JP2804607B2 - Thin-film semiconductor solar cells - Google Patents

Thin-film semiconductor solar cells

Info

Publication number
JP2804607B2
JP2804607B2 JP2171524A JP17152490A JP2804607B2 JP 2804607 B2 JP2804607 B2 JP 2804607B2 JP 2171524 A JP2171524 A JP 2171524A JP 17152490 A JP17152490 A JP 17152490A JP 2804607 B2 JP2804607 B2 JP 2804607B2
Authority
JP
Japan
Prior art keywords
solar cell
thin
light
film semiconductor
semiconductor solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2171524A
Other languages
Japanese (ja)
Other versions
JPH0461284A (en
Inventor
繁 能口
浩志 岩多
景一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2171524A priority Critical patent/JP2804607B2/en
Publication of JPH0461284A publication Critical patent/JPH0461284A/en
Application granted granted Critical
Publication of JP2804607B2 publication Critical patent/JP2804607B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、薄膜半導体太陽電池に関する。The present invention relates to a thin-film semiconductor solar cell.

(ロ) 従来の技術 従来、非晶質シリコン材料などを光電変換層とする薄
膜半導体太陽電池では、その基板材料として一般にガラ
スや石英に代表されるような透光性基板が用いられてい
る。これら透光性基板は、15th IEEE Photovoltaic Sci
ence and Engineering Conference 245(1981)に記載
されているように、安価で、かつ広範囲な光波長領域で
良好な透過特性を有しているため広く用いられている。
(B) Conventional technology Conventionally, in a thin film semiconductor solar cell using an amorphous silicon material or the like as a photoelectric conversion layer, a light-transmitting substrate generally represented by glass or quartz is used as a substrate material. These translucent substrates are the 15th IEEE Photovoltaic Sci.
As described in the ence and Engineering Conference 245 (1981), it is widely used because it is inexpensive and has good transmission characteristics in a wide range of light wavelengths.

さらに前記薄膜半導体太陽電池では、前記光電変換層
から光キャリアの取り出し電極として、前記透光性基板
と当該光電変換層との間に光入射側用電極として、ITO
(Indium Thin Oxide)膜や酸化スズ(SnO2)膜などに
代表される透明導電膜が用いられている。
Further, in the thin-film semiconductor solar cell, ITO is used as an electrode for taking out photocarriers from the photoelectric conversion layer, and as a light incident side electrode between the translucent substrate and the photoelectric conversion layer.
A transparent conductive film typified by an (Indium Thin Oxide) film or a tin oxide (SnO 2 ) film is used.

(ハ) 発明が解決しようとする課題 第5図は、従来の薄膜半導体太陽電池断面図で、基板
材料として前述の透光性基板を用いたものを示してい
る。21は透光性基板、22は透明導電膜、23は光電変換
層、24は導電膜、25は当該太陽電池の光入射面である。
さらに光電変換層23は23aのp型半導体層,23bのi型半
導体層さらに23cのn型半導体層により構成されてい
る。
(C) Problems to be Solved by the Invention FIG. 5 is a cross-sectional view of a conventional thin-film semiconductor solar cell using the above-mentioned light-transmitting substrate as a substrate material. 21 is a translucent substrate, 22 is a transparent conductive film, 23 is a photoelectric conversion layer, 24 is a conductive film, and 25 is a light incident surface of the solar cell.
Further, the photoelectric conversion layer 23 includes a p-type semiconductor layer 23a, an i-type semiconductor layer 23b, and an n-type semiconductor layer 23c.

前記太陽電池では、入射光は光電変換層23に到達する
までに幾つかの反射や吸収を受け減衰される。例えば同
図に示す太陽電池の場合、このような入射光損失の形態
として、反射に関するものとしては、光入射面25、透光
性基板21と透明導電膜22との界面、さらに透明導電膜22
とp型半導体層23aとの界面に起因するもの、吸収に関
するものとしては透光性基板21や透明導電膜22によるも
のとがある。
In the solar cell, incident light is attenuated by some reflection or absorption before reaching the photoelectric conversion layer 23. For example, in the case of the solar cell shown in the figure, as the form of such incident light loss, regarding the reflection, the light incident surface 25, the interface between the transparent substrate 21 and the transparent conductive film 22, the transparent conductive film 22
The one caused by the interface between the light-transmitting substrate 21 and the p-type semiconductor layer 23a and the one related to absorption include those caused by the light-transmitting substrate 21 and the transparent conductive film 22.

