WO2013024818A1 - Frequency shifter and frequency shifting method - Google Patents

Frequency shifter and frequency shifting method Download PDF

Info

Publication number
WO2013024818A1
WO2013024818A1 PCT/JP2012/070502 JP2012070502W WO2013024818A1 WO 2013024818 A1 WO2013024818 A1 WO 2013024818A1 JP 2012070502 W JP2012070502 W JP 2012070502W WO 2013024818 A1 WO2013024818 A1 WO 2013024818A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
substrate
frequency shifter
wave
waveguide
Prior art date
Application number
PCT/JP2012/070502
Other languages
French (fr)
Japanese (ja)
Inventor
信太郎 久武
小林 哲郎
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2013024818A1 publication Critical patent/WO2013024818A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/02Frequency-changing of light, e.g. by quantum counters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/05Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect with ferro-electric properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/20LiNbO3, LiTaO3

Definitions

  • the present invention relates to a frequency shifter and a frequency shift method.
  • a frequency shifter that shifts the frequency of light is used in optical equipment such as an optical communication system, an optical measuring device, and a spectroscopic device.
  • optical equipment such as an optical communication system, an optical measuring device, and a spectroscopic device.
  • various frequency shift techniques have been proposed.
  • An acousto-optic frequency shifter using an acousto-optic effect is known as an example of a frequency shifter (see, for example, Patent Document 1).
  • the acousto-optic frequency shifter utilizes the light diffraction phenomenon caused by the sound wave (dense / dense wave) propagating in the crystal, and can theoretically realize a shift efficiency of 100%.
  • the shift amount of the acousto-optic frequency shifter is about several hundred MHz to 1 GHz and is not so large. This is because the propagation loss of the sound wave in the crystal becomes very large in the high frequency region, and the wavelength of the sound wave is smaller than the wavelength of the light wave in the high frequency region of about 1 GHz or more, so that diffraction does not occur.
  • a frequency shifter using sideband (Single Side Band: SSB) modulation is known (see, for example, Patent Document 2).
  • SSB modulation frequency shifter incident light is divided into two waveguides, and one of the lights is shifted in phase by ⁇ / 4 by a phase modulator.
  • the two high-frequency phase modulators are respectively supplied with modulation signals (ie, sin ⁇ t and cos ⁇ t) that are out of phase with each other by ⁇ / 2, and phase-modulate the two light waves and combine them.
  • the fundamental frequency component can be suppressed and only the first sideband frequency component can be extracted, and it can function as a frequency shifter.
  • Such an SSB modulation type frequency shifter uses the electro-optic effect, and thus can operate at high speed.
  • an SSB frequency shifter can obtain a frequency shift amount of 1 to 100 GHz or more, which is much larger than a frequency shifter using an acoustooptic effect.
  • the inventor of the present application has been researching a frequency shifter that can realize a shift amount of 1 GHz to 100 GHz and a relatively high conversion efficiency by a method other than the SSB method (for example, Non-Patent Documents 1 and 2). reference).
  • the frequency-shifted diffracted light is generated by supplying an AC electric field to an electro-optic crystal having a domain-inverted structure and performing Bragg diffraction. .
  • the frequency shifter of Non-Patent Document 1 or 2 can perform a relatively large frequency shift.
  • Q is required to be sufficiently larger than 10 as described in Non-Patent Document 1.
  • Q is expressed as follows.
  • Q 2 ⁇ 0 L / (n ⁇ 2 )
  • ⁇ 0 represents the wavelength of incident light
  • L represents the interaction length
  • n represents the refractive index of the electro-optic crystal
  • represents the period of the periodically poled structure.
  • ⁇ B arcsin ( ⁇ 0 / (2n ⁇ ))
  • a frequency shifter is a frequency shifter including a substrate having a domain-inverted structure, a modulation electrode provided to extend in a predetermined direction on the surface of the substrate, and a waveguide provided on the substrate.
  • a modulation electrode provided to extend in a predetermined direction on the surface of the substrate
  • a waveguide provided on the substrate.
  • the waveguide is multimode at least in the width direction.
  • the thickness of the substrate is 0.3 mm or less.
  • the incident light is incident on the waveguide inclined with respect to the predetermined direction.
  • the incident light is inclined with respect to the predetermined direction at an angle other than a Bragg angle and is incident on the substrate.
  • the angle of the incident light with respect to the predetermined direction is set so that Bragg diffraction is performed.
  • the modulation electrode forms an electric field extending from the front surface to the back surface of the substrate.
  • the period in the direction orthogonal to the predetermined direction in the polarization inversion structure is equal to or greater than a half wavelength of the incident light.
  • the domain-inverted structure has a synthetic domain-inverted structure obtained by synthesizing at least two domain-inverted structures.
  • the domain-inverted structure includes a first region having a first domain-inverted structure and a second region having a second domain-inverted structure different from the first domain-inverted structure.
  • a frequency shift method provides a frequency shifter including a substrate having a domain-inverted structure, a modulation electrode provided to extend in a predetermined direction on the surface of the substrate, and a waveguide provided on the substrate. And a step of supplying an alternating electric field to the modulation electrode and generating diffracted light having a frequency obtained by shifting the frequency of the incident light from incident light incident on the waveguide.
  • a frequency shifter includes a substrate having a domain-inverted structure and a modulation electrode provided to extend in a predetermined direction on the surface of the substrate, and supplies an alternating electric field to the modulation electrode.
  • diffracted light having a frequency obtained by shifting the frequency of the incident light is generated from incident light incident on the substrate, and the incident light is inclined with respect to the predetermined direction at an angle other than a Bragg angle. Incident on the substrate.
