JPS58130327A - Two-dimensional optical deflector - Google Patents

Two-dimensional optical deflector

Info

Publication number
JPS58130327A
JPS58130327A JP1267882A JP1267882A JPS58130327A JP S58130327 A JPS58130327 A JP S58130327A JP 1267882 A JP1267882 A JP 1267882A JP 1267882 A JP1267882 A JP 1267882A JP S58130327 A JPS58130327 A JP S58130327A
Authority
JP
Japan
Prior art keywords
refractive index
thin film
optical waveguide
light beam
changing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1267882A
Other languages
Japanese (ja)
Inventor
Naohisa Inoue
直久 井上
Kazuhiko Mori
和彦 森
Masaharu Matano
俣野 正治
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP1267882A priority Critical patent/JPS58130327A/en
Publication of JPS58130327A publication Critical patent/JPS58130327A/en
Priority to US06/818,915 priority patent/US4762383A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • G02F1/335Acousto-optical deflection devices having an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To control the advancing directions of light beams two-dimensionally with a small-sized device of solid-state thin film type by deflecting the light beams propagating in optical waveguides of thin films in the direction perpendicular to the plane in the waveguides by an electrooptic effect or the like. CONSTITUTION:The advancing direction of a light beam P2 is changed continuously by changing the oscillation frequency of a high frequency oscillator 7 continuously in a certain range. When DC voltage is applied between electrodes 6, 6, a refractive index is generated in the crystal parts and changes according to the DC voltage. The light beam P3 can be deflected in the direction perpendicular to the plane of optical waveguides 2 of thin films by changing the voltage to be applied to the electrodes 6. The advancing directions of the light beams are controlled two-dimensionally with the small-sized device of solid state thin film type by combining the deflection control by the oscillator 7 and the deflection control by a DC power source 8 in the above-mentioned manner.

Description

【発明の詳細な説明】 この発明は、va膜先光導波路音響光学効果や電気光学
効果によって光ビームを2次元方向に偏向させるように
した固体薄膜型の2次元光偏向器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid thin film type two-dimensional optical deflector that deflects a light beam in two-dimensional directions using a VA film tipped optical waveguide acousto-optic effect or electro-optic effect.

現在、バーニ」−ドリーダ、レーリ°−lリンタ。Currently, Berni'-Dorida, Leli°-linta.

ファクシミリ、光電式探傷装置、光メモリ等の各種のオ
プトエレクトロニクス応用装置において、レーザー光の
ような光ビームの進行方向を2次元的に□制御する必要
性がますます増大している。この目的のための2次元光
幅向器は、従来、回転ミラ一式あるいは振動ミラ一式で
代表されるように光ビームが通過゛する光学系の一部を
機械的に変位させることによって2次元光偏向を行なう
ようになっている。この種の機械式の光偏向器では可動
部分を有するため高速性、信頼性という面において欠点
があり、また光学系が複雑となるため小形化、低コスト
化、光軸合せ等を含む製作の容易性等の面においても問
題があり、更に消費電力の点でも問題があった。
In various optoelectronic applied devices such as facsimiles, photoelectric flaw detection devices, and optical memories, there is an increasing need to two-dimensionally control the traveling direction of a light beam such as a laser beam. A two-dimensional beam width director for this purpose has conventionally been developed by mechanically displacing a part of an optical system through which a light beam passes, such as a set of rotating mirrors or a set of vibrating mirrors. It is designed to deflect. This type of mechanical optical deflector has moving parts, so it has drawbacks in terms of high speed and reliability, and the optical system is complicated, so it is difficult to manufacture, including miniaturization, cost reduction, and optical axis alignment. There are problems in terms of ease of use, etc., and there are also problems in terms of power consumption.

この発明は上述した従来の問題点に鑑みなされたもので
、その目的は、機械的可動部分のない固体薄膜型の小型
の装置でもって光ビームの進行方向を2次元的に制御す
ることができ、かつ高速性。
This invention was made in view of the above-mentioned conventional problems, and its purpose is to be able to two-dimensionally control the traveling direction of a light beam using a small solid-state thin film type device with no mechanically movable parts. , and high speed.

信頼性、製作の容易性といった点で優れた2次元光偏向
器を提供す′ることにある。
It is an object of the present invention to provide a two-dimensional optical deflector that is excellent in terms of reliability and ease of manufacture.

