JP2802366B2 - Ultrafast electro-optic deflector using oblique periodic polarization inversion - Google Patents

Ultrafast electro-optic deflector using oblique periodic polarization inversion

Info

Publication number
JP2802366B2
JP2802366B2 JP23624896A JP23624896A JP2802366B2 JP 2802366 B2 JP2802366 B2 JP 2802366B2 JP 23624896 A JP23624896 A JP 23624896A JP 23624896 A JP23624896 A JP 23624896A JP 2802366 B2 JP2802366 B2 JP 2802366B2
Authority
JP
Japan
Prior art keywords
frequency
electro
phase
optic
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23624896A
Other languages
Japanese (ja)
Other versions
JPH1083001A (en
Inventor
哲郎 小林
朗裕 森本
Original Assignee
大阪大学長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪大学長 filed Critical 大阪大学長
Priority to JP23624896A priority Critical patent/JP2802366B2/en
Publication of JPH1083001A publication Critical patent/JPH1083001A/en
Application granted granted Critical
Publication of JP2802366B2 publication Critical patent/JP2802366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気光学結晶を用
い、光進行方向には反転周期をもつが、反転軸境界が光
波進行方向とは直交せず、傾き斜交し、光ビーム断面に
複数の反転部が含まれ、ビーム断面各部で変調効果に差
が現れ、単なる位相変調とならずに偏向器として動作す
る斜周期分極反転を利用した超高速電気光学偏向器に関
するものである。本発明の属する技術分野は光エレクト
ロニクス、光情報処理、光通信、光計測、光記録であっ
て、適用できる製品は偏向器、変調器、超高速光ディス
ク読み取り書き込み、高速TV、光パルス生成器、光周
波数シフタ等である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses an electro-optic crystal and has a reversal period in the light traveling direction, but the inversion axis boundary is not orthogonal to the light wave traveling direction but obliquely oblique, resulting in a cross section of the light beam. The present invention relates to an ultra-high-speed electro-optical deflector using oblique periodic polarization reversal, which includes a plurality of inversion portions and causes a difference in a modulation effect in each portion of the beam cross section, and operates as a deflector without performing simple phase modulation. The technical field to which the present invention pertains is optoelectronics, optical information processing, optical communication, optical measurement, optical recording, and applicable products are deflectors, modulators, ultra-high speed optical disk reading / writing, high speed TV, optical pulse generator, An optical frequency shifter or the like.

【0002】[0002]

【従来の技術】従来の光ビーム偏向は、低速域ではメカ
ニカルなものが主で電気的、磁気的に駆動される回転
鏡、振動鏡(ガルバノミラー)、回転多面鏡(ポリゴ
ン)がその代表的なものである。また、メカニカルな方
法が使えないメガヘルツ以上の高速域で、最もよく利用
されるのは音響光学偏向器(AOD)である。音響光学
偏向器の一例を図1に示す。
2. Description of the Related Art Conventional light beam deflection is mainly mechanical in a low speed range, and typically includes a rotating mirror, a vibrating mirror (galvano mirror), and a rotating polygon mirror (polygon) which are electrically and magnetically driven. It is something. An acousto-optic deflector (AOD) is most often used in a high-speed region of megahertz or higher where a mechanical method cannot be used. FIG. 1 shows an example of an acousto-optic deflector.

【0003】図1において、1は電気音響トランスデュ
ーサー、2は入射光ビーム、3は音響光学媒質、4は周
波数の掃引が可能な高周波電源、5は超音波によって生
成された進行波位相回折格子、6は音波吸収端を示し、
入射光ビーム2は超音波によって生成された進行波位相
格子5によって、非回折ビーム7と偏向光ビーム(回折
ビーム)8とに分離される。偏向光ビームの偏向方向は
高周波の周波数を変えると変わり、その周波数は入射ビ
ームに比べ高周波周波数だけシフトする。
In FIG. 1, reference numeral 1 denotes an electroacoustic transducer, 2 denotes an incident light beam, 3 denotes an acousto-optic medium, 4 denotes a high-frequency power supply capable of sweeping the frequency, and 5 denotes a traveling-wave phase diffraction grating generated by ultrasonic waves. , 6 indicate a sound absorbing end,
The incident light beam 2 is separated into a non-diffracted beam 7 and a deflected light beam (diffraction beam) 8 by a traveling wave phase grating 5 generated by ultrasonic waves. The deflection direction of the deflected light beam changes when the frequency of the high frequency is changed, and the frequency shifts by the high frequency compared to the incident beam.