  • the domain-inverted structure has a synthetic domain-inverted structure obtained by synthesizing at least two domain-inverted structures.
  • the domain-inverted structure includes a first region having a first domain-inverted structure and a second region having a second domain-inverted structure different from the first domain-inverted structure.
  • the frequency shift method includes a step of preparing a frequency shifter including a substrate having a domain-inverted structure and a modulation electrode provided to extend in a predetermined direction on the surface of the substrate, and an AC electric field applied to the modulation electrode.
  • a relatively large frequency shift can be easily realized.
  • FIG. 3 is a schematic diagram of an embodiment of a frequency shifter according to the present invention.
  • (A)-(h) is a schematic diagram which shows an example of the manufacturing method of the frequency shifter shown in FIG. It is a schematic diagram of the frequency shifter of this embodiment. It is a schematic diagram of the frequency shifter of this embodiment. It is a figure which shows the measurement result of the frequency shift using the frequency shifter of this embodiment. It is a graph which shows the change of the shift efficiency with respect to the square root of modulation power.
  • a modulation index measuring device that measures the modulation index of the frequency shifter of the present embodiment. It is a graph which shows the change of the modulation index with respect to the square root of modulation power.
  • FIG. 1 is a schematic diagram which shows the change of the normalization modulation index with respect to the thickness of a substrate.
  • FIG. A) is a schematic diagram which shows the relationship of the wave vector for reference
  • (b) is a schematic diagram which shows the relationship of the wave vector in the frequency shifter of this embodiment.
  • (A) is a graph which shows the modulation depth dependence of the normalization power in the frequency shifter of this embodiment
  • (b) is a graph which shows an output spectrum.
  • FIG. 1 It is a schematic diagram which shows an example of the relationship of the wave vector in the frequency shifter of this embodiment.
  • (A) is a graph which shows the modulation depth dependence of the normalization power in the frequency shifter of this embodiment
  • (b) is a graph which shows an output spectrum.
  • (A) is a schematic diagram for demonstrating the relationship of the wave number vector when each wave number vector of the input wave and modulation wave in the frequency shifter of this embodiment is collinear
  • (b) is a part of (a) It is an enlarged view.
  • (A)-(f) is a schematic diagram which shows the manufacturing method of the frequency shifter shown in FIG.
  • FIG. 1 shows an embodiment of a frequency shifter according to the present invention.
  • the frequency shifter 10 of the present embodiment includes a substrate 20 having a domain-inverted structure, a modulation electrode 30 provided on the surface of the substrate 20 so as to extend in a predetermined direction, and a waveguide 40 provided on the substrate 20. ing.
  • the substrate 20 includes a dielectric, a semiconductor, an organic material, etc. having an electro-optic effect.
  • the substrate 20 is made of a ferroelectric crystal.
  • the ferroelectric is, for example, lithium tantalate.
  • the polarization inversion structure of the substrate 20 is produced by, for example, periodically inverting the polarization of a predetermined region of the ferroelectric member. In FIG. 1, a region indicated by a black line indicates a region where polarization is inverted.
  • the modulation electrode 30 extends in the y direction.
  • the z direction orthogonal to each of the x direction and the y direction is parallel to the normal direction of the main surface of the substrate 20.
  • an alternating current (modulation signal) is applied to the modulation electrode 30.
  • the alternating current changes sinusoidally.
  • alternating current is microwave.
  • an alternating current obtained by amplifying a signal from the synthesizer by an amplifier is applied to the modulation electrode 30.
  • the width of the modulation electrode 30 is preferably relatively wide in order to use the spatial characteristics of light traveling in the substrate 20 (here, the waveguide 40) in the x direction (using a diffraction phenomenon).
  • the width of the modulation electrode 30 is not less than 0.5 mm and not more than 1.5 mm.
  • Such a modulation electrode 30 is also called a microstrip line.
  • the waveguide 40 exhibits a higher refractive index than other regions of the substrate 20.
  • the waveguide 40 is provided on one entire main surface of the substrate 20, and the waveguide 40 is a planar type.
  • the thickness (depth) of the waveguide 40 is about 0.8 ⁇ m.
  • the waveguide 40 propagates light in a state where light is confined in the z direction (thickness direction of the substrate 20).
  • the waveguide 40 propagates light in the length direction (y direction).
  • the waveguide 40 is multimode at least in the width direction (x direction).
  • the waveguide 40 is preferably single mode with respect to the thickness direction (z direction).
  • the polarization inversion structure of the substrate 20 is disposed obliquely with respect to the direction in which the modulation electrode 30 extends.
  • Such a periodic polarization inversion structure is also called an oblique periodic polarization inversion structure.
  • the direction in which the polarization is reversed at the shortest distance in the periodically poled structure may be referred to as a polarization reversal direction.
  • the frequency shifter 10 By supplying an alternating electric field to the modulation electrode 30, diffracted light having a frequency obtained by shifting the frequency of the incident light is generated from the incident light incident on the substrate 20.
  • the frequency of the incident light is shifted according to the AC frequency applied to the modulation electrode 30.
  • the frequency of light shifts beyond 10 GHz.
  • the waveguide 40 emits diffracted light having a frequency shifted by ⁇ N ⁇ 10 GHz of the frequency of the incident light.
  • N is an integer.
  • the light in the waveguide 40 is confined in the z direction and is diffracted in the xy plane.
  • An alternating current having a frequency of several hundred GHz may be applied to the modulation electrode 30.