上記の目的を達成するために、この発明は、薄膜光導波
路中を伝搬する光ビームを、該導波路上を伝搬する弾性
表面波によってブラッグ回折させることで該導波路の平
面内で偏向させるとともに、このブラッグ回折された光
ビームを上記導波路上に形成した出射グレーティングか
ら外部に出射させるようにし、かつ上記導波路の出射グ
レーティング形成部分の屈折率を電気光学効果あるいは
熱光学効果によって変化させることで、出射グレーティ
ングから出射する光ビームを上記導波路の平面に対して
垂直方向に偏向させるようにしたことを特徴とする。
In order to achieve the above object, the present invention deflects a light beam propagating in a thin film optical waveguide within the plane of the waveguide by causing Bragg diffraction by a surface acoustic wave propagating on the waveguide. , the Bragg-diffracted light beam is emitted to the outside from an exit grating formed on the waveguide, and the refractive index of a portion of the waveguide where the exit grating is formed is changed by an electro-optic effect or a thermo-optic effect. The optical waveguide is characterized in that the light beam emitted from the output grating is deflected in a direction perpendicular to the plane of the waveguide.

以下、この発明の実施例を図面に基づいて詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図はこの発明に係る2次元光偏向器の構成を示す斜
視図である。この光偏向器は、基板1面に形成された薄
膜光導波路2と、この薄膜先導波路2上に弾性表面波S
AWを伝搬させる櫛形電極3と、外部から光ビームPO
を受けて上記弾性表面波SAWの波面に対してブラッグ
角となるように薄膜先導波路2中に光ビームP1を伝搬
させる入射グレーティング4からなる光導入部と、上記
弾性表面波SAWでブラッグ回折された光ビームP2を
光ビームP3として外部に出力させるべく薄膜先導波路
2の上面に形成された出射グレーティング5と、この出
射グレーティング5の形成部分の薄膜先導波路2の屈折
率を変化させる屈折率可変手段として出射グレーティン
グ5の両脇部の導波路2上に設けられた一対の電極6と
を備え、上記櫛形電極3を駆動する高周波発振器7を制
御して櫛形電極3の振動周波数を変化させることで弾性
表面波SAWにてブラッグ回折される光ビームP2を薄
膜光導波路2の平面内で偏向させるとともに、上記一対
の電極6.6間に電圧を印加させる直流電源8の出力電
圧を制御し、出射グレーティング5の形成部分の薄膜光
導波路2に電気光学効果による屈折率変化を生じさせ、
出射グレーティング5から出力する光ビームP3を薄膜
光導波路2面に対して垂直方向に偏向させるように構成
されている。なお、出射グレーティング5から出射する
光ビームP3の2次元偏向のようすをスクリーン9上の
ドツトで示している。
FIG. 1 is a perspective view showing the configuration of a two-dimensional optical deflector according to the present invention. This optical deflector includes a thin film optical waveguide 2 formed on one surface of a substrate, and a surface acoustic wave S
A comb-shaped electrode 3 that propagates the AW and a light beam PO from the outside.
The light beam P1 is then propagated into the thin film guiding waveguide 2 at a Bragg angle with respect to the wavefront of the surface acoustic wave SAW. an output grating 5 formed on the upper surface of the thin film guiding waveguide 2 in order to output the optical beam P2 to the outside as a optical beam P3; and a variable refractive index that changes the refractive index of the thin film guiding waveguide 2 in the portion where the output grating 5 is formed. A pair of electrodes 6 provided on the waveguide 2 on both sides of the output grating 5 are provided as means, and the vibration frequency of the comb-shaped electrode 3 is changed by controlling a high-frequency oscillator 7 that drives the comb-shaped electrode 3. deflects the light beam P2 Bragg diffracted by the surface acoustic wave SAW within the plane of the thin film optical waveguide 2, and controls the output voltage of the DC power supply 8 that applies a voltage between the pair of electrodes 6. causing a refractive index change in the thin film optical waveguide 2 in the area where the exit grating 5 is formed, due to the electro-optic effect;
It is configured to deflect the light beam P3 output from the output grating 5 in a direction perpendicular to the 2 surfaces of the thin film optical waveguide. Note that the two-dimensional deflection of the light beam P3 emitted from the output grating 5 is shown by dots on the screen 9.