斯る反射及び吸収は、太陽電池の変換効率を低下させ
る原因となる。例えば1mmの厚みのガラスを用いた太陽
電池の場合、入射面25からの光のうち約85%しか光電変
換層23に到達できず、変換効率の低下の大きな原因とな
っている。
Such reflection and absorption cause a decrease in the conversion efficiency of the solar cell. For example, in the case of a solar cell using glass with a thickness of 1 mm, only about 85% of the light from the incident surface 25 can reach the photoelectric conversion layer 23, which is a major cause of a decrease in conversion efficiency.

本発明の目的は、かかる課題に鑑み入射光損失が極め
て少ない太陽電池を提供することにある。
An object of the present invention is to provide a solar cell having extremely small incident light loss in view of the above problem.

(ニ) 課題を解決するための手段 本発明における薄膜半導体太陽電池の特徴は、透光性
基板上に、光電変換層、導電層、を積層してなる薄膜半
導体太陽電池において、前記透光性基板のうち少なくと
も前記光電変換層との接触近傍が超イオン電導特性を具
備したことにある。
(D) Means for Solving the Problems The feature of the thin film semiconductor solar cell of the present invention is that in the thin film semiconductor solar cell in which a photoelectric conversion layer and a conductive layer are laminated on a light transmitting substrate, At least the vicinity of the substrate in contact with the photoelectric conversion layer has superionic conductivity.

(ホ) 作用 前述した入射光損失を低減させるためには入射光を反
射させる界面の数を太陽電池の構造上少なくすること
と、入射面と光電変換層との間に位置する構成材料とし
て光吸収の少ないものを採用することが必要である。
(E) Function In order to reduce the incident light loss described above, the number of interfaces for reflecting the incident light should be reduced in the structure of the solar cell, and light as a constituent material located between the incident surface and the photoelectric conversion layer. It is necessary to adopt one with low absorption.

本発明による薄膜半導体太陽電池では、透光性基板と
透明導電膜のそれぞれの機能を1つの透光性基板に具備
せしめることによって、斯る課題を解決するものであ
る。
In the thin-film semiconductor solar cell according to the present invention, such a problem is solved by providing each of the functions of the light-transmitting substrate and the transparent conductive film in one light-transmitting substrate.

即ち、透明性基板の表面に超イオン電導特性を具備せ
しめることにより、従来の透明導電膜材料を不要とし、
かつ、透光性基板と透明導電膜との界面と、透明導電膜
と光電変換層との界面のそれぞれにおける光反射損失を
除去するものである。
That is, by providing super ionic conductivity on the surface of the transparent substrate, the conventional transparent conductive film material becomes unnecessary,
Further, the present invention eliminates light reflection loss at each of the interface between the transparent substrate and the transparent conductive film and the interface between the transparent conductive film and the photoelectric conversion layer.

(ヘ) 実施例 第1図は本発明の太陽電池実施例断面図を示してい
る。1は本発明の薄膜半導体太陽電池の特徴である超イ
オン電導特性を具備した透光性基板、2は透光性基板1
上にプラズマガス分解法によって成膜された非晶質シリ
コンを主体とする光電変換層、3は光電変換層2上に真
空蒸着法やスパッタ法によって形成されたアルミニュー
ムやクロムなどからなる導電層である。また、透光性基
板1は2つの部分から成り、1aは透光性を有した絶縁
部、1bは透光性を有した超イオン電導特性を具備する導
電部である。さらに光電変換層2においても、2aのp型
非晶質シリコン層、2bのi型非晶質シリコン層、2cのn
型非晶質シリコン層から成っている。
(F) Example FIG. 1 shows a sectional view of an example of a solar cell according to the present invention. 1 is a translucent substrate having super ionic conductivity characteristic of the thin film semiconductor solar cell of the present invention, and 2 is a translucent substrate 1
A photoelectric conversion layer mainly composed of amorphous silicon formed on the photoelectric conversion layer 3 by a plasma gas decomposition method, and a conductive layer 3 made of aluminum or chromium formed on the photoelectric conversion layer 2 by a vacuum evaporation method or a sputtering method. It is. The light-transmitting substrate 1 is composed of two parts, 1a is a light-transmitting insulating portion, and 1b is a light-transmitting conductive portion having superionic conductivity. Further, also in the photoelectric conversion layer 2, the p-type amorphous silicon layer 2a, the i-type amorphous silicon layer 2b, and the n-type amorphous silicon layer 2c
Type amorphous silicon layer.

