JPS6245535B2 - - Google Patents

Info

Publication number
JPS6245535B2
JPS6245535B2 JP58068659A JP6865983A JPS6245535B2 JP S6245535 B2 JPS6245535 B2 JP S6245535B2 JP 58068659 A JP58068659 A JP 58068659A JP 6865983 A JP6865983 A JP 6865983A JP S6245535 B2 JPS6245535 B2 JP S6245535B2
Authority
JP
Japan
Prior art keywords
liquid crystal
signal
voltage
scanning
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58068659A
Other languages
Japanese (ja)
Other versions
JPS59193426A (en
Inventor
Junichiro Kanbe
Kazuharu Katagiri
Shuzo Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP6865983A priority Critical patent/JPS59193426A/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to US06/598,800 priority patent/US4655561A/en
Priority to DE19843414704 priority patent/DE3414704A1/en
Priority to DE3448307A priority patent/DE3448307C2/de
Priority to DE3448306A priority patent/DE3448306C2/de
Priority to DE3448304A priority patent/DE3448304C2/de
Priority to GB08410068A priority patent/GB2141279B/en
Priority to DE3448303A priority patent/DE3448303C2/de
Priority to DE3448305A priority patent/DE3448305C2/de
Priority to FR8406275A priority patent/FR2544884B1/en
Publication of JPS59193426A publication Critical patent/JPS59193426A/en
Priority to GB08619691A priority patent/GB2180384B/en
Priority to GB08619692A priority patent/GB2180385B/en
Priority to GB08619831A priority patent/GB2180386B/en
Priority to GB08712392A priority patent/GB2190530B/en
Priority to GB08712391A priority patent/GB2191623B/en
Publication of JPS6245535B2 publication Critical patent/JPS6245535B2/ja
Priority to US07/139,162 priority patent/US5448383A/en
Priority to US07/557,643 priority patent/US5418634A/en
Priority to SG5291A priority patent/SG5291G/en
Priority to SG6591A priority patent/SG6591G/en
Priority to SG6491A priority patent/SG6491G/en
Priority to SG6191A priority patent/SG6191G/en
Priority to SG10391A priority patent/SG10391G/en
Priority to SG116/91A priority patent/SG11691G/en
Priority to HK708/91A priority patent/HK70891A/en
Priority to HK709/91A priority patent/HK70991A/en
Priority to HK707/91A priority patent/HK70791A/en
Priority to HK715/91A priority patent/HK71591A/en
Priority to HK706/91A priority patent/HK70691A/en
Priority to HK705/91A priority patent/HK70591A/en
Priority to US08/440,321 priority patent/US5812108A/en
Priority to US08/444,898 priority patent/US5825390A/en
Priority to US08/444,746 priority patent/US5592192A/en
Priority to US08/444,899 priority patent/US5548303A/en
Priority to US08/463,780 priority patent/US5621427A/en
Priority to US08/465,225 priority patent/US5565884A/en
Priority to US08/463,781 priority patent/US5841417A/en
Priority to US08/465,357 priority patent/US5696526A/en
Priority to US08/465,058 priority patent/US5696525A/en
Priority to US08/465,090 priority patent/US5831587A/en
Priority to US08/462,978 priority patent/US5790449A/en
Priority to US08/462,974 priority patent/US5886680A/en
Priority to US08/863,598 priority patent/US6091388A/en
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

【発明の詳細な説明】 本発明は、液晶素子などの光学変調素子の駆動
法に係り、詳しくは表示素子や光シヤツターアレ
イ等の光学変調素子に用いる液晶素子の時分割駆
動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for driving an optical modulation element such as a liquid crystal element, and more particularly to a time division driving method for a liquid crystal element used in an optical modulation element such as a display element or an optical shutter array.

従来より、走査電極群と信号電極群をマトリク
ス状に構成し、その電極間に液晶化合物を充填
し、多数の画素を形成して画像或いは情報の表示
を行う液晶表示素子は、よく知られている。この
表示素子の駆動法としては、走査電極群に順次周
期的にアドレス信号を選択印加し、信号電極群に
は所定の情報信号をアドレス信号と同期させて並
列的に選択印加する時分割駆動が採用されている
が、この表示素子及びその駆動法には以下に述べ
る如き致命的とも言える大きな欠点を有してい
た。
Conventionally, liquid crystal display elements have been well known, which display images or information by configuring a scanning electrode group and a signal electrode group in a matrix, filling a liquid crystal compound between the electrodes, and forming a large number of pixels. There is. The driving method for this display element is time-division driving, in which an address signal is selectively and periodically applied to a group of scanning electrodes, and a predetermined information signal is selectively applied in parallel to a group of signal electrodes in synchronization with the address signal. However, this display element and its driving method had major and fatal drawbacks as described below.