上記基板1は圧電性結晶であるニオブ酸リチウム単結晶
からなり、この結晶表面にチタン熱拡散し、基板1より
0.003〜0.005程度屈折率の高いam光導波路
2をその表面に形成している。上記櫛形電極3は、薄膜
光導波路2を形成しICM板1上にリフトオフ法を用い
て作られている。
The substrate 1 is made of a lithium niobate single crystal, which is a piezoelectric crystal, and titanium is thermally diffused onto the surface of the crystal to form an AM optical waveguide 2 having a refractive index about 0.003 to 0.005 higher than that of the substrate 1. are doing. The comb-shaped electrode 3 forms a thin film optical waveguide 2 and is made on the ICM board 1 using a lift-off method.

上記入射クレーティング4および出射グレーティング5
は、例えばCVD法により酸化シリコン等を薄膜先導波
路2上の所定位置に所定パターンで形成することによっ
て作られる。
The above entrance grating 4 and exit grating 5
is made by forming silicon oxide or the like in a predetermined pattern at a predetermined position on the thin film guiding waveguide 2 by, for example, the CVD method.

上記電極6は、例えばアルミニウム等の電極金属を薄膜
光導波路2の所定位置に一蒸着することによって形成さ
れる。
The electrode 6 is formed by depositing an electrode metal such as aluminum at a predetermined position of the thin film optical waveguide 2.

次に、−F記皐成の2次元光偏向器の動作について詳述
する。上記櫛形電極、3をある周波数fで駆動すると、
第2図に示iすように、薄膜光導波路2上に波長への弾
性表面波SAWが発生する。この弾性表面波SAWによ
りIll光導波路2中にピッチへの周期的な屈折率変化
が生じ、この屈折率変化の波が回折格子として作用し、
これの波面に対して角度θで入射した波長△の光ビーム
P1は、次の式を満たすとき波面により反射され、ブラ
ッグ回折された光ビームP2となる。
Next, the operation of the -F-type two-dimensional optical deflector will be described in detail. When the comb-shaped electrode 3 is driven at a certain frequency f,
As shown in FIG. 2, a surface acoustic wave SAW with a wavelength is generated on the thin film optical waveguide 2. This surface acoustic wave SAW causes a periodic refractive index change in the pitch in the Ill optical waveguide 2, and the wave of this refractive index change acts as a diffraction grating,
A light beam P1 of wavelength Δ that is incident on this wavefront at an angle θ is reflected by the wavefront and becomes a Bragg-diffracted light beam P2 when the following equation is satisfied.

θ−arcsin (λ/2△) ここで、弾性表面波SAWの伝搬ベクトルが第2図のX
方向成分だけでなく7方向酸分を持つこと等により、櫛
形電極3の駆動周波数fをある範囲内で変化させて「±
Δfとしたとき、ブラッグ回折される光ビームP2の進
行方向は、第2・図に示づように、WJ躾先光導波路2
平面内においてΔθの範囲内で変化する。すなわち、高
周波発振器7の発振周波数をある範囲内で連続的に変化
させることにより、光ビームP2″の進行方向を連続的
に変化させることができる。
θ−arcsin (λ/2△) Here, the propagation vector of the surface acoustic wave SAW is
By having not only a directional component but also a 7-directional acid component, the driving frequency f of the comb-shaped electrode 3 can be changed within a certain range to achieve "±
When Δf, the traveling direction of the Bragg-diffracted light beam P2 is as shown in FIG.
It changes within a range of Δθ in a plane. That is, by continuously changing the oscillation frequency of the high-frequency oscillator 7 within a certain range, the traveling direction of the light beam P2'' can be continuously changed.