【0004】図1に示すように、電気音響変換トランス
デューサー1を介して、入射光ビーム2が光学的透明体
よりなる音響光学媒質3に音響波(通常は超音波)の進
行波(粗密波)を励振、伝送させ、音響光学効果により
音響波進行波に付随して、音響波波長を周期とする正弦
波状で進行する屈折率の変化を生じさせ、これに基づく
進行波位相回折格子5で光ビームを回折させるものであ
る。位相回折格子5の周期を音響波の周波数を変えるこ
とにより変え、これにより回折角を変えて入射光ビーム
2を偏向している。また、偏向光ビーム8の光周波数は
音響周波数だけ入射光ビームの周波数よりシフトするの
で、音響光学偏向器は偏向器以外にも周波数シフタとし
ても有用である。
As shown in FIG. 1, an incident light beam 2 is applied to an acousto-optic medium 3 made of an optically transparent body via an electroacoustic transducer 1 to travel a traveling wave (compressive wave) of an acoustic wave (usually an ultrasonic wave). ) Is excited and transmitted, and a change in the refractive index that progresses in a sinusoidal waveform having a period of the acoustic wave wavelength is caused by the acousto-optic effect accompanying the traveling acoustic wave. It diffracts a light beam. The period of the phase diffraction grating 5 is changed by changing the frequency of the acoustic wave, thereby changing the diffraction angle to deflect the incident light beam 2. Since the optical frequency of the deflected light beam 8 is shifted from the frequency of the incident light beam by the acoustic frequency, the acousto-optic deflector is useful as a frequency shifter in addition to the deflector.

【0005】さて、音速は光速に比べ5桁くらい遅いの
で、同じ周波数では音響波の波長、格子の周期は電磁波
の波長に比べ5桁程度短く、従って、例えば電磁波波長
が3mの100 MHzでも音響波長は30マイクロメートル
程度となり光ビームを回折できる程度の細かさになる。
しかし、音響周波数が1GHz辺りを超えると、音響光
学媒体で音波の伝送損失が増大し、その利用が困難にな
る。さらに数10GHz以上では、格子間隔が光半波長以
下となり、回折させるには細か過ぎて利用できなくな
る。
Since the speed of sound is about five orders of magnitude slower than the speed of light, the wavelength of the acoustic wave and the period of the grating are about five orders of magnitude shorter than the wavelength of the electromagnetic wave at the same frequency. The wavelength is about 30 micrometers, which is fine enough to diffract the light beam.
However, when the acoustic frequency exceeds about 1 GHz, the transmission loss of the sound wave in the acousto-optic medium increases, and its use becomes difficult. Further, at a frequency of several tens of GHz or more, the grating interval becomes equal to or less than a half wavelength of light, which is too fine to diffract and cannot be used.

【0006】図2は電気光学効果によって生成された進
行波位相格子による回折を用いた偏向器の一例を示すも
のである。図2において、2は入力光ビーム、4は高周
波駆動電源、9は電気光学媒質、10は進行波電界、これ
に11の電気進行波誘導位相格子が付随する。12は高周波
電界伝送線路、13は負荷、14はラマンナス回折された光
波を示す。
FIG. 2 shows an example of a deflector using diffraction by a traveling wave phase grating generated by the electro-optic effect. In FIG. 2, 2 is an input light beam, 4 is a high-frequency drive power supply, 9 is an electro-optic medium, 10 is a traveling wave electric field, and 11 is accompanied by an electric traveling wave guiding phase grating. Reference numeral 12 denotes a high-frequency electric field transmission line, reference numeral 13 denotes a load, and reference numeral 14 denotes a light wave that has been subjected to Ramannas diffraction.

【0007】図2に示すように、音響光学媒質の代わり
に、電気光学媒質9を用い、この媒質内に進行波電界10
を伝送させると、電界に比例した屈折率変化が生じて進
行するので、音響光学偏向器と類似の光偏向器(電気光
学偏向器EOD)が構成できる。10GHz帯以上では電
気光学媒質9中の電波波長がmm域になるため光ビーム内
に複数個の格子を含むことが可能になり、電気進行波誘
導位相格子11による光波の偏向動作が可能となる。この
ことは、本発明者等の発明に係る特許第2053798 号(特
公平7−89180 号)(電気光学分波装置及びビーム偏向
装置)として特許を得ているものである。これにより、
本発明者等は1スポット/psの超高速光偏向に成功し
ている。
As shown in FIG. 2, an electro-optic medium 9 is used instead of an acousto-optic medium, and a traveling wave electric field 10
Is transmitted, a change in the refractive index occurs in proportion to the electric field, so that an optical deflector (electro-optical deflector EOD) similar to an acousto-optical deflector can be configured. In the 10 GHz band or higher, the wavelength of the radio wave in the electro-optic medium 9 is in the mm range, so that it is possible to include a plurality of gratings in the light beam, and the deflection operation of the light wave by the electric traveling wave guiding phase grating 11 becomes possible. . For this reason, a patent has been obtained as Patent No. 2053798 (Japanese Patent Publication No. 7-89180) (electro-optical demultiplexing device and beam deflecting device) according to the invention of the present inventors. This allows
The present inventors have succeeded in ultrafast light deflection of 1 spot / ps.

