (nth scanning electrode) and Sn++ (n
A time interval Δt is provided as an auxiliary signal application period while the first scanning electrode) is selected. During this time, when an auxiliary signal with a polarity opposite to that of the signal during Sn scanning is sent to the signal electrode group, the time-series signal given to each signal electrode is, for example, as shown in Figure 8, (1) and (1). Become. That is,
The auxiliary signals 1, 2', 3', 4' and 5' in FIG. 8 have polarities opposite to those of the information signals 1, 2, 3 and 4.5, respectively. For this reason, for example, if we look at the voltage applied to pixel A in Figure 8 in chronological order, even if the same information signal is continuously applied to one signal electrode, the voltage actually applied to the pixel is Since the voltage below vth is alternating, the dependence of the voltage application time on the threshold voltage in the ferroelectric liquid crystal is eliminated, and the desired (in this case "bright") information formed during scanning is There is no need to worry about reversal during the writing process. Figure 9(a) shows a simplified electrical system diagram for driving a ferroelectric liquid crystal cell using the driving configuration shown in Figure 8. This is what is shown. The signal given to the scan electrode group is formed by sending a clock signal (C8) generated by a clock generator to a scan electrode selector that selects a scan electrode, and sending this to a scan electrode driver.

一方、信号電極群に与える信号(DM)は、データ発生
器の出力信号(DS)と、クロック信号(O8)とから
、情報信号と、補助信号を形成しうるデータ変調器に送
られ、さらに信号電極ドライバを通して供給される。
On the other hand, the signal (DM) applied to the signal electrode group is sent from the output signal (DS) of the data generator and the clock signal (O8) to a data modulator that can form an information signal and an auxiliary signal, and further Supplied through the signal electrode driver.

第9図(b)は、上記データ変調器によって出力される
信号の例であって、前記実施例に甚づく第8図における
I、信号に対応するものである。
FIG. 9(b) is an example of a signal output by the data modulator, and corresponds to the signal I in FIG. 8 in the above embodiment.

又、第9図(C)は、上記第9図(b)@に示した信号
を出力するだめのデータ変調器を模式的に示したもので
あって、2つのインバータ91および92と2つのAN
D回路93と94、さらに1つのOR回路95によって
構成される。
Moreover, FIG. 9(C) schematically shows a data modulator for outputting the signal shown in FIG. 9(b)@ above, and includes two inverters 91 and 92 and two AN
It is composed of D circuits 93 and 94 and one OR circuit 95.

又、第10図は本発明の主旨に従った別の実施形態であ
る。すなわち、第8図の実施例で用いた選択された走査
電極に印加した±2Vパルスに代えて±3■パルスを印
加する例を示している。
Further, FIG. 10 shows another embodiment according to the gist of the present invention. That is, an example is shown in which a ±3V pulse is applied instead of the ±2V pulse applied to the selected scanning electrode used in the embodiment of FIG.

本発明の駆動法が有効に達成されるためには、走査電極
或いは信号電極に与えられる電気信号が必ずしも上記具
体例で説明されたような、単純な対称的矩形波信号でな
くてもよいことは自明である。例えば、有効な時間幅が
与えられる限りに於て、正弦波や三角波によって駆動す
ることも可能である。又、液晶を挾んでいる2枚の基板
の表面処理状態によりvthは異なる値をもち得ること
から、2枚の基板の表面処理状態が異るものであれば、
それに応じて、Ov(アース)に対して非対称的な信号
を与えることも可能である。又、本実施形態に於ては、
補助信号として前回の情報信号の極性を反転するものの
みをとり上げたが次回の情報信号と極性を反転するよう
なものであってもよいし、電圧絶対値が情報信号の電圧
絶対値と異ってもよい。さらに、補助信号として、前回
の情報信号の内容のみならずそれまでの複数個の情報信
号を統計処理した所望の信号を与えてやることもできる
In order to effectively achieve the driving method of the present invention, the electrical signal applied to the scanning electrode or the signal electrode does not necessarily have to be a simple symmetrical square wave signal as explained in the above specific example. is self-evident. For example, it is also possible to drive with a sine wave or a triangular wave as long as an effective time width is given. Furthermore, since vth can have different values depending on the surface treatment conditions of the two substrates sandwiching the liquid crystal, if the surface treatment conditions of the two substrates are different,
Correspondingly, it is also possible to provide an asymmetrical signal with respect to Ov (ground). Moreover, in this embodiment,
Although only the auxiliary signal that inverts the polarity of the previous information signal is used, it may also be a signal that inverts the polarity of the next information signal, or a signal whose voltage absolute value is different from the voltage absolute value of the information signal. It's okay. Further, as an auxiliary signal, it is also possible to provide a desired signal obtained by statistically processing not only the contents of the previous information signal but also a plurality of previous information signals.