本実施例のうち透光性基板1以外は、従来の非晶質シ
リコン太陽電池と同様な製法によって形成されたもので
ある。
Except for the light-transmitting substrate 1 in this embodiment, it is formed by the same manufacturing method as a conventional amorphous silicon solar cell.

透光性基板1としては、AgZ−Ag2O−MXOY系と記載さ
れるガラスを用いた。この場合のMXOYとしてはB2O3,SiO
2,GeO2,P2O5,V2O5,As2O5,CrO3,SeO3,MoO3などが採用で
き、またAgZとしてはAgI,AgBrやAgClなどが使用でき
る。
The light transmitting substrate 1, a glass which is described as AgZ-Ag 2 O-M X O Y system. In this case, M X O Y is B 2 O 3 , SiO
2 , GeO 2 , P 2 O 5 , V 2 O 5 , As 2 O 5 , CrO 3 , SeO 3 , MoO 3 and the like can be adopted, and AgZ can be AgI, AgBr and AgCl.

以下では、その具体例としてAgI−Ag2O−SiO2系ガラ
スによる薄膜半導体太陽電池の製法について詳述する。
Hereinafter, described in detail preparation of thin film semiconductor solar cell according AgI-Ag 2 O-SiO 2 based glass as an example.

まず、AgI−Ag2O−SiO2系ガラスを製作するためにAg2
O,SiO2,AgIを各々1:1:3のモル比で混合した溶剤Aと、A
g2O,SiO2を各々1:1のモル比で混合した溶剤Bをそれぞ
れ電気炉中で約700℃、3時間の条件下で溶融する。
First, Ag 2 to fabricate the AgI-Ag 2 O-SiO 2 based glass
A solvent A in which O, SiO 2 and AgI are mixed at a molar ratio of 1: 1: 3,
Solvent B in which g 2 O and SiO 2 are mixed at a molar ratio of 1: 1 is melted in an electric furnace at about 700 ° C. for 3 hours.

次に前記溶剤Bを溶融された錫の液面上に平面的に均
一に流し、前記溶剤Bが冷却することによりガラス転移
が発生し始めた時点で、引き続き前記溶剤Aを前記溶剤
Bの極表面上に均一に流し空気中で放冷する。最後に、
前記錫の液から前記各溶剤によって積層されたガラスを
剥離することによって透光性基板1が完成する。
Next, the solvent B is uniformly flowed in a plane on the liquid surface of the molten tin, and when the glass transition starts to occur due to the cooling of the solvent B, the solvent A is continuously applied to the electrode of the solvent B. Pour evenly over the surface and allow to cool in air. Finally,
The translucent substrate 1 is completed by peeling the laminated glass from the tin solution by the respective solvents.

従って、前記溶剤Bからなる部分は透光性基板1の絶
縁部1aであり、前記溶剤Aからなる部分は超イオン電導
特性を具備する導電部1bである。特に各溶剤による膜の
厚みは、溶剤Bによるもので0.3〜1mm,溶剤Aによるも
のでは0.1〜10μmの範囲とすることが好ましい。
Therefore, the portion made of the solvent B is the insulating portion 1a of the translucent substrate 1, and the portion made of the solvent A is the conductive portion 1b having superionic conductivity. In particular, the thickness of the film made of each solvent is preferably in the range of 0.3 to 1 mm for the solvent B and 0.1 to 10 μm for the solvent A.

実際に薄膜半導体太陽電池の透光性基板とする場合、
前記溶剤Aと溶剤Bのそれぞれによる厚みの和が前記透
光性基板1の厚みとなる。
When it is actually used as a light-transmitting substrate for a thin-film semiconductor solar cell,
The sum of the thicknesses of the solvent A and the solvent B is the thickness of the translucent substrate 1.