【0008】[0008]

【発明が解決しようとする課題】しかし、1〜10GHz
帯では格子間隔(電気波長)がcm程度に大きくなり、光
ビーム断面内に複数個の格子を含めることが困難とな
る。このため、この周波数域では電気進行波位相格子を
利用した電気光学ビーム偏向は使えない。
However, 1 to 10 GHz
In the band, the grating interval (electric wavelength) becomes as large as about cm, and it becomes difficult to include a plurality of gratings in the light beam cross section. Therefore, in this frequency range, electro-optic beam deflection using an electric traveling wave phase grating cannot be used.

【0009】以上から、本発明が目的とするギガヘルツ
から数10GHzの高速域で動作可能な偏向器、周波数シ
フタが得られれば、従来の音響光学偏向器が利用できな
い高速領域をカバーし、さらに本発明者等が以前に発明
した電気光学偏向器のカバーできなかった1〜10GHz
域もカバーすることが可能になり、光エレクトロニクス
の技術発展に大きく寄与すると期待される。
As described above, if a deflector and a frequency shifter operable in a high-speed range from gigahertz to several tens of GHz, which are the object of the present invention, can be obtained, the high-speed range in which a conventional acousto-optic deflector cannot be used is covered. 1-10 GHz that the inventors could not cover the electro-optical deflector previously invented
It is possible to cover a wide area, and it is expected to greatly contribute to the technological development of optoelectronics.

【0010】[0010]

【課題を解決するための手段】本発明は、電気光学結晶
中を伝搬する光波の見る高周波印加電界の位相が反転す
る周期に同期させて、空間的に電気光学結晶の結晶軸を
周期的に反転させる手段と、疑似的に光波と高周波電界
の位相を整合させつつ、結晶軸反転境界を光波進行方向
と斜交差させる手段と、これにより光波ビームの受ける
光位相変調の高周波位相が光波ビーム断面内で直線的に
変化するようにし、等価的に高周波進行波位相格子を生
ぜしめる手段とを具備したことを特徴とする斜周期分極
反転を利用した超高速電気光学偏向器にある。本発明は
更に、前記偏向器は、周波数シフタ機能を併せもつ斜周
期分極反転を利用した超高速電気光学偏向器にある。
According to the present invention, a crystal axis of an electro-optic crystal is periodically spatially synchronized with a cycle in which the phase of a high-frequency applied electric field observed by a light wave propagating through the electro-optic crystal is inverted. Means for inverting, and means for obliquely intersecting the crystal axis inversion boundary with the traveling direction of the light wave while quasi-matching the phases of the light wave and the high-frequency electric field. And a means for generating a high-frequency traveling-wave phase grating equivalently in the super-high-speed electro-optical deflector utilizing oblique periodic polarization reversal. The present invention further resides in an ultra-high-speed electro-optical deflector using the oblique periodic polarization reversal having a frequency shifter function.

【0011】[0011]

【発明の実施の形態】以下、本発明の具体例を図3
(a),(b)について説明する。図3(a),(b)
において、15は入射光ビーム、16は駆動高周波電源、17
は電気光学結晶、18は上部電極、19は出射回折光ビー
ム、20は終端負荷を示す。21は電気光学結晶の結晶軸反
転部(小さいドットをつけた部分)を示す。
FIG. 3 shows a specific example of the present invention.
(A) and (b) will be described. FIG. 3 (a), (b)
, 15 is an incident light beam, 16 is a driving high frequency power supply, 17
Denotes an electro-optic crystal, 18 denotes an upper electrode, 19 denotes an output diffracted light beam, and 20 denotes a terminal load. Reference numeral 21 denotes a crystal axis inversion portion (portion with a small dot) of the electro-optic crystal.

【0012】本発明の電気光学結晶はその光学軸が等間
隔で周期的に反転されている。光ビームをこの格子と特
定の角度θで斜め交差させ、かつ、ビーム断面内に格子
を複数周期に含むように結晶中を通過させている。また
光ビームの通過する部分に高周波の電界が印加され進行
するように電気光学結晶表面に高周波伝送線路が装荷さ
れている。図3の例では結晶裏面と上面に一対の電極を
つけ、ストリップ線路としているが、コプラナー電極や
そのほか種々のマイクロ波伝送線路も利用できる。高周
波伝送線路の一端23からは高周波電源16からの高周波駆
動電力が供給され他端は無反射負荷20で終端されてい
る。
The optical axis of the electro-optic crystal of the present invention is periodically inverted at regular intervals. The light beam obliquely intersects the lattice at a specific angle θ, and passes through the crystal so that the lattice is included in the beam cross section in a plurality of periods. In addition, a high-frequency transmission line is mounted on the electro-optic crystal surface so that a high-frequency electric field is applied to a portion through which the light beam passes so as to proceed. In the example of FIG. 3, a pair of electrodes are provided on the back and top surfaces of the crystal to form a strip line, but a coplanar electrode and other various microwave transmission lines can also be used. High-frequency drive power from a high-frequency power supply 16 is supplied from one end 23 of the high-frequency transmission line, and the other end is terminated by a non-reflection load 20.