  • the substrate 20 since the substrate 20 has a periodic polarization inversion structure, the phase velocity of the alternating current (modulated wave) supplied to the modulation electrode 30 and the waveguide 40 (substrate 20) travel. Although the difference from the group velocity of light waves is relatively large, the speed can be matched in a pseudo manner, and incident light can be efficiently modulated.
  • the modulation electrode 30 is in contact with the waveguide 40 here, an insulating layer is provided between the modulation electrode 30 and the waveguide 40 in order to reduce light loss due to the modulation electrode 30 as will be described later. Is preferably provided.
  • a ground electrode is provided on a main surface different from the main surface on which the modulation electrode 30 is provided on the two main surfaces of the substrate 20.
  • the modulation electrode 30 forms an electric field extending from the front surface to the back surface of the substrate 20.
  • the interaction length of the frequency shifter 10 can be made relatively long even if the substrate 20 is relatively thin.
  • the thickness of the substrate 20 is 0.3 mm or less, and as an example, the thickness of the substrate 20 is 0.1 mm. Even in this case, an interaction length of 30 mm or more can be realized.
  • the substrate 20 is thin as described above, relatively high shift efficiency can be realized even if the power applied to the modulation electrode 30 is relatively low.
  • a substrate 20 is prepared.
  • the substrate 20 includes a ferroelectric material.
  • the substrate 20 is z-cut coincidence melting type LiTaO 3 (Congruent Lithium Tantalate: CLT).
  • the arrow in the substrate 20 indicates the direction of polarization.
  • a resist R is applied on the substrate 20.
  • the resist R is applied to the surface of the substrate 20 by spin coating at 1000 rpm for 5 seconds and 3000 rpm for 30 seconds.
  • baking is performed at 90 ° C. for about 40 minutes.
  • a mask M to which the polarization inversion pattern is transferred is formed on the resist R.
  • UV exposure is performed for about 30 to 40 seconds to form a polarization inversion resist pattern RP as shown in FIG.
  • polarization inversion is performed.
  • the polarization inversion is performed using, for example, a lithium chloride aqueous solution E (for example, 500 g of lithium chloride per 600 ml of water) as a liquid electrode.
  • a lithium chloride aqueous solution E for example, 500 g of lithium chloride per 600 ml of water
  • the polarization inversion may be performed using an electrode in which silver is quick-coated or vapor-deposited on both surfaces.
  • the resist pattern RP is removed. Thereafter, the waveguide 40 is formed on the substrate 20.
  • the waveguide 40 is formed on the substrate 20.
  • proton exchange is performed on the surface of the substrate 20 to form a high refractive index region, and as a result, as shown in FIG. Is formed.
  • the substrate 20 when proton exchange is performed on the CLT used as the substrate 20, the substrate 20 is immersed in a benzoic acid (C 6 H 5 COOH) melt, whereby Li + and H + are exchanged, and H x Li 1-x TaO 3 is produced.
  • a benzoic acid C 6 H 5 COOH
  • proton exchange is performed at 240 ° C. for 4 hours.
  • benzoic acid phthalic acid, inphthalic acid or pyrophosphoric acid may be used.
  • the waveguide 40 may be lost due to proton exchange and the electro-optic constant ⁇ 33 may be reduced.
  • the electro-optic constant ⁇ 33 can be recovered together with the loss of the waveguide 40 by annealing.
  • the annealing process is performed at 400 ° C. for 30 minutes.
  • the modulation electrode 30 is formed on the substrate 20.
  • the modulation electrode 30 is made of silver, for example.
  • the frequency shifter 10 shown in FIG. 1 can be manufactured.
  • the modulation electrode 30 is provided directly on the waveguide 40, but the present invention is not limited to this.
  • the modulation electrode 30 may be provided on the waveguide 40 via another member.
  • FIG. 3 shows a schematic diagram of the frequency shifter 10 of the present embodiment.
  • the frequency shifter 10 shown in FIG. 3 has the same configuration as the frequency shifter 10 described above with reference to FIG. 1 except that an insulating layer 50 is further provided between the modulation electrode 30 and the waveguide 40. In order to avoid redundancy, duplicate descriptions are omitted.
  • the thickness of the insulating layer 50 is about 0.1 ⁇ m.
  • the insulating layer 50 is made of, for example, silicon oxide (SiO 2 ).
  • the silicon oxide layer 50 is formed, for example, by sputtering a SiO 2 target after forming the waveguide 50.
  • the refractive index n f of the waveguide 40 is 2.262
  • the refractive index n c of the insulating layer 50 is 1.467.
  • the waveguide 40 can be made into single mode by making the depth of the waveguide 40 into 0.8 micrometer or less.
  • FIG. 4 shows a schematic diagram of the frequency shifter 10.
  • the interaction length Ld is equal to the length of the substrate 20.
  • the length Ld of the substrate 20 is 34 mm, and the thickness t is 0.1 mm.
  • the period of the domain-inverted structure in the substrate 20 (distance along the domain-inverted direction of the domain-inverted structure) ⁇ p is 60 ⁇ m, and the inclination ⁇ t of the domain-inverted structure with respect to the y-direction is 0.567 °.
  • the polarization inversion length (polarization inversion pitch along the y direction) Lu is 3.03 mm.
  • the width w of the modulation electrode 30 is 0.5 mm, and the length of the modulation electrode 30 in the extending direction (y direction) is 34 mm, which is equal to the length Ld of the substrate 20. Further, an alternating current with a frequency of 16.25 GHz is applied to the modulation electrode 30 at about 2.7 W.
  • the period ⁇ x in the x direction perpendicular to the y direction in which the modulation electrode 30 extends is equal to or more than a half wavelength of the incident light.
  • incident light is incident at a Bragg angle.