当該透光性基板の場合、前記溶剤Aによって形成され
た導電部1bの導電特性の制御が重要となる。その制御方
法としては、前記溶剤Aの薬液の混合比を調整する方法
と、前記溶剤Aによる導電部1bの膜厚を調整する方法と
があり、いずれの方法によっても簡便に導電特性を調整
できる。
In the case of the translucent substrate, it is important to control the conductive characteristics of the conductive portion 1b formed by the solvent A. As the control method, there are a method of adjusting the mixing ratio of the chemical solution of the solvent A and a method of adjusting the film thickness of the conductive portion 1b by the solvent A, and the conductive characteristics can be easily adjusted by any method. .

本実施例の具体例として、シート抵抗40Ω/cm2の超イ
オン電導特性を有する透光性基板1を用いた薄膜半導体
太陽電池の特性を第1表に示す。同表には、従来の薄膜
太陽電池の特性も同時に示している。この従来例では、
透光性基板として、厚みが1mmの汎用の絶縁性ガラスを
用い、且つ2000Åの透明導電膜を使用しており、その他
は、本発明の太陽電池と全く同様の条件により形成した
ものである。
As a specific example of the present embodiment, Table 1 shows the characteristics of a thin-film semiconductor solar cell using a translucent substrate 1 having a superionic conductivity with a sheet resistance of 40 Ω / cm 2 . The table also shows the characteristics of the conventional thin-film solar cell. In this conventional example,
As the light-transmitting substrate, a general-purpose insulating glass having a thickness of 1 mm was used, and a transparent conductive film having a thickness of 2000 mm was used. The other components were formed under exactly the same conditions as the solar cell of the present invention.

さらに、第2図と第3図には本実施例薄膜半導体太陽
電池と、前記従来の太陽電池の出力特性をそれぞれ示し
ている。以上の結果から、本発明による薄膜半導体太陽
電池においては、特に短絡電流が著しく向上し、その割
合も6.2%の増加であり、変換効率の面でも6.4%の向上
となった。
2 and 3 show the output characteristics of the thin-film semiconductor solar cell of this embodiment and the conventional solar cell, respectively. From the above results, in the thin-film semiconductor solar cell according to the present invention, in particular, the short-circuit current was remarkably improved, the ratio was increased by 6.2%, and the conversion efficiency was improved by 6.4%.

尚、本発明の薄膜半導体太陽電池の透光性基板におい
ても、絶縁部と導電部の界面が存在しうるものの、その
主成分がいずれもガラス系であるため、入射光の反射は
ほとんど問題とならない。
In the light-transmitting substrate of the thin-film semiconductor solar cell of the present invention, although the interface between the insulating part and the conductive part may exist, reflection of incident light is almost a problem because all of its main components are glass-based. No.

また、本発明者らは、本発明薄膜半導体太陽電池にお
ける導電部のシート抵抗と、該薄膜半導体太陽電池の特
性との相関を調べた。第4図は、前記薄膜半導体太陽電
池の変換効率と、前記導電部のシート抵抗との関係を示
す曲線図で、図示の通り、シート抵抗が50Ω/cm2以下と
することによって良好な特性を得ることが判った。
In addition, the present inventors have examined the correlation between the sheet resistance of the conductive portion in the thin-film semiconductor solar cell of the present invention and the characteristics of the thin-film semiconductor solar cell. FIG. 4 is a curve diagram showing the relationship between the conversion efficiency of the thin-film semiconductor solar cell and the sheet resistance of the conductive portion. As shown in the figure, good characteristics are obtained by setting the sheet resistance to 50Ω / cm 2 or less. It turned out to get.

本実施例では、薄膜半導体として非晶質シリコンを主
体とする半導体を用いて説明したが、これに限るもので
はないことは言うまでもない。
In the present embodiment, a semiconductor mainly composed of amorphous silicon has been described as a thin film semiconductor, but it is needless to say that the present invention is not limited to this.