【0013】進行する高周波電界と光ビームが疑似的に
速度整合をするためには、光進行に伴い、
In order for the traveling high-frequency electric field and the light beam to perform pseudo-speed matching, the light travels along with

【数1】 ごとに結晶軸が反転する必要がある。ここで光の群速度
をνg 、電気信号の光進行方向での位相速度をνm 、高
周波の周波数をfm とする。結晶軸反転境界に直交する
方向に測った結晶軸反転間隔をhとすれば、光の進行方
向は結晶軸反転境界面に θ= sin-1(h/Lm ) (2) だけ、傾け斜め交差させることになる。図3の場合では
ビーム断面内で横方向には結晶は 分極反転ピッチ d=h/cos θ=Lm tan θ (3) ごとに反転しており、Lm が(1) 式で決まっていても、
θさえ小さくとれば、dをいくらでも小さくとれ、ビー
ム断面内に複数個の格子を含めることが可能になる。
(Equation 1) The crystal axis needs to be inverted every time. Here the group velocity of light [nu g, the electrical signal phase velocity [nu m in the light traveling direction, the frequency of the high frequency and f m. Assuming that a crystal axis reversal interval measured in a direction perpendicular to the crystal axis reversal boundary is h, the traveling direction of light is inclined by θ = sin −1 (h / L m ) (2) with respect to the crystal axis reversal boundary. Will intersect. In the case of FIG. 3, the crystal is inverted in the transverse direction in the beam cross section at every polarization inversion pitch d = h / cos θ = L m tan θ (3), and L m is determined by the equation (1). Also,
If θ is made small, d can be made as small as possible, and a plurality of gratings can be included in the beam cross section.

【0014】本発明の作用、効果を述べる前に、図4に
示される構成の既知の疑似速度整合光位相偏向器の動作
原理について述べる。これは図3においてθ=90°、d
=無限大の場合に相当し、結晶軸は光の進行方向にのみ
反転非反転を繰り返すが、ビーム断面内、横方向には周
期的変化はない。
Before describing the operation and effect of the present invention, the operation principle of the known pseudo-speed matching optical phase deflector having the configuration shown in FIG. 4 will be described. This corresponds to θ = 90 ° in FIG.
= Infinity, and the crystal axis repeats inversion and non-inversion only in the traveling direction of light, but there is no periodic change in the beam cross section and in the lateral direction.

【0015】さて、通常は光の群速度が電気信号の位相
速度に比べ速いので、光波は電気信号をドンドン追い越
して行く、半周期追い越すと最初とは逆位相の電気信号
を見ることになり、それまでの屈折率変化が逆転して、
それまでに受けた位相変調効果が相殺され始め、丁度一
周期分追い越したところでは完全にキャンセルされてし
まう。そこで、半周期分追い越す毎に電気光学結晶軸を
反転しておくと、電気信号の反転分に結晶軸の反転分が
重なり、電界印加による屈折率変化は同相となって、相
互作用長さをいくら長くしても、位相変調効果はキャン
セルされることなく累算される。このような工夫が疑似
速度整合と呼ばれるものである。
Now, since the group velocity of light is usually faster than the phase velocity of the electric signal, the light wave passes the electric signal don-don, and when passing the half-cycle, the electric signal has an opposite phase to the first electric signal. The refractive index change up to that point is reversed,
The phase modulation effect received so far begins to cancel, and is completely canceled when just overtaking by one cycle. Therefore, if the electro-optic crystal axis is inverted every time it passes by a half period, the inversion of the crystal axis overlaps the inversion of the electric signal, and the change in the refractive index due to the application of the electric field becomes in-phase, reducing the interaction length. No matter how long it is, the phase modulation effect is accumulated without being cancelled. Such a device is called pseudo-speed matching.

【0016】さて、t=t0 にz=0を出発した光波は
z=Lにはt1 =t0 +L/νg に着く。一方、光波が
出発時に見た電気信号はz=Lにはt2 =t0 +L/ν
m に着くので、z=Lで光波は電気信号のt2 −t1
け時間的に先行した分を見ることになる。この時間差が
電気信号の丁度半周期分になるとすると、 L/νm −L/νg =1/(2fm ) (4) 従って、
[0016] Now, the light waves were starting the z = 0 to t = t 0 is the z = L arrive in t 1 = t 0 + L / ν g. On the other hand, the electric signal that the light wave saw at the time of departure is t 2 = t 0 + L / ν at z = L.
Since it reaches m , at z = L, the light wave sees the time preceding the electric signal by t 2 −t 1 . When this time difference is just a half cycle of the electrical signal, L / ν m -L / ν g = 1 / (2f m) (4) Thus,