  • incident light is incident on the x direction side with an inclination of ⁇ with respect to the y direction, and the incident angle ⁇ is 0.11 °.
  • the diffracted light is emitted from the frequency shifter 10 while being inclined to the x direction side at the same emission angle ⁇ (that is, 0.11 °) with respect to the y direction.
  • the light wave traveling in the domain-inverted structure interacts with the modulated wave (alternating current), and diffracted light whose frequency is shifted by the frequency component of the modulated wave with respect to the frequency of the incident light is emitted at the Bragg angle.
  • the emitted light having a shifted frequency is spatially separated from light having a frequency equal to the frequency of the incident light.
  • FIG. 5 shows the measurement results of the frequency shifter 10 shown in FIG.
  • the horizontal axis indicates the space
  • the vertical axis indicates the frequency.
  • the difference between the two plotted points in the vertical axis direction corresponds to the frequency shift amount of the light wave. From FIG. 5, it is understood that the frequency of the first-order diffracted light is shifted by 16.25 GHz with respect to the zero-order diffracted light having the same frequency as the incident light.
  • the modulation power is adjusted so that both a component having a frequency of incident light and a component having a frequency shifted frequency are measured.
  • FIG. 6 shows the change in shift efficiency with respect to the square root of the modulation power. As understood from FIG. 6, a shift efficiency of about 68% can be realized with a modulation power of about 2.7 W. Such a frequency shifter 10 can be driven continuously as well as pulsed. Note that in Non-Patent Document 1, a magnetron that performs pulse driving is used as a modulation signal source.
  • the thickness of the substrate 20 is preferably 0.3 mm or less.
  • changes in the modulation index according to the thickness of the substrate 20 will be described with reference to FIGS.
  • FIG. 7 shows a schematic diagram of the modulation index measuring apparatus 100.
  • the modulation index of the phase modulator D is measured.
  • the phase modulator D has the same configuration as the above-described frequency shifter except that the polarization inversion direction defined by the polarization inversion structure is parallel to the direction in which the modulation electrode extends.
  • the modulation index measurement apparatus 100 includes a light source 110 that emits light incident on the phase modulator D, an AC power source 120 that applies an AC electric field to the modulation electrode of the phase modulator D, and the light emitted from the phase modulator D.
  • a diffraction grating 130 for spatially decomposing frequency components, a Fourier transform lens 140, and an imaging unit 150 are provided.
  • the light source 110 is an Ar laser that emits light having a wavelength of 514.5 nm
  • the imaging unit 150 is a CCD (Charged Coupled Device) camera.
  • a modulation index is obtained by fitting a sideband image picked up by the image pickup unit 150.
  • FIG. 8 shows the change of the modulation index with respect to the square root of the modulation power.
  • a plurality of types of phase modulators having different thicknesses of the substrate 20 and the lengths of the modulation electrodes, and types of phase modulators without a waveguide (that is, bulk type) are also measured.
  • the modulation index increases as the square root of the modulation electrode increases.
  • the thinner the substrate 20 the higher the modulation index.
  • the thickness of the substrate 20 is 0.3 mm or less, a modulation index larger than that of a bulk type having a thickness of 0.5 mm can be obtained.
  • FIG. 9 shows changes in the normalized modulation index with respect to the thickness of the substrate 20.
  • the polarization inversion period is corrected with respect to the measurement result shown in FIG. 8 and is normalized according to the length of the modulation electrode 30. From FIG. 9, it can be understood that the normalized modulation index when the thickness of the substrate 20 is 0.1 mm is 3.4 times that of the bulk type, which results in about 10 times the power efficiency.
  • the thickness of the substrate 20 is preferably 0.3 mm or less. However, as will be appreciated by those skilled in the art, the preferred thickness of the substrate 20 varies depending on various conditions.
  • the pattern of the domain-inverted structure of the substrate 20 is one, but the present invention is not limited to this.
  • FIG. 10 shows a schematic diagram of the frequency shifter of the present embodiment.
  • the frequency shifter 10 illustrated in FIG. 10 includes a shift unit 10a and a shift 10b.
  • the shift unit 10a includes a substrate 20a having a domain-inverted structure and a waveguide 40a provided on the substrate 20a.
  • the shift unit 10b includes a substrate 20b having a polarization inversion structure different from that of the substrate 20a, and a waveguide 40b provided on the substrate 20b.
  • a modulation electrode 30 is provided over the substrates 20a and 20b.
  • the waveguide 40b is configured to communicate with the waveguide 40a.
  • the shift unit 10a, the substrate 20a, and the waveguide 40a may be referred to as a first shift unit, a first substrate, and a first waveguide, respectively, and the shift unit 10b, the substrate 20b, and the waveguide 40b may be referred to as the first shift unit, the first substrate, and the first waveguide, respectively. It may be called a 2nd shift part, a 2nd board
  • the polarization inversion structure of the substrate 20a and the region provided with the polarization inversion structure are referred to as a first polarization inversion structure and a first region, respectively, and the polarization inversion structure of the substrate 20b and the region provided with the polarization inversion structure are respectively provided.
  • the first domain-inverted structure of the first substrate 20a is different from the second domain-inverted structure of the second substrate 20b.
  • the polarization inversion direction of the first polarization inversion structure is different from the polarization inversion direction of the second polarization inversion structure.
  • the polarization inversion direction defined by the first polarization inversion structure has a + component in the x direction in addition to the y direction component
  • the polarization inversion direction defined by the second polarization inversion structure is in the y direction. In addition to the component, it has a-component in the x direction.
  • the period of the first domain-inverted structure is preferably equal to the period of the second domain-inverted structure.