即ち、画素密度を高く、或いは画面を大きくす
るのが難しいことである。従来の液晶の中で応答
速度が比較的高く、しかも消費電力が小さいこと
から、表示素子として実用に供されているのは殆
んどが、例えばM.SchadtとW.Helfrich著
“Applied Physics Letters”Vo.18,No.4
(1971,2,15),P.127〜128の“Voltage―
DePendent Optical Activity of a Twisted
Nematic Liqvid Crystal”に示されたTN
(twisted nematic)型の液晶を用いたものであ
り、この型の液晶は無電界状態で正の誘電異方性
をもつネマチツク液晶の分子が液晶層厚方向で捩
れた横造(ヘリカル構造)を形成し、両電極面で
この液晶の分子が並行に配列した構造を形成して
いる。一方、電界印加状態では、正の誘電異方性
をもつネマチツク液晶が電界方向に配列し、この
結果光学変調を起こすことができる。この型の液
晶を用いてマトリクス電極構造によつて表示素子
を構成した場合、走査電極と信号電極が共に選択
される領域(選択点)には、液晶分子を電極面に
垂直に配列させるに要する閾値以上の電圧が印加
され、走査電極と信号電極が共に選択されない領
域(非選択点)には電圧は印加されず、したがつ
て液晶分子は電極面に対して並行な安定配列を保
つている。このような液晶セルの上下に互いにク
ロスニコル関係にある直線偏光子を配置すること
により、選択点では光が透過せず、非選択点では
光が透過するため、画像素子とすることが可能と
なる。然し乍ら、マトリクス電極構造を構成した
場合には、走査電極が選択され、信号電極が選択
されない領域或いは走査電極が選択されず、信号
電極が選択される領域(所謂“半選択点”)にも
有限の電界がかかつてしまう。選択点にかかる電
圧と、半選択点にかかる電圧の差が充分に大き
く、液晶分子を電界に垂直に配列させるに要する
電圧閾値がこの中間の電圧値に設定されるなら
ば、表示素子は正常に動作するわけであるが、走
査線数(N)を増やして行つた場合、画面全体
(1フレーム)を走査する間に一つの選択点に有
効な電界がかかつている時間(duty比)が1/Nの割 合で減少してしまう。このために、くり返し走査
を行つた場合の選択点と非選択点にかかる実効値
としての電圧差は走査線数が増えれば増える程小
さくなり、結果的には画像コントラストの低下や
クロストークが避け難い欠点となつている。この
ような現象は、双安定性を有さない液晶(電極面
に対し、液晶分子が水平に配向しているのが安定
状態であり、電界が有効に印加されている間のみ
垂直に配向する)を時間的蓄積効果を利用して駆
動する(即ち、繰り返し走査)ときに生ずる本質
的には避け難い問題点である。この点を改良する
ために、電圧平均化法、2周波駆動法や多重マト
リクス法等が既に提案されているが、いずれの方
法でも不充分であり、表示素子の大画面化や高密
度化は、走査線数が充分に増やせないことによつ
て頭打ちになつているのが現状である。
That is, it is difficult to increase the pixel density or enlarge the screen. Among conventional liquid crystals, most of them have relatively high response speed and low power consumption, so most of them are in practical use as display elements. ”Vo.18, No.4
(1971, 2, 15), P.127-128 “Voltage―
DePendent Optical Activity of a Twisted
TN shown in “Nematic Liqvid Crystal”
(twisted nematic) type liquid crystal, which has a horizontal structure (helical structure) in which the molecules of the nematic liquid crystal, which has positive dielectric anisotropy, are twisted in the thickness direction of the liquid crystal layer in the absence of an electric field. The liquid crystal molecules form a structure in which they are arranged in parallel on both electrode surfaces. On the other hand, when an electric field is applied, nematic liquid crystals with positive dielectric anisotropy are aligned in the direction of the electric field, resulting in optical modulation. When a display element is constructed using this type of liquid crystal with a matrix electrode structure, in the region where both the scanning electrode and the signal electrode are selected (selected point), there is a A voltage higher than the threshold is applied, and no voltage is applied to areas where neither the scanning electrode nor the signal electrode is selected (non-selected points), so the liquid crystal molecules maintain a stable alignment parallel to the electrode surface. . By arranging linear polarizers above and below a liquid crystal cell in a cross-Nicol relationship with each other, light does not pass through selected points, but light passes through non-selected points, making it possible to use it as an image element. Become. However, when a matrix electrode structure is configured, there is a limited area in which scanning electrodes are selected and signal electrodes are not selected, or in areas where scanning electrodes are not selected and signal electrodes are selected (so-called "half-selected points"). The electric field becomes hot. If the difference between the voltage applied to the selected point and the voltage applied to the half-selected point is sufficiently large, and the voltage threshold required to align liquid crystal molecules perpendicular to the electric field is set to a voltage value in between, the display element will function normally. However, when the number of scanning lines (N) is increased, the time during which an effective electric field is applied to one selected point while scanning the entire screen (one frame) (duty ratio) increases. It decreases at a rate of 1/N. For this reason, when repeated scanning is performed, the effective voltage difference between selected points and non-selected points becomes smaller as the number of scanning lines increases, and as a result, reduction in image contrast and crosstalk can be avoided. This has become a serious drawback. This phenomenon is caused by liquid crystals that do not have bistability (the stable state is when the liquid crystal molecules are aligned horizontally with respect to the electrode surface, and they are aligned vertically only while an electric field is effectively applied). ) is essentially an unavoidable problem that arises when driving using the temporal accumulation effect (ie, repeated scanning). In order to improve this point, voltage averaging methods, dual frequency driving methods, multiple matrix methods, etc. have already been proposed, but all of these methods are insufficient, and it is difficult to increase the screen size and density of display elements. Currently, the number of scanning lines has reached a plateau due to the inability to increase the number of scanning lines sufficiently.

一方、プリンタ分野を眺めて見るに、電気信号
を入力としてハードコピーを得る手段として、画
素密度の点からもスピードの点からも電気画像信
号を光の形で電子写真感光体に与えるレーザービ
ームプリンタ(LBP)が現在最も優れている。と
ころがLBPには、 1 プリンタとしての装置が大型になる; 2 ポリゴンスキヤナの様な高速の駆動部分があ
り騒音が発生し、また厳しい機械的精度が要求
される;など の欠点がある。この様な欠点を解消すべく電気信
号を光信号に変換する素子として、液晶シヤツタ
ーアレイが提案されている。ところが、液晶シヤ
ツターアレイを用いて画素信号を与える場合、た
とえば200nmの長さの中に画素信号を20dot/m
の割合で書き込むためには4000個の信号発生部を
有していなければならず、それぞれに独立した信
号を与えるためには、元来それぞれの信号発生部
全てに信号を送るリード線を配線しなければなら
ず、製作上困難であつた。
On the other hand, looking at the field of printers, laser beam printers provide electrical image signals in the form of light to electrophotographic photoreceptors in terms of both pixel density and speed, as a means of obtaining hard copies using electrical signals as input. (LBP) is currently the best. However, LBP has the following disadvantages: 1. The printer is large; 2. It has a high-speed moving part like a polygon scanner, which generates noise, and requires strict mechanical precision. In order to overcome these drawbacks, a liquid crystal shutter array has been proposed as an element that converts electrical signals into optical signals. However, when providing pixel signals using a liquid crystal shutter array, for example, the pixel signals are transmitted at 20 dots/m within a length of 200 nm.
In order to write at a rate of This was difficult to manufacture.

そのため、1LINE(ライン)分の画素信号を数
行に分割された信号発生部により行うことに時分
割して与える試みがなされている。
For this reason, attempts have been made to time-divisionally provide pixel signals for one line using signal generators divided into several lines.

この様にすることにより、信号を与える電極を
複数の信号発生部に対して共通にすることがで
き、実質配線を大幅に軽減することができるから
である。ところが、この場合通常行われているよ
うに双安定性を有さない液晶を用いて行数(N)
を増やして行くと、信号ONの時間が実質的に1/N となり、感光体上で得られる光量が減少してしま
つたり、クロストークの問題が生ずるという難点
がある。
By doing so, it is possible to use a common electrode for applying a signal to a plurality of signal generating sections, and the amount of wiring can be substantially reduced. However, in this case, the number of lines (N) is
As the number of pixels is increased, the time during which the signal is ON becomes substantially 1/N, which leads to problems such as a decrease in the amount of light obtained on the photoreceptor and the problem of crosstalk.

本発明の目的は、前述したような従来の液晶表
示素子或いは液晶光シヤツターにおける問題点を
悉く解決した新規な光学変調素子、特に液晶素子
駆動法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel optical modulation element, particularly a method for driving a liquid crystal element, which solves all the problems in conventional liquid crystal display elements or liquid crystal light shutters as described above.

本発明の別の目的は、高速応答性を有する液晶
素子の駆動法を提供することにある。
Another object of the present invention is to provide a method for driving a liquid crystal element having high-speed response.

本発明の他の目的は、高密度の画素を有する液
晶素子の駆動法を提供することにある。
Another object of the present invention is to provide a method for driving a liquid crystal device having high density pixels.

さらに本発明の他の目的は、クロストークを発
生しない液晶素子の駆動法を提供することにあ
る。
Still another object of the present invention is to provide a method for driving a liquid crystal element that does not generate crosstalk.