【数2】 が得られる。このLの長さのところで結晶の光学軸を反
転すると、光の見る電気信号の位相は反転するが屈折率
変化はz=0での状態と同一になり、変調効果は加算さ
れる。式(1′) は、式(1) のm=0の場合、つまりL0
に対応する。またこのL0 の奇数倍になったところで初
めて反転させたとしても、そのうちの偶数倍分の長さつ
まり2mL0 の変調効果はキャンセルして無駄になるが
最後L0 分は残り、同一の変調効果が得られる。式(1)
はこの場合も含めたより包括的なものである。
(Equation 2) Is obtained. When the optical axis of the crystal is inverted at the length of L, the phase of the electric signal seen by the light is inverted, but the change in the refractive index becomes the same as that at z = 0, and the modulation effect is added. Equation (1 ′) is obtained when m = 0 in equation (1), that is, L 0
Corresponding to Further, even if the phase is inverted for the first time at an odd multiple of L 0 , the modulation effect of an even multiple thereof, that is, 2 mL 0 , is canceled and wasted, but the last L 0 remains and the same modulation is performed. The effect is obtained. Equation (1)
Is more comprehensive, including in this case.

【0017】以上、ここまでの考えはすでに疑似速度整
合光位相変調器として発表されているものである。この
構造をとることにより、電気信号と光の速度が違うにも
かかわらず長い電気光学結晶を用いた高効率の電気光学
変調器が可能になり、実際本発明者等は、図4の構成
で、現在世界最大の変調指数を得ている。
As described above, the ideas up to this point have been already announced as pseudo-speed matched optical phase modulators. By adopting this structure, a high-efficiency electro-optic modulator using a long electro-optic crystal can be realized despite the difference between the speed of the electric signal and the speed of the light. , Currently has the largest modulation index in the world.

【0018】本発明では、光波進行方向にはこのような
反転周期をもつが、図4とは異なり、図3のように、反
転境界が光波進行方向とは直交せずに、十分に傾き斜交
している。この結果、光ビーム断面に複数の反転部が含
まれ、ビーム断面各部で変調効果に差が現れ、単なる位
相変調器とならずに偏向器とし動作することになる。
In the present invention, the traveling direction of the light wave has such a reversal period, but unlike FIG. 4, as shown in FIG. 3, the reversal boundary is not orthogonal to the traveling direction of the light wave but is sufficiently inclined and inclined. Are intersecting. As a result, the light beam cross section includes a plurality of inverting portions, and a difference appears in the modulation effect at each portion of the beam cross section, so that the light beam operates as a deflector instead of a simple phase modulator.

【0019】図3の構造でも光ビーム断面のどの部分も
同じ指数の位相変調器として動作する。しかし、変調の
かかり方はビーム断面横位置(図ではx)によって異な
る。相互作用長さが2L0 の場合について、あるタイミ
ングで入射した光ビームの断面各部における誘導屈折率
変化と位相変化量を図5(a),(b)に示す。これか
ら、結果的には位相格子が横1方向にのみ進行している
ことが分かる。格子間隔は横方向(x方向)分極反転ピ
ッチ、つまり、dとなり、波長に関係なく小さくできる
ので、従来の音響光学偏向器、電気光学偏向器の実現が
困難な1〜10GHzは勿論、それ以上の高い周波数帯で
も利用できる適当な周期の進行波位相格子が形成可能に
なる。
In the structure shown in FIG. 3, any part of the light beam cross section operates as a phase modulator having the same index. However, how the modulation is applied differs depending on the lateral position (x in the figure) of the beam cross section. FIGS. 5A and 5B show the induced refractive index change and the phase change in each section of the light beam incident at a certain timing when the interaction length is 2L 0 . From this, it can be seen that as a result, the phase grating advances only in one lateral direction. The lattice spacing becomes the horizontal (x-direction) polarization reversal pitch, that is, d, and can be reduced regardless of the wavelength, so that it is difficult to realize a conventional acousto-optic deflector and electro-optic deflector, not to mention 1 to 10 GHz or more. A traveling-wave phase grating having an appropriate period that can be used even in a high-frequency band can be formed.

【0020】図5から、動作が可能なためには最低L0
の長さの相互作用長さがあればよいことが分かる。ま
た、L0 、あるいはLm ごとに反転を続けるとして、相
互作用長さをこの整数倍のN倍の長さにすると、位相変
化はN倍に深くなり回折効率は上昇することも分かる。
FIG. 5 shows that at least L 0 is required for the operation to be possible.
It is understood that an interaction length of the length is sufficient. Further, it is also understood that if the inversion is continued for each L 0 or L m and the interaction length is set to an integral multiple of N times, the phase change becomes N times deep and the diffraction efficiency increases.