  • the diffraction direction in the frequency shifter 10 shown in FIG. 10 will be described with reference to FIG. In FIG. 11, the modulation electrode 30 is omitted.
  • the frequency shifter 10 shown in FIG. 10 emits diffracted light having a frequency shifted by 32.5 GHz with respect to the frequency of incident light.
  • the x-direction component in the polarization inversion direction defined by the first polarization inversion structure has the opposite sign to the x-direction component in the polarization inversion direction defined by the second polarization inversion structure.
  • the present invention is not limited to this.
  • the component in the x direction in the polarization inversion direction defined by the first polarization inversion structure may have the same sign as the component in the x direction in the polarization inversion direction defined by the second polarization inversion structure.
  • the angle between the direction in which the modulation electrode 30 extends and the polarization inversion direction defined by the second polarization inversion structure is larger than the polarization inversion direction defined by the first polarization inversion structure, and the second waveguide
  • the diffraction of 40b may be performed in the same direction as the first waveguide 40a.
  • the frequency shifter 10 includes the two shift units 10a and 10b. However, the present invention is not limited to this.
  • the frequency shifter 10 may include three or more shift units.
  • the frequency shifter 10 generates diffracted light having a frequency shifted from the frequency of incident light based on the modulation current (radio wave).
  • a frequency shift by the frequency shifter 10 includes an input wave (incident light), a refractive index distribution wave (a wave of a refractive index distribution generated in a domain-inverted structure to which an AC electric field is applied), and a generated wave (diffracted light). It can be considered that this is caused by the mixing of the three waves.
  • the frequency of the input wave is f 0 .
  • f 0 the frequency of the input wave
  • n g the group refractive index
  • n m the refractive index for the modulation wave.
  • ⁇ k becomes zero by the periodic polarization inversion.
  • This is also called quasi phase matching.
  • the polarization inversion period at this time is It is represented by
  • v g represents the group velocity of the light wave
  • v m denotes the phase velocity of the modulating wave.
  • k 0 represents the wave vector of the input wave
  • k m represents the wave vector of the modulated wave.
  • underlined symbols indicate vectors.
  • quasi-phase matching is achieved by periodically poled structure with a wave vector k 0, k m and the wave vector K in the same direction.
  • the wave number vector k 0 defines the traveling direction of the incident light having the frequency f 0
  • the amplitude of the n-order component in a situation where the n-order component and the (n ⁇ 1) -order component are combined is expressed as J n ( ⁇ ).
  • J n () is a Bessel function
  • is a modulation index. For this reason, energy cannot be transferred to a specific sideband component with 100% efficiency.
  • FIG. 12B is a schematic diagram showing the relationship between wave vectors. Wave vector K periodically poled structure, the angle ( ⁇ 1 ⁇ 0) with respect to wave vector k 0, k m collinear input wave and the modulated wave is inclined by. Note that the wave vector of the refractive index distribution wave is expressed by a composite vector of the wave vector K and the wave vector k m.
  • the input wave and the modulated wave are collinear, but they are not necessarily collinear.
  • Situation in which the frequency is shifted to the -f m can also be realized by a similar concept.
  • the polarization inversion structure has two wave vectors K 1, K 2, (f 0, k 0) and (f 1, k 1) wave vector in the energy coupling between K 1 + k m quasi-phase matching according to the refractive index distribution wave represented by (quasi-phase-matching: QPM ) using, (f 1, k 1) and (f 2, k 2) is the energy coupling between the wave vector K 2 + k utilizing QPM by refractive index distribution waves indicated by m.
  • + has been described a frequency shift to 2f m, it can be carried out similarly frequency shift to -2f m.
  • ⁇ 1 ⁇ 1.58 rad
  • FIG. 14A shows a simulation result based on a beam propagation method (BPM).
  • the electro-optic constant ⁇ 33 is 32.2 pm / V
  • the AC power applied to the modulation electrode 30 is 3 W
  • the thickness t of the substrate 20 is 0.1 mm
  • the length of the substrate 20 is (Device length) Ld is 34 mm.
  • the amplitude ⁇ n of the refractive index change due to the modulation wave is ⁇ 0 / (4Ld)
  • the energy of the input wave (f 0, k 0) is, + f m just shifted frequency (f 1, k 1) component 100% Move with efficiency.
  • FIG. 14B shows the spectrum of the emitted light.
  • the broken line indicates the frequency component of the incident light.
  • the solid line is (f 1, k 1) component, this frequency is + f m shift with respect to the frequency of the input wave.
  • Wave vector k m and wave vector K 1 and quasi-phase matching method using the refractive index distribution wave represented by the wavevector k m1 ' is a composite vector of (Quasi Phase Matching: QPM) by (f 0, k 0) component and ( f 1 , k 1 ) are energetically coupled to each other, and by a quasi-phase matching method using a refractive index distribution wave indicated by a wave vector k m2 ′ which is a composite vector of the wave vector k m and the wave vector K 2 ( It is possible to create a situation where the (f 1 , k 1 ) component and the (f 2 , k 2 ) component are energetically coupled.
  • the substrate 20 (see, for example, FIG. 1) is formed with a combined polarization inversion structure corresponding to a combined vector of wave number vectors K 1 and K 2 indicating two polarization inversion structures.
  • FIG. 16A shows a simulation result based on BPM.
  • ⁇ 1 and ⁇ 2 are different here, ⁇ 1 and ⁇ 2 may be equal to each other.
  • FIG. 16B shows the spectrum of the emitted light.
  • the broken line indicates the frequency component of the incident light.
  • the solid line is (f 2, k 2) component, this frequency is + 2f m shift with respect to the frequency of the input wave.