さらに、本発明の他の目的は、電界に対し双安
定性を有する液晶、特に強誘電性を有するカイラ
ルスメクテイツクC相又はH相の液晶を用いた液
晶素子の新規な駆動法を提供することにある。
Furthermore, another object of the present invention is to provide a novel method for driving a liquid crystal device using a liquid crystal that is bistable with respect to an electric field, particularly a chiral smect C-phase or H-phase liquid crystal that has ferroelectricity. There is a particular thing.

さらに、本発明の他の目的は、高密度の画素と
大面積の画面を有する液晶素子に適した新規な駆
動法を提供することにある。
Furthermore, another object of the present invention is to provide a novel driving method suitable for a liquid crystal device having a high density of pixels and a large screen area.

すなわち、本発明のかかる目的は、走査電極群
と信号電極群を有し、該走査電極群と信号電極群
の間の電界に対して双安定性を有する光学変調物
質(例えば液晶)を配置した構造を有する液晶素
子などの光学変調素子の駆動法において、前記走
査電極群の選択された走査電極と前記信号電極群
の選択された信号電極の間で前記双安定性を有す
る液晶が第1の安定状態(一方の光学的安定状
態)に配向する電圧を印加し、且つ前記走査電極
と前記信号電極群の選択されない信号電極の間で
前記双安定性を有する液晶が第2の安定状態(他
方の光学的安定状態)に配向する電圧を印加する
とともに、前記走査電極群の選択されない走査電
極と前記信号電極群の間で前記双安定性を有する
液晶の閾値電圧―Vth2(第2安定状態の閾値電
圧を言う)とVth1(第1安定状態の閾値電圧を
言う)の間の値に設定した電圧を印加する光学変
調素子の駆動法によつて達成される。
That is, such an object of the present invention is to provide a method having a scanning electrode group and a signal electrode group, and disposing an optical modulating material (for example, liquid crystal) having bistability with respect to an electric field between the scanning electrode group and the signal electrode group. In a method for driving an optical modulation element such as a liquid crystal element having a structure, the liquid crystal having bistable property is arranged between a selected scanning electrode of the scanning electrode group and a selected signal electrode of the signal electrode group. A voltage is applied to align the liquid crystal in a stable state (one optically stable state), and the bistable liquid crystal is aligned between the scanning electrode and the unselected signal electrode of the signal electrode group in a second stable state (the other optically stable state). At the same time, the threshold voltage of the bistable liquid crystal -Vth 2 (second stable state) is applied between the unselected scanning electrodes of the scanning electrode group and the signal electrode group. This is achieved by a driving method of the optical modulation element that applies a voltage set to a value between Vth 1 (the threshold voltage of the first stable state) and Vth 1 (the threshold voltage of the first stable state).

本発明の好ましい具体例では、走査信号に基ず
いて順次選択される走査電極群と該走査電極群に
対向し所定の情報信号に基ずいて選択される信号
電極群と上記両電極間に保持され電界に対して双
安定性を有する液晶とを少なくとも有する液晶素
子の選択された走査電極には互いに電圧の異なる
位相t1とt2を有する電気信号を与え且つ信号電極
群には所定の情報の有、無に応じて電圧の異なる
電気信号を与えることにより、 上記選択された走査電極線上の情報信号有の部
分に於ては、位相t1(t2)で上記液晶に対して第1
の安定状態を与える一方向の電界を付与し、無の
部分に於ては位相t2(t1)で第2の安定状態を与え
る逆方向の電界を付与することによつて液晶素子
を駆動することができる。その具体的な例は第1
図に示されるが、詳細は後程説明する。
In a preferred embodiment of the present invention, a scanning electrode group that is sequentially selected based on a scanning signal, a signal electrode group that faces the scanning electrode group and is selected based on a predetermined information signal, and a signal electrode group that is held between the two electrodes. Electric signals having phases t 1 and t 2 of different voltages are applied to selected scanning electrodes of a liquid crystal element having at least a liquid crystal that is bistable with respect to an electric field, and predetermined information is applied to a group of signal electrodes. By applying electrical signals with different voltages depending on the presence or absence of the information signal, in the part where the information signal is present on the selected scanning electrode line, the first signal is applied to the liquid crystal at phase t 1 (t 2 ).
The liquid crystal element is driven by applying an electric field in one direction that gives a stable state of can do. A specific example is the first
Although shown in the figure, details will be explained later.

本発明の駆動法で用いる光学変調物質は、電界
に対して第1の光学的安定状態と第2の光学的安
定状態からなる双安定状態を有しており、特に電
界に対して前述の如き双安定性を有する液晶が用
いられる。
The optical modulation material used in the driving method of the present invention has a bistable state consisting of a first optically stable state and a second optically stable state with respect to an electric field, and in particular has a bistable state with respect to an electric field as described above. A liquid crystal with bistability is used.

本発明の駆動法で用いることができる双安定性
を有する液晶としては、強誘電性を有するカイラ
ルスメクテイツク液晶が最も好ましく、そのうち
カイラルスメクテイツクC相(SmC*)又はH
相(SmH*)の液晶が適している。この強誘電
性液晶については、“LE JOURNAL DE
PHYSIQUE LETTERS”36(L―69)1975,
「Ferroelectric Liquid Crystals」;“Applied
Physics Letters”36(11)1980「Submicro
Second Bistable Electrooptic Switching in
Liquid Crystals」;“固体物理”16(141)1981
「液晶」等に記載されており、本発明ではこれら
に開示された強誘電性液晶を用いることができ
る。
As the liquid crystal having bistability that can be used in the driving method of the present invention, a chiral smectic liquid crystal having ferroelectricity is most preferable.
Phase (SmH * ) liquid crystal is suitable. For more information about this ferroelectric liquid crystal, please refer to “LE JOURNAL DE
PHYSIQUE LETTERS” 36 (L-69) 1975,
“Ferroelectric Liquid Crystals”; “Applied
Physics Letters” 36 (11) 1980 “Submicro
Second Bistable Electrooptic Switching in
Liquid Crystals”; “Solid State Physics” 16 (141) 1981
The ferroelectric liquid crystals disclosed in these documents can be used in the present invention.