【0021】さて、角周波数ωm でz方向に位相速度ν
p で進行しているときの正弦波電界E(z,t)を E(z,t)=Em sin 〔ωm (t−z/νp )+φ〕 (5) とすれば、図5の例(全長が2L0 )の場合には、t=
0 に、z=0に入射した光の受ける位相変化は
Now, the phase velocity ν in the z direction at the angular frequency ω m
If the sinusoidal electric field E (z, t) when traveling at p is given by E (z, t) = E m sin [ω m (t−z / v p ) + φ] (5), FIG. (The total length is 2L 0 ), t =
At t 0 , the phase change received by the light incident at z = 0 is

【数3】 と計算される。なお、ここで Δk=ωm (1/νm −1/ν0 )=π/L0 (7) であり、(δn/δE)は単位印加電界による電気光学
媒質の屈折率変化量で電気光学媒質固有の値である。
(Equation 3) Is calculated. Here, Δk = ω m (1 / ν m −1 / ν 0 ) = π / L 0 (7), and (δn / δE) is a change in the refractive index of the electro-optical medium due to the unit applied electric field. This is a value specific to the optical medium.

【0022】(6) 式は時間的には角周波数ωで正弦波振
動しつつ、横方向に空間周期2d、速度
Equation (6) indicates that while temporally sine-wave oscillating at an angular frequency ω, a spatial period of 2d and a velocity

【数4】 で進行する位相格子となっている。つまり、図3、ある
いは図5の構造が横方向に進行する正弦波位相格子とし
て光ビームを回折する機能を持つことが分かる。なお、
進行方向にLm で反転を繰り返す場合は(6) 式の代わり
に、
(Equation 4) And the phase grating proceeds. That is, it can be seen that the structure of FIG. 3 or FIG. 5 has a function of diffracting a light beam as a sine wave phase grating traveling in the horizontal direction. In addition,
When reversal is repeated at L m in the traveling direction, instead of equation (6),

【数5】 となり、進行波位相格子の横方向の空間周期、及び横方
向への進行速度はともに1/(2m+1)になる。
(Equation 5) And the lateral spatial period of the traveling wave phase grating and the traveling speed in the lateral direction are both 1 / (2m + 1).

【0023】[0023]

【発明の効果】光ビーム断面でこのような位相変化を受
けると、周知の音響波により音響光学媒質に誘起される
進行波位相格子による光ビームのラマンナス回折の場合
と同様に、光ビームはラマンナス回折され、複数のビー
ムに方向が分かれて回折される。n次(n=0,±1,
±2,--- )の回折ビームの回折角θn 、強度In 及び
入射ビームに対する周波数シフト量νshift,n は次式で
与えられる。
As described above, when such a phase change occurs in the light beam cross section, the light beam is subjected to the Ramannas diffraction, similarly to the case of the Ramannas diffraction of the light beam by the traveling wave phase grating induced in the acousto-optic medium by the well-known acoustic wave. The light is diffracted, and the light is diffracted in a plurality of beams. nth order (n = 0, ± 1,
± 2, --- diffraction angle theta n diffracted beam), the intensity I n and the frequency shift amount with respect to the incident beam [nu Shift, n is given by the following equation.

【数6】 周波数シフタ:n=0以外のどれか1つの回折波をとれ
ばシフト量nfm の周波数シフタになる。
(Equation 6) Frequency shifter: Taking any one diffracted waves other than n = 0 results in a frequency shifter shift amount nf m.

【0024】本発明の装置を偏向器にするには、微小角
なら高周波周波数を変えればよい。一方、帰り線なしで
片方向に大きく偏向する場合には、図6の構成にすると
よい。従来法では直接、進行波高周波電界により進行波
位相格子を誘起したが、本発明では結晶軸反転を用いて
等価的に進行波位相格子を生成している点に新規特徴が
ある。
In order to make the device of the present invention a deflector, it is sufficient to change the high-frequency frequency for a small angle. On the other hand, when deflection is largely performed in one direction without a return line, the configuration shown in FIG. 6 may be used. In the conventional method, a traveling-wave phase grating is directly induced by a traveling-wave high-frequency electric field. However, the present invention has a novel feature in that a traveling-wave phase grating is equivalently generated using crystal axis inversion.

【0025】図6において、15は入力光信号で、この入
力光信号15が電気光学結晶17の進行波位相格子5に入射
し、ここで結晶軸反転させて等価的に進行波位相格子を
生成し、次のフーリエ変換レンズ24、空間変調器25及び
フーリエ変換レンズ26を介してスクリーン27に投影する
のである。
In FIG. 6, reference numeral 15 denotes an input optical signal. The input optical signal 15 is incident on the traveling wave phase grating 5 of the electro-optic crystal 17, where the crystal axis is inverted to generate an equivalent traveling wave phase grating. Then, the image is projected on the screen 27 via the next Fourier transform lens 24, the spatial modulator 25, and the Fourier transform lens 26.