また、ニオブ酸リチウム単結晶からなる基板1の電気光
学効果により、電極6,6間に直流電圧を印加すると、
電極6.6間の結晶部分に屈折率の変化が生ずる。この
屈折率変化は、出射グレーティング5が形成された薄膜
光導波路2の表面部分に生ずる。第3図に拡大図を示す
ように、Bj射ダグレーティング5形成されたWI膜先
導波路2の表面部分2aの屈折率変化は、出射グレーテ
ィング5が出射する光ビームP3に対し、グレーティン
グの周期Sが変化したのと実質的に同様な作用を及ぼし
、そのため上記の部分2aの屈折率変化により出射グレ
ーティング5から出射する光ビームP3の出射角度が変
化する。この出射角度の変化は薄膜光導波路2の部分2
aの屈折率の変化の度合によって変化する。そして、こ
の屈折率の度合は電極6.6に印加する直流電圧に応じ
て変化する。従って、直流電I!8の出力電圧をある範
囲内で変化させることにより、出力光ビームP3の出射
角度をある範囲Δαで変化させることができる。つまり
、電極6に印加する直流電源8の電圧を変化させること
で、出射クレーティング5がら出射する光ビームP3を
薄膜光導波路2の平面と垂直方向に偏向させることがで
きる。
Further, due to the electro-optical effect of the substrate 1 made of lithium niobate single crystal, when a DC voltage is applied between the electrodes 6, 6,
A change in the refractive index occurs in the crystal part between the electrodes 6.6. This refractive index change occurs in the surface portion of the thin film optical waveguide 2 where the output grating 5 is formed. As shown in an enlarged view in FIG. 3, the refractive index change of the surface portion 2a of the WI film guiding waveguide 2 formed with the Bj radiation grating 5 is as follows: Therefore, the output angle of the light beam P3 output from the output grating 5 changes due to the change in the refractive index of the portion 2a. This change in the output angle is caused by the change in the part 2 of the thin film optical waveguide 2.
It changes depending on the degree of change in the refractive index of a. The degree of this refractive index changes depending on the DC voltage applied to the electrode 6.6. Therefore, DC electricity I! By changing the output voltage of 8 within a certain range, the output angle of the output light beam P3 can be changed within a certain range Δα. That is, by changing the voltage of the DC power supply 8 applied to the electrode 6, the light beam P3 emitted from the output crating 5 can be deflected in a direction perpendicular to the plane of the thin film optical waveguide 2.

上述のように、高周波発振器7による偏向制−と直流電
源8による偏向制御とを組合せることにより、光ビーム
P3の進行方向をスクリーン9上のドツトで示すよ゛う
に2次元的に任意に制御することができる。
As mentioned above, by combining the deflection control by the high frequency oscillator 7 and the deflection control by the DC power supply 8, the traveling direction of the light beam P3 can be arbitrarily controlled two-dimensionally as shown by the dots on the screen 9. can do.

なお、出射グレーティング5の形成部分のiiI膜光導
光導波路2折率を変化させる屈折率可変手段として、上
記の実施例では電極6,6間に直流電圧を印加して電気
光学効果による屈折率変化を生じさせるようにしていた
が、本発明はこれに限定されるものでなく、ニオブ酸リ
チウム単結晶からなる基板1は、IFiによってその屈
折率が変化する熱光学効果を示す結晶であるから導波路
2の上記部分2aを加熱する電気発熱体を設け、その加
熱湯境を変化させることによっても必要な屈折率変化を
生じさせることができる。
In addition, as a refractive index variable means for changing the refractive index of the III film optical waveguide 2 in the forming part of the output grating 5, in the above embodiment, a DC voltage is applied between the electrodes 6, 6 to change the refractive index due to the electro-optic effect. However, the present invention is not limited to this, and since the substrate 1 made of lithium niobate single crystal is a crystal that exhibits a thermo-optic effect whose refractive index changes depending on IFi, it is possible to The necessary refractive index change can also be caused by providing an electric heating element that heats the above-mentioned portion 2a of the wave path 2 and changing the heating temperature thereof.

また上記実施例では、上記出射グレーティングは薄膜光
導波路上に別の物質で形成されているが、本発明はこれ
に限定されるものではなく、薄膜光導波路表面に直接グ
レーティングを形成しても良い。またグレーティングの
形状は図示したような矩形波状のものに限定されるもの
ではな(、正弦波あるいは鋸歯状波形のものでも勿論良
い。
Further, in the above embodiment, the output grating is formed of a different material on the thin film optical waveguide, but the present invention is not limited to this, and the grating may be formed directly on the surface of the thin film optical waveguide. . Furthermore, the shape of the grating is not limited to the rectangular wave shape shown in the figure (although it is of course possible to use a sine wave or sawtooth wave shape).