(ト) 発明の効果 本発明による薄膜半導体太陽電池によれば、透明導電
膜を使用しないことにより、従来の透光性基板と透明導
電膜との界面における光反射および該透明導電膜による
光吸収、による入射光の損失が低減でき、太陽電池特性
の向上が計れる。
(G) Effects of the Invention According to the thin-film semiconductor solar cell of the present invention, light reflection at the interface between the conventional light-transmitting substrate and the transparent conductive film and light absorption by the transparent conductive film are eliminated by using no transparent conductive film. , The loss of incident light can be reduced, and the solar cell characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の薄膜半導体太陽電池断面図、第2図は
本発明薄膜半導体太陽電池における特性曲線図、第3図
は従来の太陽電池における特性曲線図、第4図は本発明
薄膜半導体太陽電池の透光性基板におけるシート抵抗に
対する該太陽電池の変換効率との関係を示す曲線図、第
5図は従来の太陽電池断面図である。
1 is a cross-sectional view of the thin-film semiconductor solar cell of the present invention, FIG. 2 is a characteristic curve of the thin-film semiconductor solar cell of the present invention, FIG. 3 is a characteristic curve of a conventional solar cell, and FIG. FIG. 5 is a cross-sectional view of a conventional solar cell, showing a relationship between the sheet resistance of the translucent substrate of the solar cell and the conversion efficiency of the solar cell.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−101468(JP,A) 特開 平1−260765(JP,A) 特開 昭50−99485(JP,A) 特開 昭54−45157(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 31/04──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-101468 (JP, A) JP-A-1-260765 (JP, A) JP-A-50-99485 (JP, A) JP-A-54 45157 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) H01L 31/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】透光性基板上に、光電変換層、導電層、を
積層してなる薄膜半導体太陽電池において、前記透光性
基板のうち少なくとも前記光電変換層との接触近傍が超
イオン電導特性を具備したことを特徴とする薄膜半導体
太陽電池。
1. A thin-film semiconductor solar cell comprising a photoelectric conversion layer and a conductive layer laminated on a light-transmitting substrate, wherein at least the vicinity of the light-transmitting substrate in contact with the photoelectric conversion layer is superionic conductive. A thin-film semiconductor solar cell having characteristics.
JP2171524A 1990-06-28 1990-06-28 Thin-film semiconductor solar cells Expired - Lifetime JP2804607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2171524A JP2804607B2 (en) 1990-06-28 1990-06-28 Thin-film semiconductor solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2171524A JP2804607B2 (en) 1990-06-28 1990-06-28 Thin-film semiconductor solar cells

Publications (2)

Publication Number Publication Date
JPH0461284A JPH0461284A (en) 1992-02-27
JP2804607B2 true JP2804607B2 (en) 1998-09-30

Family

ID=15924717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2171524A Expired - Lifetime JP2804607B2 (en) 1990-06-28 1990-06-28 Thin-film semiconductor solar cells

Country Status (1)

Country Link
JP (1) JP2804607B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002085211A (en) * 2000-09-12 2002-03-26 Enukanto Kk Merchandise displaying device

Also Published As

Publication number Publication date
JPH0461284A (en) 1992-02-27

Similar Documents

Publication Publication Date Title
US4135290A (en) Method for fabricating solar cells having integrated collector grids
JPH0510834B2 (en)
JP2804607B2 (en) Thin-film semiconductor solar cells
JPS61141185A (en) Manufacture of photovoltaic element
JPS61159771A (en) Photovoltaic device
JP2000188414A (en) Solar battery element and its manufacture
JPS6196609A (en) Transparent conductive film
JPH0583199B2 (en)
US5298087A (en) Photovoltaic device useful as a mirror
JP3196155B2 (en) Photovoltaic device
JPH11103081A (en) Photovoltaic element
JPH10117005A (en) Solar battery
JP2975751B2 (en) Photovoltaic device
JPH10294478A (en) Photoelectric conversion element
JPS6030181A (en) Amorphous thin film photovoltaic element
JP3484852B2 (en) Solar cell manufacturing method
JP3469061B2 (en) Solar cell
JPH06244440A (en) Solar battery
JPS6455876A (en) Thin film photovoltaic device
JPH10284743A (en) Optoelectric traducer
JPH11189436A (en) Transparent electrode substrate, its preparation and production of photoelectromotive force element
JP2866475B2 (en) Solar cell and method of manufacturing the same
JP3346119B2 (en) Silver-based thin film structure
JPS5958874A (en) Amorphous silicon solar cell
JP2994716B2 (en) Photovoltaic device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100717

Year of fee payment: 12

EXPY Cancellation because of completion of term