第2図は、強誘電性液晶セルの例を模式的に描
いたものである。21と21′は、In2O3,SnO2
やITO(Indium―Tin Oxide)等の透明電極がコ
ートされた基板(ガラス板)であり、その間に層
22がガラス面に垂直になるよう配向した
SmC*相又はSmH*相の液晶が封入されてい
る。太線で示した線23が液晶分子を表わしてお
り、この液晶分子23は、その分子に直交した方
向に双極子モーメント(P)24を有している。
基板21と21′上の電極間に一定の閾値以上の
電圧を印加すると、液晶分子23のらせん構造が
ほどけ、双極子モーメント(P)24はすべて電
界方向に向くよう、液晶分子23は配向方向を変
えることができる。液晶分子23は細長い形状を
有しており、その長軸方向と短軸方向で屈折率異
方性を示し、従つて例えばガラス面の上下に互い
にクロスニコルの偏光子を置けば、電圧印加極性
によつて光学特性が変わる液晶光学変調素子とな
ることは、容易に理解される。さらに液晶セルの
厚さを充分に薄くした場合(例えば1μ)には、
第3図に示すように電界を印加していない状態で
も液晶分子のらせん構造はほどけ、その双極子モ
ーメントP又はP′は上向き34又は下向き34′
のどちらかの状態をとる。このようなセルに第3
図に示す如く一定の閾値以上の極性の異る電界E
又はE′を付与すると、双極子モーメントは電界
E又はE′の電界ベクトルに対応して上向き34
又は下向き34′と向きを変え、それに応じて液
晶分子は第1の安定状態33かあるいは第2の安
定状態33′の何れか1方に配向する。
FIG. 2 schematically depicts an example of a ferroelectric liquid crystal cell. 21 and 21' are In 2 O 3 , SnO 2
It is a substrate (glass plate) coated with a transparent electrode such as ITO (Indium-Tin Oxide), and the layer 22 is oriented perpendicular to the glass surface.
Enclosed is SmC * phase or SmH * phase liquid crystal. A thick line 23 represents a liquid crystal molecule, and this liquid crystal molecule 23 has a dipole moment (P) 24 in a direction perpendicular to the molecule.
When a voltage equal to or higher than a certain threshold is applied between the electrodes on the substrates 21 and 21', the helical structure of the liquid crystal molecules 23 is unraveled, and the liquid crystal molecules 23 are aligned in such a way that all dipole moments (P) 24 are directed in the direction of the electric field. can be changed. The liquid crystal molecules 23 have an elongated shape and exhibit refractive index anisotropy in the long axis direction and the short axis direction. Therefore, for example, if crossed Nicol polarizers are placed above and below the glass surface, the voltage application polarity can be changed. It is easily understood that the liquid crystal optical modulation element has optical characteristics that change depending on the temperature. Furthermore, when the thickness of the liquid crystal cell is made sufficiently thin (for example, 1μ),
As shown in Fig. 3, the helical structure of the liquid crystal molecules is unraveled even when no electric field is applied, and the dipole moment P or P' is upward 34 or downward 34'.
take either of the following states. Add a third cell to a cell like this
As shown in the figure, electric fields E with different polarities above a certain threshold value
or E′, the dipole moment is directed upward 34 corresponding to the electric field E or the electric field vector of E′.
or downward 34', and accordingly the liquid crystal molecules are oriented either in the first stable state 33 or in the second stable state 33'.

このような強誘電性液晶を光学変調素子として
用いることの利点は2つある。第1に、応答速度
が極めて速いこと、第2に液晶分子の配向が双安
定性を有することである。第2の点を例えば第3
図によつて説明すると、電界Eを印加すると液晶
分子は第1の安定状態33に配向するが、この状
態は電界を切つても安定である。又、逆向きの電
界E′を印加すると、液晶分子は第2の安定状態
33′に配向してその分子の向きを変えるが、や
はり電界を切つてもこの状態に留つている。又、
与える電界Eが一定の閾値を越えない限り、それ
ぞれの配向状態にやはり維持されている。このよ
うな応答速度の速さと、双安定性が有効に実現さ
れるにはセルとしては出来るだけ薄い方が好まし
く、一般的には0.5μ〜20μ、特に1μ〜5μが
適している。この種の強誘電性液晶を用いたマト
リクス電極構造を有する液晶―電気光学装置は、
例えばクラークとラガバルにより、米国特許第
4367924号公報で提案されている。
There are two advantages to using such a ferroelectric liquid crystal as an optical modulation element. Firstly, the response speed is extremely fast, and secondly, the alignment of liquid crystal molecules has bistability. For example, change the second point to the third point.
To explain with the drawing, when an electric field E is applied, the liquid crystal molecules are oriented in a first stable state 33, and this state remains stable even when the electric field is turned off. When an electric field E' in the opposite direction is applied, the liquid crystal molecules are oriented to a second stable state 33' and the orientation of the molecules is changed, but they remain in this state even after the electric field is turned off. or,
As long as the applied electric field E does not exceed a certain threshold value, each orientation state is maintained. In order to effectively realize such fast response speed and bistability, it is preferable that the cell be as thin as possible, and generally 0.5 to 20 μ, particularly 1 to 5 μ is suitable. A liquid crystal-electro-optical device with a matrix electrode structure using this type of ferroelectric liquid crystal is
For example, Clark and Ragabal, U.S. Patent No.
This is proposed in Publication No. 4367924.

本発明の駆動法の好ましい具体例を第1図に示
す。
A preferred example of the driving method of the present invention is shown in FIG.

第1図A―aは、中間に強誘電性液晶化合物が
挾まれたマトリクス電極構造を有するセル11の
模式図である。12は走査電極群であり、13は
信号電極群である。第1図A―bとA―cはそれ
ぞれ選択された走査電極12(S)に与えられる
電気信号とそれ以外の走査電極(選択されない走
査電極)12(n)に与えられる電気信号を示
し、第1図A―dとA―eはそれぞれ選択された
信号電極13(s)に与えられる電気信号と選択
されない信号電極13(n)に与えられる電気信
号を表わす。第1図A―b〜A―eそれぞれ横軸
が時間を、縦軸が電圧を表す。例えば、動画を表
示するような場合には、走査電極群12は逐次、
周期的に選択される。今、双安定性を有する液晶
セルの第1の安定状態を与えるための閾値電圧を
Vth1とし、第2の安定状態を与えるための閾値
電圧を−Vth2とすると、選択された走査電極1
2(s)に与えられる電気信号は第1図A―bに
示される如く位相(時間)t1では、Vを、位相
(時間)t2では−Vとなるような交番する電圧で
ある。又、それ以外の走査電極12(n)は、第
1図A―cに示す如くアース状態となつており、
電気信号0である。一方、選択された信号電極1
3(s)に与えられる電気信号は第1図A―dに
示される如くVであり、又選択されない信号電極
13(n)に与えられる電気信号は第1図A―e
に示される如く−Vである。以上に於て、電圧値
VはV<Vth1<2Vと−V>Vth2>−2Vを満足す
る所望の値に設定される。このような電気信号が
与えられたときの各画素に印加される電圧波形を
第1図Bに示す。第1図BのB―e、B―b、B
―cとB―dはそれぞれ第1図A中の画素A,
B,CとDは対応している。すなわち、第1図B
により明らかな如く、選択された走査線上にある
画素Aでは位相t2に於て閾値Vth1を越える電圧2V
が印加される。又、同一走査線上に存在する画素
Bでは位相t1における閾値−Vth2を越える電圧−
2Vが印加される。従つて、選択された走査電極
線上に於て信号電極が選択されたか否かに応じ
て、選択された場合には、液晶分子は第1の安定
状態に配向を揃え、選択されない場合には第2の
安定状態に配向を揃える。いずれにしても各画素
の前歴には関係することはない。
FIG. 1A-a is a schematic diagram of a cell 11 having a matrix electrode structure in which a ferroelectric liquid crystal compound is sandwiched between. 12 is a scanning electrode group, and 13 is a signal electrode group. FIGS. 1A-b and 1A-c respectively show an electric signal applied to the selected scan electrode 12(S) and an electric signal applied to the other scan electrodes (unselected scan electrodes) 12(n), Figures 1A-d and 1E represent electrical signals applied to selected signal electrodes 13(s) and unselected signal electrodes 13(n), respectively. In each of FIGS. 1A-1B to A-E, the horizontal axis represents time and the vertical axis represents voltage. For example, when displaying a moving image, the scanning electrode group 12 sequentially
Selected periodically. Now, the threshold voltage to give the first stable state of the liquid crystal cell with bistability is
If Vth is 1 and the threshold voltage for providing the second stable state is -Vth 2 , then the selected scan electrode 1
As shown in FIG. 1A-B, the electrical signal applied to 2(s) is an alternating voltage such that it is V at phase (time) t1 and -V at phase (time) t2 . Further, the other scanning electrodes 12(n) are in a grounded state as shown in FIG. 1A-c.
The electrical signal is 0. On the other hand, the selected signal electrode 1
The electrical signal given to the signal electrode 13(s) is V as shown in FIG. 1A-d, and the electrical signal given to the unselected signal electrode 13(n) is V as shown in FIG. 1A-e.
-V as shown in . In the above, the voltage value V is set to a desired value that satisfies V<V th1 <2V and -V>V th2 >-2V. FIG. 1B shows the voltage waveform applied to each pixel when such an electric signal is applied. B-e, B-b, B in Figure 1B
-c and B-d are pixel A in Figure 1A, respectively.
B, C and D correspond. That is, Figure 1B
As is clear from the above, in the pixel A on the selected scanning line, the voltage 2V exceeding the threshold Vth1 at phase t2
is applied. In addition, in pixel B existing on the same scanning line, the voltage exceeding the threshold value −V th2 at phase t 1
2V is applied. Therefore, depending on whether a signal electrode is selected on the selected scanning electrode line, if the signal electrode is selected, the liquid crystal molecules are aligned in the first stable state, and if not selected, the liquid crystal molecules are aligned in the first stable state. Align the orientation to the stable state of 2. In any case, it has nothing to do with the previous history of each pixel.