第11図は、本発明の駆動法の好ましい適用対象の一例
としての、液晶−光シヤツターの模式平面図である。こ
こで、111は画素であって、この部分のみ両側の電極
を透明なもので形成している。マトリクス電極は、走査
電極群112と、信号電極群113により構成されてい
る。
FIG. 11 is a schematic plan view of a liquid crystal-light shutter as an example of a preferable application of the driving method of the present invention. Here, 111 is a pixel, and the electrodes on both sides of this part are made of transparent material. The matrix electrode is composed of a scanning electrode group 112 and a signal electrode group 113.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の方法に用いる光学変調
素子を模式的に表わす斜視図である。 の波形を表わす説明図である。第6図(a)は、本発明
外の駆動法で用いたタイムチャートの説明図である0第
6図0))、第8図および第10図は、本発明の駆動法
で用いたタイムチャートの説明図である。第9図(a)
は第8図に示すタイムチャートで駆動させるフローチャ
ートの説明図で、第9図(b)は信号電極群に与えるデ
ータ変調器出力信号(DM)を形成する態様を表わす説
明図で、第9図(c)は第9図(ト))のデータ変調器
出力信号(DM)を形成する回路図である。第7図は、
強誘電性液晶における闇値電圧に対する電圧印加時間の
依存性を表わす説明図である。第11図は、本発明の方
法を用いた液晶−光シャッタの模式平面図である。 11.11;透明電極がコートされた基板12;液晶分
子層 13;液晶分子 14;双極子モーメント(P↓) 24;上向き双極子モーメント 24′;下向き双極子モーメント 23;第1の安定状態 23;第2の安定状態 32(SI、St、・・・);走査電極群(走査電極)
33(■1.■2.・・・);信号電極群(信号電極)
特許出願人 キャノン株式会社 1 11 寸 1−0 。 手続補正書(自発) 特許庁長官 若杉和夫 殿 1、事件の表示 昭和58年 特許願 第 142954 ’j2 発明
の名称 光学変調素子の駆動法 3、補正をする者 事件との関係 特許出願人 任 所 東京都大田区下丸子3−30−2名称 (10
0)キャノン株式会社 キャノン株式会社内(電話758−2111)5補正の
対象 図 面 仕補正の内容
1 and 2 are perspective views schematically showing an optical modulation element used in the method of the present invention. FIG. 2 is an explanatory diagram showing the waveform of FIG. 6(a) is an explanatory diagram of a time chart used in a driving method other than the present invention. FIGS. 8 and 10 are time charts used in a driving method of the present invention. It is an explanatory diagram of a chart. Figure 9(a)
is an explanatory diagram of a flowchart for driving according to the time chart shown in FIG. 8, and FIG. (c) is a circuit diagram for forming the data modulator output signal (DM) in FIG. 9(g)). Figure 7 shows
FIG. 2 is an explanatory diagram showing the dependence of voltage application time on dark value voltage in a ferroelectric liquid crystal. FIG. 11 is a schematic plan view of a liquid crystal-optical shutter using the method of the present invention. 11.11; Substrate 12 coated with transparent electrode; Liquid crystal molecule layer 13; Liquid crystal molecule 14; Dipole moment (P↓) 24; Upward dipole moment 24'; Downward dipole moment 23; First stable state 23 ;Second stable state 32 (SI, St,...);Scanning electrode group (scanning electrode)
33 (■1.■2....); Signal electrode group (signal electrode)
Patent applicant Canon Co., Ltd. 1 11 Sun 1-0. Procedural amendment (voluntary) Commissioner of the Japan Patent Office Kazuo Wakasugi 1 Indication of the case 1988 Patent application No. 142954'j2 Name of the invention Method for driving an optical modulation element 3 Relationship with the case by the person making the amendment Patent applicant's office 3-30-2 Shimomaruko, Ota-ku, Tokyo Name (10
0) Canon Co., Ltd. Canon Co., Ltd. (Telephone: 758-2111) 5. Drawings subject to correction Contents of surface finish correction