【0026】本発明の装置を変調器にするには、回折効
率は(10)式から分かるように、位相変化量に依存する。
従って駆動高周波電力を変化させ、印加電界強度を変え
ることにより、回折光(n≠0)、非回折光(n=0)
のいずれも強度が変調され、光変調器として利用でき
る。
In order to make the device of the present invention a modulator, the diffraction efficiency depends on the amount of phase change as can be seen from equation (10).
Therefore, by changing the driving high-frequency power and changing the applied electric field strength, diffracted light (n ≠ 0) and undiffracted light (n = 0)
Are modulated in intensity, and can be used as an optical modulator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は従来の電気音響変換トランスデューサー
を介して、音響光学媒質に音響波の進行波を励振、伝送
させ、音響波波長を周期とする正弦波状で進行する屈折
率の変化を生じさせ、これに基づく進行波位相回折格子
で光ビームを回折させる態様の説明図である。
FIG. 1 is a diagram showing a state in which a traveling wave of an acoustic wave is excited and transmitted to an acousto-optic medium via a conventional electro-acoustic transducer, and a change in a refractive index that progresses in a sine wave shape having a period of the acoustic wave wavelength is obtained. It is explanatory drawing of the aspect which makes a light beam diffract by the traveling wave phase diffraction grating based on this.

【図2】図2は従来の電気光学効果によって生成された
進行波位相格子による回折を用いた偏向器の一例を示す
図である。
FIG. 2 is a diagram showing an example of a conventional deflector using diffraction by a traveling wave phase grating generated by an electro-optic effect.

【図3】図3(a),(b)は本発明の斜周期分極反転
を利用した超高速電気光学偏向器の原理説明用図であ
る。
FIGS. 3A and 3B are diagrams for explaining the principle of an ultrahigh-speed electro-optical deflector using oblique periodic polarization inversion according to the present invention.

【図4】図4は既知の疑似速度整合光位相変調器の動作
原理の説明図である。
FIG. 4 is an explanatory diagram of the operation principle of a known pseudo velocity matching optical phase modulator.

【図5】図5(a),(b)は本発明の光学偏向の動作
原理説明用図である。
FIGS. 5A and 5B are diagrams for explaining the operation principle of optical deflection according to the present invention.

【図6】図6は本発明の原理を電気光学偏向器にする場
合の動作原理説明用図である。
FIG. 6 is a diagram for explaining the operation principle when the principle of the present invention is applied to an electro-optical deflector.

【符号の説明】[Explanation of symbols]

1 電気音響トランスデューサー 2 入射光ビーム 3 音響光学媒質 4 周波数の掃引が可能な高周波電源 5 超音波によって生成された進行波位相格子 6 音波吸収端 7 非回折ビーム 8 偏向ビーム(回折ビーム) 9 電気光学媒質 10 進行波電界 11 電気進行波誘導位相格子 12 高周波電界伝送線路 13 負荷 14 ラマンナス回折された光波 15 入射光ビーム(入射光信号) 16 駆動高周波電源 17 電気光学結晶 18 上部電極 19 出射回折光ビーム 20 終端負荷 21 電気光学結晶の結晶軸反転部 22 下部電極 23 高周波伝送線路の一端 24, 26 フーリエ変換レンズ 25 空間変調器 27 スクリーン 28 被変調光 REFERENCE SIGNS LIST 1 electroacoustic transducer 2 incident light beam 3 acousto-optic medium 4 high-frequency power supply capable of sweeping frequency 5 traveling-wave phase grating generated by ultrasonic waves 6 sound absorption end 7 undiffracted beam 8 deflection beam (diffraction beam) 9 electricity Optical medium 10 Traveling wave electric field 11 Electric traveling wave induction phase grating 12 High frequency electric field transmission line 13 Load 14 Ramannas diffracted light wave 15 Incident light beam (incident light signal) 16 Driving high frequency power supply 17 Electro-optic crystal 18 Upper electrode 19 Outgoing diffracted light Beam 20 Termination load 21 Crystal axis reversal part of electro-optic crystal 22 Lower electrode 23 One end of high-frequency transmission line 24, 26 Fourier transform lens 25 Spatial modulator 27 Screen 28 Modulated light