一方、画素CとDに示される如く選択されない
走査線上では、すべての画素CとDに印加される
電圧は+V又は−Vであつて、いずれも閾値電圧
を越えない。従つて、各画素CとDにおける液晶
分子は、配向状態を変えることなく前回走査され
たときの信号状態に対応した配向をそのまま保持
している。即ち、走査電極が選択されたときにそ
の―ライン分の信号の書き込みが行われ、一フレ
ームが終了して次回選択されるまでの間は、その
信号状態を保持し得るわけである。従つて、走査
電極数が増えても、実質的なデユーテイ比はかわ
らず、コントラストの低下とクロストーク等は全
く生じない。この際電圧値Vの値及び位相(t1
t2)=Tの値としては、用いられる液晶材料やセ
ルの厚さにも依存するが、通常3ボルト〜70ボル
トで0.1μsec〜2msecの範囲で用いられる。従
来公知の駆動方法と本質的に異るのは、本発明の
方法では選択された走査電極に与えられる電気信
号が第1の安定状態(光信号に変換されたとき
「明」状態であるとする)から第2の安定状態
(光信号に変換されたとき「暗」状態であるとす
る)へ、又はその逆のいずれの変化も起し易くす
るものである点にある。このために、選択された
走査電極に与えられる信号は、+Vから−Vへと
交番している。又、信号電極に与えられる電圧
は、明又は暗の状態を指定すべく、互いに逆極性
の電圧としている。
On the other hand, on unselected scanning lines as shown in pixels C and D, the voltages applied to all pixels C and D are +V or -V, neither of which exceeds the threshold voltage. Therefore, the liquid crystal molecules in each pixel C and D maintain the orientation corresponding to the signal state when scanned last time without changing the orientation state. That is, when a scanning electrode is selected, a signal for that line is written, and that signal state can be maintained until the next selection after one frame ends. Therefore, even if the number of scanning electrodes increases, the actual duty ratio does not change, and contrast reduction and crosstalk do not occur at all. At this time, the value and phase of the voltage value V (t 1 +
The value of t 2 )=T depends on the liquid crystal material used and the thickness of the cell, but is usually used in the range of 3 volts to 70 volts and 0.1 μsec to 2 msec. What is essentially different from conventionally known driving methods is that in the method of the present invention, the electrical signal applied to the selected scanning electrode is in a first stable state (a "bright" state when converted into an optical signal). The point here is that it facilitates a change from a second stable state (which is assumed to be a "dark" state when converted to an optical signal) or vice versa. For this purpose, the signal applied to the selected scan electrode alternates from +V to -V. Further, the voltages applied to the signal electrodes are of opposite polarity to each other in order to designate a bright or dark state.

本発明の駆動法が有効に達成されるためには走
査電極或いは信号電極に与えられる電気信号が、
必ずしも第1図b〜eに於て説明されたような単
純な矩形波信号でなくてもよいことは自明であ
る。例えば、正弦波や三角波によつて駆動するこ
とも可能である。
In order for the driving method of the present invention to be effectively achieved, the electric signal applied to the scanning electrode or the signal electrode must be
It is obvious that the signal does not necessarily have to be a simple rectangular wave signal as explained in FIGS. 1b to 1e. For example, it is also possible to drive with a sine wave or a triangular wave.

又、第4図は本発明の駆動法の別の具体例を示
している。第4図a,b,cとdはそれぞれ選択
された走査電極の信号を、選択されない走査電極
の信号を、選択された(情報有の)情報信号を、
および選択されない(情報無の)情報信号を表わ
している。すなわち、第4図に示すように情報有
の信号電極には、位相(時間)t2の間のみ+Vの
電圧を印加し、情報無の信号電極には位相(時
間)t1の間のみ−Vの電圧を印加しても、結果的
には第1図に示したと同じ駆動形態となる。
Further, FIG. 4 shows another specific example of the driving method of the present invention. Figures 4a, b, c and d respectively show the signals of the selected scanning electrodes, the signals of the unselected scanning electrodes, and the selected (information-containing) information signals.
and represents an unselected (no information) information signal. That is, as shown in FIG. 4, a voltage of +V is applied to the signal electrode with information only during phase (time) t 2 , and a voltage of -V is applied to the signal electrode with no information only during phase (time) t 1 . Even if a voltage of V is applied, the result is the same driving form as shown in FIG.

第5図には、第4図に示した例をさらに変形し
た例が示されている。第5図a,b,cとdは、
それぞれ選択された走査電極の信号(第5図a)
を、選択されない走査電極の信号(第5図b)
を、選択された(情報有の)情報信号(第5図
c)を、および選択されない(情報無の)情報信
号(第5図d)を表わしている。この際、本発明
に基ずいて正しく駆動されるためには、第5図に
示す駆動法では、 の関係を満足することが必要となる。
FIG. 5 shows a further modified example of the example shown in FIG. Figure 5 a, b, c and d are
Signals of each selected scanning electrode (Fig. 5a)
is the signal of the unselected scanning electrode (Fig. 5b)
, a selected (with information) information signal (FIG. 5c), and an unselected (without information) information signal (FIG. 5d). At this time, in order to drive correctly based on the present invention, the driving method shown in FIG. It is necessary to satisfy the following relationship.