  • the component of the frequency f 0 can be moved to a component of the component or f 0 -f m of f 0 + f m, the energy selectively.
  • the wave number used for coupling includes uncertainty, and in the case of selectively shifting the frequency to other unintended modes (particularly, + fm ). May easily cause energy transfer to ⁇ f m or + f m when the frequency is selectively shifted to ⁇ f m .
  • FIG. 17A is a schematic diagram showing a relationship between wave number vectors when the wave number vectors of the input wave and the modulated wave in the frequency shifter of the present embodiment are collinear, and FIG. FIG. As shown in FIGS. 17A and 17B, even if the phase matching condition for combining the wave vector k 0 and the wave vector k 1 is set, the wave vector k There may be a coupling between 0 and the wave vector k ⁇ 1 .
  • the frequency shifter 10 it is preferable not to co-linear to wave vector k 0 of the input wave with wavenumber vector k m of the modulation wave.
  • the wave vector k -1 also the angle between the wave vector k 1 and the wave vector k m incident
  • the wave vector k -1 will have a multiple of the angular (2.alpha) with wavenumber vector k m, the wave vector k m of wave vector k -1
  • the walk-off angle with respect to is doubled compared to the wave vector k 1 .
  • the size of the modulation electrode 30 is finite, as a result of the large walk-off angle, the interaction length between the wave vector k ⁇ 1 and the wave vector k 0 is limited, and the wave vector k 0 to the wave vector k ⁇ 1 is limited. Energy transfer is suppressed.
  • the phenomenon in which two waves move away with propagation and the degree of spatial overlap between the two waves interacting with propagation decreases is also called walk-off. Since the diameter of the light beam and the width of the modulation electrode 30 in the frequency shifter 10 are finite, there is a difference in the traveling direction of the wave vector of the generated wave and the modulated wave (because the generated wave and the modulated wave are not collinear). As the wave propagates, the degree of spatial overlap of the two waves decreases. In FIG.
  • the angle formed by the nth-order wave vector and the n + 1-order wave vector differs from the angle formed by the n-th wave vector and the n ⁇ 1th wave vector (where n is an integer), n Since the degree of walk-off between the next wave vector and the n + 1-th wave vector is different from the degree of walk-off between the n-th wave vector and the n ⁇ 1-th wave vector, Energy transfer is performed efficiently.
  • the incident light is preferably incident at an incident angle ⁇ obliquely with respect to the direction in which the modulation electrode 30 extends.
  • the waveguide 40 is formed on the entire main surface of the substrate 20, but the present invention is not limited to this. When viewed from the normal direction of the main surface of the substrate 20, it may be provided in a partial region of the substrate 20. However, as shown in FIG. 19, the width wo (the length along the x direction) of the waveguide 40 is preferably larger than the width w of the modulation electrode 30.
  • the width wo of the waveguide 40 when the width wo of the waveguide 40 is smaller than the width w of the modulation electrode 30, all the propagation modes in the waveguide 40 interact with the modulation wave, and the above-described walk-off causes energy coupling limitation. There may not be.
  • the width wo of the waveguide 40 when the width wo of the waveguide 40 is larger than the width w of the modulation electrode 30, with respect to a specific propagation mode in the waveguide 40, there is no overlap between the modulated wave electric field and the light wave according to the propagation. As a result, it is possible to prevent energy coupling with other light using the modulated wave.
  • the incident angle ⁇ may be a Bragg angle
  • the diffraction of the frequency shifter 10 may be a Bragg diffraction.
  • the angle of incident light with respect to the extending direction of the modulation electrode 30 shown in FIG. 1 may be set so that Bragg diffraction is performed.
  • the incident angle ⁇ may not be a Bragg angle
  • the diffraction of the frequency shifter 10 may not be a Bragg diffraction.
  • FIG. 20 the schematic diagram of the frequency shifter 10 of this embodiment is shown.
  • the frequency shifter 10 includes a substrate 20 having a domain-inverted structure and a modulation electrode 30 provided on the surface of the substrate 20.
  • the frequency shifter 10 shown in FIG. 20 has the same configuration as the above-described frequency shifter except that the substrate 20 is not provided with a waveguide, and redundant description is omitted for the purpose of avoiding redundancy. To do.
  • the incident light is incident on the substrate 20 with an inclination other than the Bragg angle with respect to the direction in which the modulation electrode 30 extends. Also in this case, as described above with reference to FIGS. 17 and 18, it is possible to suppress energy from moving to an unintended mode. Further, in the frequency shifter 10, by performing diffraction different from Bragg diffraction, Q may be 10 or less, and the degree of freedom in designing the frequency shifter 10 can be improved.
  • the frequency shifter 10 of this embodiment may also be provided with the two shift parts 10a and 10b as above-mentioned with reference to FIG.
  • the substrate 20 includes a synthesis corresponding to a synthesized vector of wave number vectors K 1 and K 2 indicating two polarization inversion structures. A domain-inverted structure may be formed.
  • the frequency shifter 10 shown in FIG. 20 is manufactured as follows, for example. Hereinafter, a method of manufacturing the frequency shifter 10 will be described with reference to FIG.
  • a substrate 20 is prepared.
  • the substrate 20 includes a dielectric having nonlinear optical characteristics.
  • the substrate 20 is z-cut coincidence melting type LiTaO 3 (Congruent Lithium Tantalate: CLT).
  • a resist R is applied on the substrate 20.