Claims (1)

【特許請求の範囲】 (1)走査電極群と信号電極群を有するマトリクス電極
構造を有し、該走査電極群には周期的に走査信号を順次
選択印加し、該信号電極群には前記走査信号と同期させ
て情報信号を選択印加することによって、前記走査電極
群と信号電極群の間に配置した電界に対して双安定状態
を有する光学変調物質の光学変調をなす光学変調素子の
駆動法において、前記走査電極群のうち選択された走査
電極に印加する走査信号と同期させて前記信号電極群に
情報信号を選択印加した後で、且つ次に選択される走査
電極に印加する走査信号と同期させて前記信号電極群に
次の情報信号を選択印加する前に、前記信号電極群に選
択印加した情報信号と異なる信号を印加する補助信号印
加期・間を有することを特徴とする光学変調素子の駆動
法。 (2)前記走査電極群のうち選択された走査電極に印加
する電気信号が電圧の異なる位相を有している特許請求
の範囲第1項記載の光学変調素子の駆動法。 (8)前記信号電極群のうち選択された信号電極に印加
する電気信号と選択されない信号電極に印加する電気信
号が異なる電圧となっている特許請求の範囲第1項又は
第2項記載の光学変調素子の駆動法。 (4)前記走査電極群のうち選択された走査電極に印加
する電気信号が電圧極性の異なる位相を有している特許
請求の範囲第2項又は第3項記載の光学変調素子の駆動
法。 (5)前記信号電極群のうち選択された信号電極に印加
する電気信号と選択されない信号電極に印加する電気信
号が異なる電圧極性となっている特許請求の範囲第3項
又は第4項記載の光学変調素子の駆動法。 (6)前記補助信号印加期間に印加する電気信号が前記
走査電極のうち選択された走査電極に印加した走査信号
と同期させて前記信号電極群に印加した情報信号と異な
る電圧極性となっている特許請求の範囲第1項記載の光
学変調素子の駆動法。 (7)前記双安定性を有する光学変調物質が強誘電性液
晶である特許請求の範囲第1項記載の光学変調素子の駆
動法。 (8)前記強誘電性液晶がカイラルスメクテイツク相を
有する液晶である特許請求の範囲第7項記載の光学変調
素子の駆動法。 (9)前記カイラルスメテイツク相を有する液晶がらせ
ん構造を形成していない液晶相である特許請求の範囲第
8項記載の光学変調素子の駆動法。 (転) 前記カイラルスメクテイツク相を有する液晶が
C相又はH相を有する液晶である特許請求の範囲第8項
または第9項記載の光学変調素子の駆動法。
[Scope of Claims] (1) It has a matrix electrode structure having a scanning electrode group and a signal electrode group, a scanning signal is selectively and sequentially applied periodically to the scanning electrode group, and the scanning signal is applied to the signal electrode group in sequence. A method for driving an optical modulation element that optically modulates an optical modulation substance having a bistable state with respect to an electric field arranged between the scanning electrode group and the signal electrode group by selectively applying an information signal in synchronization with the signal. , after the information signal is selectively applied to the signal electrode group in synchronization with the scan signal applied to the scan electrode selected from the scan electrode group, and the scan signal applied to the next selected scan electrode. Optical modulation characterized by having an auxiliary signal application period for applying a signal different from the information signal selectively applied to the signal electrode group before selectively applying the next information signal to the signal electrode group in synchronization. Driving method of element. (2) The method for driving an optical modulation element according to claim 1, wherein the electrical signals applied to the scanning electrodes selected from the scanning electrode group have different voltage phases. (8) The optical system according to claim 1 or 2, wherein the electrical signal applied to a selected signal electrode of the signal electrode group and the electrical signal applied to an unselected signal electrode are at different voltages. Driving method of modulation element. (4) The method of driving an optical modulation element according to claim 2 or 3, wherein the electrical signals applied to the scanning electrodes selected from the scanning electrode group have phases with different voltage polarities. (5) The electric signal applied to the selected signal electrode of the signal electrode group and the electric signal applied to the unselected signal electrodes have different voltage polarities. Driving method of optical modulation element. (6) The electrical signal applied during the auxiliary signal application period has a voltage polarity different from that of the information signal applied to the signal electrode group in synchronization with the scanning signal applied to a selected one of the scanning electrodes. A method for driving an optical modulation element according to claim 1. (7) The method for driving an optical modulation element according to claim 1, wherein the optical modulation substance having bistability is a ferroelectric liquid crystal. (8) The method of driving an optical modulation element according to claim 7, wherein the ferroelectric liquid crystal is a liquid crystal having a chiral smectoid phase. (9) The method for driving an optical modulation element according to claim 8, wherein the liquid crystal having a chiral smectic phase is a liquid crystal phase that does not form a helical structure. (Conversion) The method for driving an optical modulation element according to claim 8 or 9, wherein the liquid crystal having a chiral smectoid phase is a liquid crystal having a C phase or an H phase.
JP14295483A 1983-04-13 1983-08-04 Driving method of optical modulating element Granted JPS6033535A (en)