第6図は、液晶―光シヤツタに応用した時のマ
トリクス電極構造の模式図が示されている。この
際、41は画素であつて、この部分のみ両側の電
極を透明なもので形成している。42は、走査電
極群、43は信号電極群を表わしている。尚、強
誘電性液晶化合物の例としては、 decyloxybenzylidene―P′―amino―2―
methylbutylcinnamate(DOBAMBC),
hexyloxybenzylidene―P′―amino―2―
chloropropyl cinnamate(HOBACPC)および4
―O―(2―methyl)―butyl―resorcylidene―
4′―octylaniline(MBRA8)等が挙げられる。
FIG. 6 shows a schematic diagram of the matrix electrode structure when applied to a liquid crystal optical shutter. At this time, 41 is a pixel, and the electrodes on both sides of this portion are made of transparent material. 42 represents a scanning electrode group, and 43 represents a signal electrode group. Incidentally, examples of ferroelectric liquid crystal compounds include decyloxybenzylidene-P′-amino-2-
methylbutylcinnamate (DOBAMBC),
hexyloxybenzylidene―P′―amino―2―
chloropropyl cinnamate (HOBACPC) and 4
-O-(2-methyl)-butyl-resorcylidene-
Examples include 4′-octylaniline (MBRA8).

これらの材料を用いて、素子を構成する場合、
液晶化合物が、Sn *C相又はSn*相となるよ
うな温度状態に保持する為、必要に応じて素子を
ヒーターが埋め込まれた銅ブロツク等により支持
することができる。
When constructing an element using these materials,
In order to maintain the temperature state such that the liquid crystal compound becomes the S n * C phase or the S n H * phase, the element can be supported by a copper block or the like in which a heater is embedded, if necessary.

本発明の方法は、液晶―光シヤツタや液晶テレ
ビなどの光学シヤツタあるいはデイスプレイ分野
に広く応用することができる。
The method of the present invention can be widely applied to the field of optical shutters or displays such as liquid crystal optical shutters and liquid crystal televisions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aaは、本発明の駆動法に用いる液晶素
子を模式的に示す平面図である。第1図Abは、
選択された走査電極の信号を示す説明図である。
第1図Acは、選択されない走査電極の信号を示
す説明図である。第1図Adは、選択された信号
電極の情報信号を示す説明図である。第1図Ae
は、選択されない信号電極の情報信号を示す説明
図である。第1図Baは、画素Aの液晶に印加さ
れる電圧の波形図である。第1図Bbは、画素B
の液晶に印加される電圧の波形図である。第1図
Bcは、画素Cの液晶に印加される電圧の波形図
である。第1図Bdは、画素Dの液晶に印加され
る電圧の波形図である。第2図は、カイラルスメ
クテイツク相液晶を有する液晶素子を模式的に示
す斜視図である。第3図は、本発明で用いる液晶
素子を模式的に示す斜視図である。第4図aは、
別の具体例における選択された走査電極の信号を
示す説明図である。第4図bは、別の具体例にお
ける選択されない走査電極の信号を示す説明図で
ある。第4図cは、別の具体例における選択され
た信号電極の情報信号を示す説明図である。第4
図dは、別の具体例における選択されない信号電
極の情報信号を示す説明図である。第5図aは、
別の具体例における選択された走査電極の信号を
示す説明図である。第5図bは、別の具体例にお
ける選択されない走査電極の信号を示す説明図で
ある。第5図cは、別の具体例における選択され
た信号電極の情報信号を示す説明図である。第5
図dは、別の具体例における選択されない信号電
極の情報信号を示す説明図である。第6図は、本
発明の駆動法を用いた液晶―光シヤツタの平面図
である。 11…液晶素子、12…走査電極群、12
(s)…選択された走査電極、12(n)…選択
されない走査電極、13…信号電極群、13
(s)選択された信号電極、13(n)…選択さ
れない信号電極、33…第1の安定状態に配向し
た液晶、33′…第2の安定状態に配向した液
晶、34…上向き双極子モーメントP、34′…
下向き双極子モーメントP′。
FIG. 1Aa is a plan view schematically showing a liquid crystal element used in the driving method of the present invention. Figure 1 Ab is
FIG. 3 is an explanatory diagram showing signals of selected scanning electrodes.
FIG. 1 Ac is an explanatory diagram showing signals of unselected scanning electrodes. FIG. 1 Ad is an explanatory diagram showing information signals of selected signal electrodes. Figure 1 Ae
FIG. 2 is an explanatory diagram showing information signals of unselected signal electrodes. FIG. 1 Ba is a waveform diagram of the voltage applied to the liquid crystal of pixel A. Figure 1 Bb is pixel B
FIG. 3 is a waveform diagram of the voltage applied to the liquid crystal of FIG. Figure 1
Bc is a waveform diagram of a voltage applied to the liquid crystal of pixel C. FIG. 1Bd is a waveform diagram of the voltage applied to the liquid crystal of the pixel D. FIG. 2 is a perspective view schematically showing a liquid crystal element having a chiral smectoid phase liquid crystal. FIG. 3 is a perspective view schematically showing a liquid crystal element used in the present invention. Figure 4a is
FIG. 7 is an explanatory diagram showing signals of selected scanning electrodes in another specific example. FIG. 4b is an explanatory diagram showing signals of unselected scanning electrodes in another specific example. FIG. 4c is an explanatory diagram showing information signals of selected signal electrodes in another specific example. Fourth
FIG. d is an explanatory diagram showing information signals of unselected signal electrodes in another specific example. Figure 5a is
FIG. 7 is an explanatory diagram showing signals of selected scanning electrodes in another specific example. FIG. 5b is an explanatory diagram showing signals of unselected scanning electrodes in another specific example. FIG. 5c is an explanatory diagram showing information signals of selected signal electrodes in another specific example. Fifth
FIG. d is an explanatory diagram showing information signals of unselected signal electrodes in another specific example. FIG. 6 is a plan view of a liquid crystal optical shutter using the driving method of the present invention. 11...Liquid crystal element, 12...Scanning electrode group, 12
(s)...Selected scanning electrode, 12(n)...Unselected scanning electrode, 13...Signal electrode group, 13
(s) Selected signal electrode, 13(n)...Unselected signal electrode, 33...Liquid crystal oriented in first stable state, 33'...Liquid crystal oriented in second stable state, 34...Upward dipole moment P, 34'...
Downward dipole moment P′.