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−212743(JP,A) 特開 平9−146128(JP,A) 特開 平6−265944(JP,A) 特開 平3−284736(JP,A) 特開 平2−250041(JP,A) 特開 平6−95048(JP,A) 国際公開95/4951(WO,A) (58)調査した分野(Int.Cl.6,DB名) G02F 1/00 - 1/313 G02F 2/00 - 2/02 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-212743 (JP, A) JP-A-9-146128 (JP, A) JP-A-6-265944 (JP, A) JP-A-3-3 284736 (JP, A) JP-A-2-250041 (JP, A) JP-A-6-95048 (JP, A) WO 95/4951 (WO, A) (58) Fields investigated (Int. Cl. 6) G02F 1/00-1/313 G02F 2/00-2/02 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気光学結晶中を伝搬する光波の見る高
周波印加電界の位相が反転する周期に同期させて、空間
的に電気光学結晶の結晶軸を周期的に反転させる手段
と、疑似的に光波と高周波電界の位相を整合させつつ、
結晶軸反転境界を光波進行方向と斜交差させる手段と、
これにより光波ビームの受ける光位相変調の高周波位相
が光波ビーム断面内で直線的に変化するようにし、等価
的に高周波進行波位相格子を生ぜしめる手段とを具備し
たことを特徴とする斜周期分極反転を利用した超高速電
気光学偏向器。
A means for periodically inverting the crystal axis of the electro-optic crystal spatially in synchronization with a cycle in which the phase of a high-frequency applied electric field observed by a light wave propagating in the electro-optic crystal is inverted; While matching the phases of the light wave and the high-frequency electric field,
Means for obliquely intersecting the crystal axis inversion boundary with the light wave traveling direction,
The oblique periodic polarization is characterized in that the high frequency phase of the optical phase modulation received by the light wave beam changes linearly within the cross section of the light wave beam, and means for equivalently generating a high frequency traveling wave phase grating are provided. Ultra-high speed electro-optic deflector using inversion.
【請求項2】 前記偏向器は、周波数シフタ機能を併せ
もつ請求項1記載の斜周期分極反転を利用した超高速電
気光学偏向器。
2. The ultra-high-speed electro-optical deflector utilizing oblique periodic polarization inversion according to claim 1, wherein said deflector has a frequency shifter function.
JP23624896A 1996-09-06 1996-09-06 Ultrafast electro-optic deflector using oblique periodic polarization inversion Expired - Lifetime JP2802366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23624896A JP2802366B2 (en) 1996-09-06 1996-09-06 Ultrafast electro-optic deflector using oblique periodic polarization inversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23624896A JP2802366B2 (en) 1996-09-06 1996-09-06 Ultrafast electro-optic deflector using oblique periodic polarization inversion

Publications (2)

Publication Number Publication Date
JPH1083001A JPH1083001A (en) 1998-03-31
JP2802366B2 true JP2802366B2 (en) 1998-09-24

Family

ID=16997980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23624896A Expired - Lifetime JP2802366B2 (en) 1996-09-06 1996-09-06 Ultrafast electro-optic deflector using oblique periodic polarization inversion

Country Status (1)

Country Link
JP (1) JP2802366B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5249009B2 (en) * 2008-12-26 2013-07-31 大日本スクリーン製造株式会社 Light modulator
JP5249008B2 (en) * 2008-12-26 2013-07-31 大日本スクリーン製造株式会社 Light modulator
JP5249007B2 (en) * 2008-12-26 2013-07-31 大日本スクリーン製造株式会社 Light modulator
EP2202568B1 (en) 2008-12-26 2018-09-05 SCREEN Holdings Co., Ltd. Optical modulator
WO2013024818A1 (en) * 2011-08-15 2013-02-21 国立大学法人大阪大学 Frequency shifter and frequency shifting method
JP6131552B2 (en) 2012-09-24 2017-05-24 沖電気工業株式会社 Wavelength conversion element and manufacturing method thereof

Also Published As

Publication number Publication date
JPH1083001A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
US4346965A (en) Light modulator/deflector using acoustic surface waves
JP2603437B2 (en) Periodic domain inversion electro-optic modulator
KR101826744B1 (en) Acousto-optic device including a nano structure, and optical scanner, light modulator and display apparatus using the acousto-optic device
EP0144190A2 (en) Single mode fiber optic single sideband modulator
JPH0127406B2 (en)
US10416468B2 (en) Light field generator devices with series output couplers
JP3957217B2 (en) Light modulator
US3944335A (en) Acousto-optic filter
US3736045A (en) Fast optical guided wave modulator and digital deflector
JP2013140328A (en) Optical device, optical deflector, and optical modulator
JP2802366B2 (en) Ultrafast electro-optic deflector using oblique periodic polarization inversion
JPH02234015A (en) Method and system for detecting rotation of optical fiber
EP0439631B1 (en) Optical deflector
JPH0690370B2 (en) Optoelectronic modulator
JPH0611672A (en) Total-reflection type electron-optics modulator
US4638266A (en) Acoustooptical modulator and/or deflector
JP2002196296A (en) Optical modulator
CN110376592B (en) Acousto-optic regulation and control optical phased array laser radar
US4299449A (en) Acoustooptic modulator
JPH02250041A (en) Demultiplexing device and beam deflecting device
JPS58130327A (en) Two-dimensional optical deflector
JPH0670656B2 (en) Spectrum analyzer
JP2697038B2 (en) Acousto-optic effect type waveguide frequency shifter
JPS6035653B2 (en) light modulator
WO2013024818A1 (en) Frequency shifter and frequency shifting method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980609

EXPY Cancellation because of completion of term