Priority Applications (42)

Application Number Priority Date Filing Date Title
JP14295483A JPS6033535A (en) 1983-08-04 1983-08-04 Driving method of optical modulating element
US06/598,800 US4655561A (en) 1983-04-19 1984-04-10 Method of driving optical modulation device using ferroelectric liquid crystal
DE3448307A DE3448307C2 (en) 1983-04-19 1984-04-18
GB08410068A GB2141279B (en) 1983-04-19 1984-04-18 Method of driving optical modulation device
DE3448304A DE3448304C2 (en) 1983-04-19 1984-04-18
DE19843414704 DE3414704A1 (en) 1983-04-19 1984-04-18 METHOD FOR DRIVING AN OPTICAL MODULATING DEVICE
DE3448303A DE3448303C2 (en) 1983-04-19 1984-04-18
DE3448306A DE3448306C2 (en) 1983-04-19 1984-04-18
DE3448305A DE3448305C2 (en) 1983-04-19 1984-04-18
FR8406275A FR2544884B1 (en) 1983-04-19 1984-04-19 METHOD FOR CONTROLLING AN OPTICAL MODULATION DEVICE
GB08619691A GB2180384B (en) 1983-04-19 1986-08-13 Driving display devices
GB08619692A GB2180385B (en) 1983-04-19 1986-08-13 Liquid crystal apparatus
GB08619831A GB2180386B (en) 1983-04-19 1986-08-14 Liquid crystal apparatus
GB08712391A GB2191623B (en) 1983-04-19 1987-05-27 Liquid crystal apparatus
GB08712392A GB2190530B (en) 1983-04-19 1987-05-27 Liquid crystal apparatus
US07/139,162 US5448383A (en) 1983-04-19 1987-12-21 Method of driving ferroelectric liquid crystal optical modulation device
US07/557,643 US5418634A (en) 1983-04-19 1990-07-25 Method for driving optical modulation device
SG5291A SG5291G (en) 1983-04-19 1991-01-31 Liquid crystal apparatus
SG6191A SG6191G (en) 1983-04-19 1991-02-07 Liquid crystal apparatus
SG6591A SG6591G (en) 1983-04-19 1991-02-07 Liquid crystal apparatus
SG6491A SG6491G (en) 1983-04-19 1991-02-07 Liquid crystal apparatus
SG10391A SG10391G (en) 1983-04-19 1991-02-21 Liquid crystal apparatus
SG116/91A SG11691G (en) 1983-04-19 1991-02-23 Method of driving optical modulation device
HK708/91A HK70891A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK705/91A HK70591A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK709/91A HK70991A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK715/91A HK71591A (en) 1983-04-19 1991-09-05 Method of driving optical modulation device
HK707/91A HK70791A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK706/91A HK70691A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
US08/440,321 US5812108A (en) 1983-04-19 1995-05-12 Method of driving optical modulation device
US08/444,899 US5548303A (en) 1983-04-19 1995-05-19 Method of driving optical modulation device
US08/444,746 US5592192A (en) 1983-04-19 1995-05-19 Method of driving optical modulation device
US08/444,898 US5825390A (en) 1983-04-19 1995-05-19 Method of driving optical modulation device