Claims (1)

【特許請求の範囲】[Claims] 1 走査電極群と信号電極群とを有し、該走査電
極群と信号電極群との間に強誘電性液晶を配置し
た液晶装置において、走査電極に走査選択信号を
印加し、該走査選択信号が第1位相と第2位相と
で、走査非選択電極への印加電圧を基準として、
それぞれ一方極性電圧と他方極性電圧とを有し、
第1位相で、選択された信号電極に、走査選択信
号との合成により強誘電性液晶の一方の閾値電圧
を越えた電圧を与え、同時に走査非選択電極への
印加電圧との合成により強誘電性液晶の一方の閾
値電圧と他方の閾値電圧との間の電圧を与える第
1情報信号を印加し、第2位相で、他の信号電極
に、走査選択信号との合成により強誘電性液晶の
他方の閾値電圧を越えた電圧を与え、同時に走査
非選択電極への印加電圧との合成により強誘電性
液晶の一方の閾値電圧と他方の閾値電圧との間の
電圧を与える第2情報信号を印加する手段を有す
る液晶装置。
1. In a liquid crystal device having a scanning electrode group and a signal electrode group, and in which a ferroelectric liquid crystal is arranged between the scanning electrode group and the signal electrode group, a scanning selection signal is applied to the scanning electrode, and the scanning selection signal is is the first phase and the second phase, with the voltage applied to the scan non-selected electrode as a reference,
each has one polarity voltage and the other polarity voltage,
In the first phase, a voltage exceeding the threshold voltage of one of the ferroelectric liquid crystals is applied to the selected signal electrode by combining with the scanning selection signal, and at the same time, a voltage exceeding the threshold voltage of one of the ferroelectric liquid crystals is applied to the selected signal electrode by combining with the voltage applied to the scanning non-selected electrode. A first information signal that provides a voltage between one threshold voltage of the ferroelectric liquid crystal and the other threshold voltage is applied, and in the second phase, the signal of the ferroelectric liquid crystal is applied to the other signal electrode by combining with the scanning selection signal. A second information signal is applied that exceeds the threshold voltage of the other and simultaneously provides a voltage between one threshold voltage and the other threshold voltage of the ferroelectric liquid crystal by combining with the voltage applied to the scanning non-selected electrode. A liquid crystal device having means for applying an voltage.
JP6865983A 1983-04-13 1983-04-19 Driving method of optical modulating element Granted JPS59193426A (en)

Priority Applications (42)

Application Number Priority Date Filing Date Title
JP6865983A JPS59193426A (en) 1983-04-19 1983-04-19 Driving method of optical modulating element
US06/598,800 US4655561A (en) 1983-04-19 1984-04-10 Method of driving optical modulation device using ferroelectric liquid crystal
DE19843414704 DE3414704A1 (en) 1983-04-19 1984-04-18 METHOD FOR DRIVING AN OPTICAL MODULATING DEVICE
DE3448307A DE3448307C2 (en) 1983-04-19 1984-04-18
DE3448306A DE3448306C2 (en) 1983-04-19 1984-04-18
DE3448304A DE3448304C2 (en) 1983-04-19 1984-04-18
GB08410068A GB2141279B (en) 1983-04-19 1984-04-18 Method of driving optical modulation device
DE3448303A DE3448303C2 (en) 1983-04-19 1984-04-18
DE3448305A DE3448305C2 (en) 1983-04-19 1984-04-18
FR8406275A FR2544884B1 (en) 1983-04-19 1984-04-19 METHOD FOR CONTROLLING AN OPTICAL MODULATION DEVICE
GB08619692A GB2180385B (en) 1983-04-19 1986-08-13 Liquid crystal apparatus
GB08619691A GB2180384B (en) 1983-04-19 1986-08-13 Driving display devices
GB08619831A GB2180386B (en) 1983-04-19 1986-08-14 Liquid crystal apparatus
GB08712392A GB2190530B (en) 1983-04-19 1987-05-27 Liquid crystal apparatus
GB08712391A GB2191623B (en) 1983-04-19 1987-05-27 Liquid crystal apparatus
US07/139,162 US5448383A (en) 1983-04-19 1987-12-21 Method of driving ferroelectric liquid crystal optical modulation device
US07/557,643 US5418634A (en) 1983-04-19 1990-07-25 Method for driving optical modulation device
SG5291A SG5291G (en) 1983-04-19 1991-01-31 Liquid crystal apparatus
SG6591A SG6591G (en) 1983-04-19 1991-02-07 Liquid crystal apparatus
SG6491A SG6491G (en) 1983-04-19 1991-02-07 Liquid crystal apparatus
SG6191A SG6191G (en) 1983-04-19 1991-02-07 Liquid crystal apparatus
SG10391A SG10391G (en) 1983-04-19 1991-02-21 Liquid crystal apparatus
SG116/91A SG11691G (en) 1983-04-19 1991-02-23 Method of driving optical modulation device
HK708/91A HK70891A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK705/91A HK70591A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK709/91A HK70991A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK707/91A HK70791A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK715/91A HK71591A (en) 1983-04-19 1991-09-05 Method of driving optical modulation device
HK706/91A HK70691A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
US08/440,321 US5812108A (en) 1983-04-19 1995-05-12 Method of driving optical modulation device
US08/444,898 US5825390A (en) 1983-04-19 1995-05-19 Method of driving optical modulation device
US08/444,746 US5592192A (en) 1983-04-19 1995-05-19 Method of driving optical modulation device
US08/444,899 US5548303A (en) 1983-04-19 1995-05-19 Method of driving optical modulation device
US08/462,974 US5886680A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/463,780 US5621427A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/462,978 US5790449A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/465,225 US5565884A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/463,781 US5841417A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/465,357 US5696526A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/465,058 US5696525A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/465,090 US5831587A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/863,598 US6091388A (en) 1983-04-13 1997-05-27 Method of driving optical modulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6865983A JPS59193426A (en) 1983-04-19 1983-04-19 Driving method of optical modulating element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10311887A Division JPS62294224A (en) 1987-04-28 1987-04-28 Liquid crystal device

Publications (2)

Publication Number Publication Date
JPS59193426A JPS59193426A (en) 1984-11-02
JPS6245535B2 true JPS6245535B2 (en) 1987-09-28

Family

ID=13380048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6865983A Granted JPS59193426A (en) 1983-04-13 1983-04-19 Driving method of optical modulating element

Country Status (1)