  • the resist R is applied by spin coating the surface of the substrate 20 for 5 seconds at 1000 rpm and 30 seconds at 3000 rpm. Next, baking is performed at 90 ° C. for about 40 minutes. Thereafter, a mask M to which the polarization inversion pattern is transferred is formed on the resist R. Using the mask M, UV exposure is performed for about 30 to 40 seconds to form a polarization-inverted resist pattern RP as shown in FIG.
  • polarization inversion is performed.
  • the polarization inversion is performed using a lithium chloride aqueous solution E (for example, 500 g of lithium chloride per 600 ml of water) as a liquid electrode.
  • the polarization inversion may be performed using an electrode in which silver is quick-coated or vapor-deposited on both surfaces.
  • the resist pattern RP is removed. Thereafter, as shown in FIG. 21F, the modulation electrode 30 is formed on the substrate 20.
  • the modulation electrode 30 is made of silver, for example. As described above, the frequency shifter 10 shown in FIG. 20 can be manufactured.
  • a relatively large frequency shift can be easily realized.
  • the degree of freedom in designing the frequency shifter can be improved.
  • the frequency shifter of the present invention can be applied to high-accuracy characteristic evaluation of ultrashort light pulses. It can also be used for precise frequency control in the next generation coherent optical communication system.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

This frequency shifter (10) comprises a substrate (20) having a polarization reversal structure, a modulating electrode (30) provided on the surface of the substrate (20), and a waveguide (40) provided to the substrate (20). Supplying an alternating-current electric field to the modulating electrode (30) causes diffracted light to be generated from incident light that is incident on the waveguide (40), the diffracted light having a frequency that is shifted from the frequency of the incident light. The width of the waveguide (40) is preferably greater than that of the modulating electrode (30). The thickness of the substrate (20) is preferably no greater than 0.3 mm.

Description

周波数シフタおよび周波数シフト方法Frequency shifter and frequency shift method
 本発明は、周波数シフタおよび周波数シフト方法に関する。 The present invention relates to a frequency shifter and a frequency shift method.
 光の周波数をシフトさせる周波数シフタは、光通信システム、光学計測装置および分光装置などの光学機器などに用いられている。現在までに、様々な周波数シフトの手法が提案されている。 A frequency shifter that shifts the frequency of light is used in optical equipment such as an optical communication system, an optical measuring device, and a spectroscopic device. To date, various frequency shift techniques have been proposed.
 周波数シフタの一例として音響光学効果を利用した音響光学周波数シフタが知られている(例えば、特許文献1参照)。音響光学周波数シフタは、結晶中を伝搬する音波(疎密波)による光の回折現象を利用しており、理論上、100%のシフト効率を実現することができる。しかしながら、音響光学周波数シフタのシフト量は数百MHzから1GHz程度であり、それほど大きくない。これは、高周波領域では結晶中での音波の伝搬損失が非常に大きくなるとともに、1GHz程度以上の高周波領域では音波の波長が光波の波長に比べて小さく、回折が起こらなくなるためである。 An acousto-optic frequency shifter using an acousto-optic effect is known as an example of a frequency shifter (see, for example, Patent Document 1). The acousto-optic frequency shifter utilizes the light diffraction phenomenon caused by the sound wave (dense / dense wave) propagating in the crystal, and can theoretically realize a shift efficiency of 100%. However, the shift amount of the acousto-optic frequency shifter is about several hundred MHz to 1 GHz and is not so large. This is because the propagation loss of the sound wave in the crystal becomes very large in the high frequency region, and the wavelength of the sound wave is smaller than the wavelength of the light wave in the high frequency region of about 1 GHz or more, so that diffraction does not occur.
 また、別の周波数シフタとして、側波帯(Single Side Band:SSB)変調を用いた周波数シフタが知られている(例えば、特許文献2参照)。SSB変調方式周波数シフタでは、入射光は2つの導波路に分割され、一方の光は位相変調器によってπ/4だけ位相をずらされる。2つの高周波位相変調器には、互いに位相のπ/2ずれた変調信号(つまりsinΩtとcosΩt)がそれぞれ供給され、2つの光波をそれぞれ位相変調した後に合波する。このとき、位相変調の深さを適当に選ぶと、基本周波数成分を抑圧して第1サイドバンド周波数成分のみを取り出すことができ、周波数シフタとして機能させることができる。このようなSSB変調方式周波数シフタは、電気光学効果を利用しているため、高速な動作が可能となる。例えば、SSB方式周波数シフタでは、音響光学効果を利用した周波数シフタに比べて遙かに大きな、1~100GHz以上の周波数シフト量が得られる。 Also, as another frequency shifter, a frequency shifter using sideband (Single Side Band: SSB) modulation is known (see, for example, Patent Document 2). In the SSB modulation frequency shifter, incident light is divided into two waveguides, and one of the lights is shifted in phase by π / 4 by a phase modulator. The two high-frequency phase modulators are respectively supplied with modulation signals (ie, sinΩt and cosΩt) that are out of phase with each other by π / 2, and phase-modulate the two light waves and combine them. At this time, if the depth of the phase modulation is appropriately selected, the fundamental frequency component can be suppressed and only the first sideband frequency component can be extracted, and it can function as a frequency shifter. Such an SSB modulation type frequency shifter uses the electro-optic effect, and thus can operate at high speed. For example, an SSB frequency shifter can obtain a frequency shift amount of 1 to 100 GHz or more, which is much larger than a frequency shifter using an acoustooptic effect.
 しかしながら、SSB方式周波数シフタでは、位相変調によって生成される側波帯の周波数成分の中で最もエネルギー移動量の大きな第1サイドバンド周波数成分を用いたとしても、その変換効率(シフト効率)の理論的な最大値は34%にすぎず、それ以上の変換効率を得ることができない。 However, in the SSB frequency shifter, even if the first sideband frequency component having the largest energy transfer amount is used among the sideband frequency components generated by the phase modulation, the theory of the conversion efficiency (shift efficiency) is used. The maximum value is only 34%, and a conversion efficiency higher than that cannot be obtained.