US08/462,978 US5790449A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/465,225 US5565884A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/465,357 US5696526A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/465,090 US5831587A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/465,058 US5696525A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/463,780 US5621427A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/463,781 US5841417A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/462,974 US5886680A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/863,598 US6091388A (en) 1983-04-13 1997-05-27 Method of driving optical modulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14295483A JPS6033535A (en) 1983-08-04 1983-08-04 Driving method of optical modulating element

Publications (2)

Publication Number Publication Date
JPS6033535A true JPS6033535A (en) 1985-02-20
JPS6244247B2 JPS6244247B2 (en) 1987-09-18

Family

ID=15327512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14295483A Granted JPS6033535A (en) 1983-04-13 1983-08-04 Driving method of optical modulating element

Country Status (1)

Country Link
JP (1) JPS6033535A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117127A (en) * 1984-07-04 1986-01-25 Hitachi Ltd Driving method of optical switch element
JPS61286818A (en) * 1985-04-03 1986-12-17 エステイーシー・ピーエルシー Addressing of liquid crystal cell
JPS61286819A (en) * 1985-04-03 1986-12-17 エステイーシー・ピーエルシー Addressing of liquid crystal cell
JPS6228717A (en) * 1985-07-30 1987-02-06 Sharp Corp Method for driving liquid crystal display device
JPS6275516A (en) * 1985-09-30 1987-04-07 Matsushita Electric Ind Co Ltd Driving method for optical modulation switch
EP0229647A2 (en) 1986-01-10 1987-07-22 Hitachi, Ltd. Liquid crystal matrix driving method
JPS62186229A (en) * 1986-02-12 1987-08-14 Canon Inc Driving device
JPS62189435A (en) * 1986-02-17 1987-08-19 Canon Inc Driving device
JPS63106629A (en) * 1986-10-23 1988-05-11 Canon Inc Driving method for ferroelectric liquid crystal element
JPS63217329A (en) * 1987-03-05 1988-09-09 Canon Inc Liquid crystal device
US5500749A (en) * 1991-01-08 1996-03-19 Canon Kabushiki Kaisha Ferroelectric liquid crystal element with an AC holding voltage below the level at which the molecules migrate
JP2008070627A (en) * 2006-09-14 2008-03-27 Citizen Holdings Co Ltd Memory liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108996A (en) * 1973-02-09 1974-10-16
JPS5068419A (en) * 1973-10-19 1975-06-07
JPS56107216A (en) * 1980-01-08 1981-08-26 Clark Noel A Liquid crystal electrooptical device and production thereof
JPS58179890A (en) * 1982-04-16 1983-10-21 株式会社日立製作所 Driving of liquid crystal element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108996A (en) * 1973-02-09 1974-10-16
JPS5068419A (en) * 1973-10-19 1975-06-07
JPS56107216A (en) * 1980-01-08 1981-08-26 Clark Noel A Liquid crystal electrooptical device and production thereof
US4367924A (en) * 1980-01-08 1983-01-11 Clark Noel A Chiral smectic C or H liquid crystal electro-optical device
JPS58179890A (en) * 1982-04-16 1983-10-21 株式会社日立製作所 Driving of liquid crystal element