Country Link
JP (1) JPS59193426A (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156229A (en) * 1984-12-28 1986-07-15 Canon Inc Method for driving liquid crystal element
JPS61245142A (en) * 1985-04-23 1986-10-31 Canon Inc Liquid crystal optical element
JPH0782168B2 (en) * 1985-07-03 1995-09-06 株式会社日立製作所 Method of driving optical switch element
JPH0679117B2 (en) * 1985-09-30 1994-10-05 松下電器産業株式会社 Driving method of optical modulation switch
JPH07120143B2 (en) * 1986-06-04 1995-12-20 キヤノン株式会社 Information reading method for display panel and information reading device for display panel
JPS635326A (en) * 1986-06-25 1988-01-11 Nec Corp Driving method for liquid crystal element
JPH0827454B2 (en) * 1986-11-05 1996-03-21 シチズン時計株式会社 Driving method for liquid crystal shutter head
JPS62294224A (en) * 1987-04-28 1987-12-21 Canon Inc Liquid crystal device
ES2044013T3 (en) * 1988-10-17 1994-01-01 Canon Kk MESOMORPHIC COMPOUND, A LIQUID CRYSTAL COMPOSITION CONTAINING THE COMPOUND AND A LIQUID CRYSTAL DEVICE USING THE COMPOSITION.
JP2692947B2 (en) * 1989-04-14 1997-12-17 キヤノン株式会社 Liquid crystalline compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2832028B2 (en) * 1989-04-20 1998-12-02 キヤノン株式会社 Compound, liquid crystal composition containing the same, and liquid crystal device using the same
US5250219A (en) * 1989-05-08 1993-10-05 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
JP2801269B2 (en) * 1989-07-10 1998-09-21 キヤノン株式会社 Compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2763339B2 (en) * 1989-07-31 1998-06-11 キヤノン株式会社 Liquid crystal composition and liquid crystal device using the same
JP2801279B2 (en) * 1989-08-25 1998-09-21 キヤノン株式会社 Compound, liquid crystal composition containing the same, and liquid crystal device using the same
US5200109A (en) * 1989-09-22 1993-04-06 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5413735A (en) * 1990-05-24 1995-05-09 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device using the liquid crystal composition, and display method and apparatus using the liquid crystal composition and device
JP2984322B2 (en) * 1990-06-06 1999-11-29 キヤノン株式会社 Liquid crystal composition and liquid crystal device containing the same
JP2941971B2 (en) * 1991-02-13 1999-08-30 キヤノン株式会社 Liquid crystal composition, liquid crystal element having the same, display method and display device using the same
JP2941972B2 (en) * 1991-02-14 1999-08-30 キヤノン株式会社 Liquid crystal composition, liquid crystal element having the same, display method and display device using the same
JP3005063B2 (en) * 1991-02-20 2000-01-31 キヤノン株式会社 Liquid crystal composition, liquid crystal element having the same, display method and display device using the same
US5305131A (en) 1991-11-22 1994-04-19 Canon Kabushiki Kaisha Liquid crystal composition having an improved temperature dependence of response speed, liquid crystal device and display apparatus
JP2952122B2 (en) * 1991-11-22 1999-09-20 キヤノン株式会社 Liquid crystal element and display device using the same
EP0604921B1 (en) * 1992-12-25 1998-04-29 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal display apparatus
US5629788A (en) * 1992-12-29 1997-05-13 Canon Kabushiki Kaisha Liquid crystal device providing tilt angle inclination angle and ps satisfying relationships at 55 degrees
JP3040921B2 (en) * 1993-10-13 2000-05-15 キヤノン株式会社 Ferroelectric liquid crystal element and liquid crystal device having the same
US5728318A (en) * 1994-11-10 1998-03-17 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
JP3119341B2 (en) * 1995-01-31 2000-12-18 キヤノン株式会社 Liquid crystal composition, liquid crystal element having the same, and liquid crystal device having the same
JP3119339B2 (en) * 1995-01-31 2000-12-18 キヤノン株式会社 Liquid crystal element and liquid crystal device having the same
JP3119340B2 (en) * 1995-01-31 2000-12-18 キヤノン株式会社 Liquid crystal composition, liquid crystal element having the same, and liquid crystal device having the same
JP3119342B2 (en) * 1995-01-31 2000-12-18 キヤノン株式会社 Liquid crystal composition, liquid crystal element having the same, and liquid crystal device having the same
JP3043257B2 (en) * 1995-01-31 2000-05-22 キヤノン株式会社 Liquid crystal composition, liquid crystal element having the same, and liquid crystal device having the same
US5841497A (en) * 1995-07-28 1998-11-24 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5858269A (en) * 1995-09-20 1999-01-12 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
DE69618413T2 (en) * 1995-10-12 2002-06-20 Canon K.K., Tokio/Tokyo Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
US5932136A (en) 1995-10-20 1999-08-03 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US6177152B1 (en) 1995-10-20 2001-01-23 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5885482A (en) * 1995-12-28 1999-03-23 Canon Kabushiki Kaisha Liquid crystal device, production process thereof and liquid crystal apparatus
JP3093627B2 (en) 1996-02-09 2000-10-03 キヤノン株式会社 Manufacturing method of liquid crystal display device
US5956010A (en) * 1996-05-31 1999-09-21 Canon Kabushiki Kaisha Liquid crystal apparatus and driving method
JPH1068923A (en) 1996-06-17 1998-03-10 Canon Inc Liquid crystal element and liquid crystal device using that
US6452581B1 (en) 1997-04-11 2002-09-17 Canon Kabushiki Kaisha Driving method for liquid crystal device and liquid crystal apparatus
JPH11100577A (en) * 1997-07-31 1999-04-13 Canon Inc Method for orienting liquid crystal, production of liquid crystal, liquid crystal element produced thereby, and liquid crystal apparatus
US6195147B1 (en) 1997-08-01 2001-02-27 Canon Kabushiki Kaisha Liquid crystal substrate with optical modulation region having different alignment control forces

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515993A (en) * 1974-07-03 1976-01-19 Suwa Seikosha Kk
JPS56757A (en) * 1979-06-15 1981-01-07 Nippon Telegr & Teleph Corp <Ntt> Terminal unit for diversity of car telephone
JPS56107216A (en) * 1980-01-08 1981-08-26 Clark Noel A Liquid crystal electrooptical device and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515993A (en) * 1974-07-03 1976-01-19 Suwa Seikosha Kk
JPS56757A (en) * 1979-06-15 1981-01-07 Nippon Telegr & Teleph Corp <Ntt> Terminal unit for diversity of car telephone
JPS56107216A (en) * 1980-01-08 1981-08-26 Clark Noel A Liquid crystal electrooptical device and production thereof
US4367924A (en) * 1980-01-08 1983-01-11 Clark Noel A Chiral smectic C or H liquid crystal electro-optical device

Also Published As

Publication number Publication date
JPS59193426A (en) 1984-11-02

Similar Documents

Publication Publication Date Title
JPS6245535B2 (en)
JPS6245536B2 (en)
US5633652A (en) Method for driving optical modulation device
US5092665A (en) Driving method for ferroelectric liquid crystal optical modulation device using an auxiliary signal to prevent inversion
US5621427A (en) Method of driving optical modulation device
JPS6249604B2 (en)
JPS6249605B2 (en)
US5296953A (en) Driving method for ferro-electric liquid crystal optical modulation device
JPH0422496B2 (en)
JPS6243167B2 (en)
US5436743A (en) Method for driving optical modulation device
JPS6261930B2 (en)
JPH0523406B2 (en)
JPS6244247B2 (en)
JPH0535848B2 (en)
JPS6246845B2 (en)
JPS6361233A (en) Driving method for optical modulating element
JPS6249608B2 (en)
JPS62294224A (en) Liquid crystal device
US5757350A (en) Driving method for optical modulation device
JPS63306424A (en) Driving device
JPS63118130A (en) Liquid crystal device
JPH0523405B2 (en)
JPH0823635B2 (en) Optical modulator
JPS61295531A (en) Liquid crystal element for gradient display