以上詳細に説明したように、この発明に係る2次元光偏
向器は、基板上に形成したill先光導波路おける音響
光学効果および電気光学効果や熱光学効果を利用して光
ビームの進行方向を2次元的に制御するものであって、
従来のような機械的可動部分は全くなく、高速性および
信頼性の面で優れたものとなり、また光集積回路の技術
を使って均一な特性を持つものを大量に°生産すること
ができ、小形で安価な固体薄膜型の2次元光偏向器を実
現できる。
As explained in detail above, the two-dimensional optical deflector according to the present invention uses the acousto-optic effect, electro-optic effect, and thermo-optic effect in the illumination optical waveguide formed on the substrate to control the traveling direction of the light beam. It is two-dimensionally controlled,
There are no mechanically moving parts like in the past, making it superior in terms of speed and reliability, and using optical integrated circuit technology, products with uniform characteristics can be produced in large quantities. A compact and inexpensive solid thin film type two-dimensional optical deflector can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による2次元光偏向器の全
体の構成を示す斜視図、第2図は弾性表面波SAWによ
る光ビームのブラッグ回折現象を説明するための図、第
3図は薄膜光導波路の出射グレーティング形成部分の屈
折率変化による光ビームの偏向を説明するための図であ
る。 1・・・・・・・・・基板 2・・・・・・・・・WI!s光導波路2a・・・・・
・屈折率変化を生じる部分、3・・・・・・・・・櫛形
電極 4・・・・・・・・・入射グレーティング5・・・・・
・・・・出射グレーティング6・・・・・・・・・電極 7・・・・・・・・・高周波発振器 8・・・・・・・・・直流電源 9・・・・・・・・・スクリーン SAW・・・・・・・・・弾性表面波 PO,P1.P2.P3・・・・・・・・・光ビーム特
許出願人 立石電機株式会社
FIG. 1 is a perspective view showing the overall configuration of a two-dimensional optical deflector according to an embodiment of the present invention, FIG. 2 is a diagram for explaining the Bragg diffraction phenomenon of a light beam due to surface acoustic wave SAW, and FIG. 3 FIG. 2 is a diagram for explaining the deflection of a light beam due to a change in refractive index of a portion where an output grating is formed in a thin film optical waveguide. 1・・・・・・・・・Board 2・・・・・・・・・WI! s optical waveguide 2a...
・Part that causes refractive index change, 3...Comb-shaped electrode 4...Incidence grating 5...
...Exit grating 6... Electrode 7... High frequency oscillator 8... DC power supply 9...・Screen SAW・・・・・・Surface acoustic wave PO, P1. P2. P3・・・・・・Light beam patent applicant Tateishi Electric Co., Ltd.

Claims (1)

【特許請求の範囲】 〈1〉基板面に形成された薄膜光導波路と、この薄膜光
導波路上に弾性表面波を伝搬させる櫛形電極と、上記弾
性表面波の波面に対してプラック角となるように光ビー
ムを上記S躾光導波路に伝搬させる光導入部と、上記弾
性表面波で1ラッグ回折された光ビームを外部に出射さ
せるべく上記薄膜光導波路の上面に形成され1c出躬グ
レーデイングと、この出射グレーティングの形成部分の
上記薄膜先導波路の屈折率を変化させる屈折率可変手段
とを備え、上記櫛形電極の振動周波数を変化させること
で、ブラッグ回折される光ビームを上記WI躾先光導波
路平面内で偏向させるとともに1.ヒ紀屈折率可変手段
により上記部分の屈折率を変えることで、上記出射クレ
ーディングから出射する光ビームを上記薄膜光導波路面
に対して垂直方向に偏向させるCとを特徴とづる2次元
光偏向器。 (2)上記屈折率可変手段は、上記Ill光導波路の上
記出射グレーデインク形成部分の近傍に設けられた電極
を含み、この電極に電圧を印加することで、上記薄膜光
導波路に電気光学効果による屈折率変化を生じさせるも
のである特許請求の範囲第1項記載の2次元光偏向器。
[Claims] <1> A thin film optical waveguide formed on a substrate surface, a comb-shaped electrode for propagating a surface acoustic wave on the thin film optical waveguide, and a comb-shaped electrode that is at a Plack angle with respect to the wavefront of the surface acoustic wave. a light introduction section for propagating a light beam into the S-type optical waveguide; and a 1C output grading formed on the upper surface of the thin-film optical waveguide for emitting the light beam that has been 1-lag diffracted by the surface acoustic wave to the outside. and a refractive index variable means for changing the refractive index of the thin film leading waveguide in the formation portion of the exit grating, and by changing the vibration frequency of the comb-shaped electrode, the Bragg-diffracted light beam is directed to the WI leading light guide. Deflecting within the wave path plane and 1. Two-dimensional optical deflection characterized in that the light beam emitted from the output cladding is deflected in a direction perpendicular to the surface of the thin film optical waveguide by changing the refractive index of the portion using a refractive index variable means. vessel. (2) The refractive index variable means includes an electrode provided near the output grade ink forming portion of the Ill optical waveguide, and by applying a voltage to this electrode, an electro-optic effect is applied to the thin film optical waveguide. 2. A two-dimensional optical deflector according to claim 1, which causes a change in refractive index.
JP1267882A 1981-12-04 1982-01-29 Two-dimensional optical deflector Pending JPS58130327A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1267882A JPS58130327A (en) 1982-01-29 1982-01-29 Two-dimensional optical deflector
US06/818,915 US4762383A (en) 1981-12-04 1986-01-15 Two dimensional light beam deflectors utilizing thermooptical effect and method of using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1267882A JPS58130327A (en) 1982-01-29 1982-01-29 Two-dimensional optical deflector