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117127A (en) * 1984-07-04 1986-01-25 Hitachi Ltd Driving method of optical switch element
JPH0581888B2 (en) * 1984-07-04 1993-11-16 Hitachi Ltd
JPS61286818A (en) * 1985-04-03 1986-12-17 エステイーシー・ピーエルシー Addressing of liquid crystal cell
JPS61286819A (en) * 1985-04-03 1986-12-17 エステイーシー・ピーエルシー Addressing of liquid crystal cell
JPS6228717A (en) * 1985-07-30 1987-02-06 Sharp Corp Method for driving liquid crystal display device
JPS6275516A (en) * 1985-09-30 1987-04-07 Matsushita Electric Ind Co Ltd Driving method for optical modulation switch
US4770502A (en) * 1986-01-10 1988-09-13 Hitachi, Ltd. Ferroelectric liquid crystal matrix driving apparatus and method
EP0229647A2 (en) 1986-01-10 1987-07-22 Hitachi, Ltd. Liquid crystal matrix driving method
JPS62186229A (en) * 1986-02-12 1987-08-14 Canon Inc Driving device
JPS62189435A (en) * 1986-02-17 1987-08-19 Canon Inc Driving device
JPS63106629A (en) * 1986-10-23 1988-05-11 Canon Inc Driving method for ferroelectric liquid crystal element
JPS63217329A (en) * 1987-03-05 1988-09-09 Canon Inc Liquid crystal device
US5500749A (en) * 1991-01-08 1996-03-19 Canon Kabushiki Kaisha Ferroelectric liquid crystal element with an AC holding voltage below the level at which the molecules migrate
US5805129A (en) * 1991-01-08 1998-09-08 Canon Kabushiki Kaisha Inhibiting transition of a surface stabilization state in a ferroelectric liquid crystal element using alternating voltages
JP2008070627A (en) * 2006-09-14 2008-03-27 Citizen Holdings Co Ltd Memory liquid crystal display device

Also Published As

Publication number Publication date
JPS6244247B2 (en) 1987-09-18

Similar Documents

Publication Publication Date Title
US5018841A (en) Driving method for optical modulation device
US5831587A (en) Method of driving optical modulation device
EP0173246B1 (en) Method of driving liquid crystal element
US5092665A (en) Driving method for ferroelectric liquid crystal optical modulation device using an auxiliary signal to prevent inversion
JPS6245535B2 (en)
JPS6261931B2 (en)
US5296953A (en) Driving method for ferro-electric liquid crystal optical modulation device
JPH0422496B2 (en)
JPS6243167B2 (en)
JPS6033535A (en) Driving method of optical modulating element
JPH0523406B2 (en)
US5381254A (en) Method for driving optical modulation device
JPS6261930B2 (en)
JPH0535848B2 (en)
JP2502292B2 (en) Driving method of optical modulator
JPS6249607B2 (en)
JPS6246845B2 (en)
JP2505778B2 (en) Liquid crystal device
JP2584752B2 (en) Liquid crystal device
JPH0422493B2 (en)
JPH05281581A (en) Liquid crystal element
JPS62294224A (en) Liquid crystal device
JPS6391634A (en) Driving method for optical modulating element
JPH0535847B2 (en)
JPS6249608B2 (en)