Publications (1)

Publication Number Publication Date
JPS58130327A true JPS58130327A (en) 1983-08-03

Family

ID=11812030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1267882A Pending JPS58130327A (en) 1981-12-04 1982-01-29 Two-dimensional optical deflector

Country Status (1)

Country Link
JP (1) JPS58130327A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188932A (en) * 1984-03-08 1985-09-26 Matsushita Electric Ind Co Ltd Optical path switching device
JPS61241711A (en) * 1985-04-18 1986-10-28 Matsushita Electric Ind Co Ltd Input-output device for guided light
EP0219069A2 (en) * 1985-10-11 1987-04-22 Fuji Photo Film Co., Ltd. Light modulator and wave guide device
US6385355B1 (en) 1999-03-15 2002-05-07 Fuji Xerox Co., Ltd. Optical deflection element
US8654424B2 (en) 2009-09-15 2014-02-18 Ricoh Company, Ltd. Multibeam deflector for separating beams output from optical deflection devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188932A (en) * 1984-03-08 1985-09-26 Matsushita Electric Ind Co Ltd Optical path switching device
JPS61241711A (en) * 1985-04-18 1986-10-28 Matsushita Electric Ind Co Ltd Input-output device for guided light
EP0219069A2 (en) * 1985-10-11 1987-04-22 Fuji Photo Film Co., Ltd. Light modulator and wave guide device
US4830448A (en) * 1985-10-11 1989-05-16 Fuji Photo Film Co., Ltd. Light modulator and wave guide device
US6385355B1 (en) 1999-03-15 2002-05-07 Fuji Xerox Co., Ltd. Optical deflection element
US8654424B2 (en) 2009-09-15 2014-02-18 Ricoh Company, Ltd. Multibeam deflector for separating beams output from optical deflection devices

Similar Documents

Publication Publication Date Title
US4346965A (en) Light modulator/deflector using acoustic surface waves
JP2013140328A (en) Optical device, optical deflector, and optical modulator
EP0376710B1 (en) A method of operating a light wavelength converter
US4762383A (en) Two dimensional light beam deflectors utilizing thermooptical effect and method of using same
JPS58130327A (en) Two-dimensional optical deflector
US4961632A (en) Light beam deflector/modulator
JPS58125025A (en) Two-dimensional optical deflector
JP2603086B2 (en) Optical waveguide device
US5706370A (en) Optical deflection scanning device
JPS58137824A (en) Two dimensional light deflector
JPS58125024A (en) Two-dimensional optical deflector
JPS58125023A (en) Two-dimensional optical deflector
JPH01107213A (en) Optical waveguide element
JPH0778587B2 (en) Optical scanning recorder
JPS6035653B2 (en) light modulator
JP2844356B2 (en) Optical deflector
JPH0786625B2 (en) Light deflection device
JPH0363050B2 (en)
JPS622293B2 (en)
JPH0375729A (en) Optical deflector
JP3023491B2 (en) Light deflection element
JPH0778586B2 (en) Light deflection device
JPH01178918A (en) Waveguide type optical modulator
JPH05181173A (en) Light deflector
JP2844007B2 (en) Optical switch and method of deflecting monochromatic light beam using the same