 本願発明者は、SSB方式以外の方式で、1GHz~100GHzのシフト量を実現可能で、かつ、比較的高い変換効率を実現する周波数シフタの研究を行っている(例えば、非特許文献1、2参照)。非特許文献1、2の文献に開示された周波数シフタでは、分極反転構造を有する電気光学結晶に交流電界を供給してブラッグ回折を行うことにより、周波数のシフトされた回折光を生成している。 The inventor of the present application has been researching a frequency shifter that can realize a shift amount of 1 GHz to 100 GHz and a relatively high conversion efficiency by a method other than the SSB method (for example, Non-Patent Documents 1 and 2). reference). In the frequency shifters disclosed in Non-Patent Documents 1 and 2, the frequency-shifted diffracted light is generated by supplying an AC electric field to an electro-optic crystal having a domain-inverted structure and performing Bragg diffraction. .
特開平7-270734号公報JP-A-7-270734 特開2007-11125号公報JP 2007-11125 A
 上述したように、非特許文献1または2の周波数シフタでは比較的大きな周波数シフトを行うことができる。しかしながら、非特許文献1または2の周波数シフタにおいてブラッグ回折を行うためには、非特許文献1に記載されているようにQが10より十分大きいことが要求される。Qは以下のように表される。
   Q=2πλ0L/(nΛ2
ここで、λ0は入射光の波長を示し、Lは相互作用長を示し、nは電気光学結晶の屈折率を示し、Λは周期分極反転構造の周期を示す。
As described above, the frequency shifter of Non-Patent Document 1 or 2 can perform a relatively large frequency shift. However, in order to perform Bragg diffraction in the frequency shifter of Non-Patent Document 1 or 2, Q is required to be sufficiently larger than 10 as described in Non-Patent Document 1. Q is expressed as follows.
Q = 2πλ 0 L / (nΛ 2 )
Here, λ 0 represents the wavelength of incident light, L represents the interaction length, n represents the refractive index of the electro-optic crystal, and Λ represents the period of the periodically poled structure.
 また、入射ブラッグ角θBは以下のように表される。
   θB=arcsin(λ0/(2nΛ))
Further, the incident Bragg angle θ B is expressed as follows.
θ B = arcsin (λ 0 / (2nΛ))
 10より十分大きなQ値を実現するためには、周期分極反転構造の周期Λを小さくするような設計が要求される。この場合、周期分極反転構造の作製が困難となることがある。また、周期Λの減少に伴って入射ブラッグ角θBは増大する。この場合、大きな入射ブラッグ角θBで入射した入射光に対して一定の長さで相互作用を行うためには、変調電極の幅を大きくする必要があり、設計の自由度が低減してしまうことがある。 In order to realize a Q value sufficiently larger than 10, a design that reduces the period Λ of the periodically poled structure is required. In this case, it may be difficult to produce a periodically poled structure. Further, the incident Bragg angle θ B increases as the period Λ decreases. In this case, in order to interact with incident light with a large incident Bragg angle θ B at a constant length, it is necessary to increase the width of the modulation electrode, which reduces design freedom. Sometimes.
 また、10より十分大きなQ値を実現するためには、相互作用長Lを長くするような設計が要求される。この場合、結晶中で回折する光波を長い距離伝搬させるためには、比較的厚い結晶を用いることが必要となる。しかしながら、厚い結晶を用いる場合、結晶を挟むように配置された電極間の距離が長くなり、これに伴い変調効率が低下し、所定の動作を得るために大きな変調電力が必要となることがある。非特許文献1および2の周波数シフタでは、数百W程度の変調電力が供給されている。このように、非特許文献1または2の周波数シフタでは、周波数シフトを簡便に行うことができないことがある。 Also, in order to realize a Q value sufficiently larger than 10, a design that increases the interaction length L is required. In this case, in order to propagate the light wave diffracted in the crystal over a long distance, it is necessary to use a relatively thick crystal. However, when a thick crystal is used, the distance between the electrodes arranged so as to sandwich the crystal becomes long, and as a result, the modulation efficiency decreases, and a large modulation power may be required to obtain a predetermined operation. . In the frequency shifters of Non-Patent Documents 1 and 2, modulated power of about several hundred W is supplied. As described above, the frequency shifter of Non-Patent Document 1 or 2 may not be able to easily perform frequency shift.
 本発明は上記課題を鑑みてなされたものであり、その目的は、比較的大きな周波数シフトを簡便に実現する周波数シフタおよび周波数シフト方法を提供することにある。また、本発明の別の目的は、設計自由度を向上させた周波数シフタおよび周波数シフト方法を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a frequency shifter and a frequency shift method that can easily realize a relatively large frequency shift. Another object of the present invention is to provide a frequency shifter and a frequency shift method with improved design flexibility.
 本発明による周波数シフタは、分極反転構造を有する基板と、前記基板の表面において所定の方向に延びるように設けられた変調電極と、前記基板に設けられた導波路とを備える、周波数シフタであって、前記変調電極に交流電界を供給することにより、前記導波路に入射した入射光から、前記入射光の周波数をシフトさせた周波数を有する回折光を生成する。 A frequency shifter according to the present invention is a frequency shifter including a substrate having a domain-inverted structure, a modulation electrode provided to extend in a predetermined direction on the surface of the substrate, and a waveguide provided on the substrate. By supplying an alternating electric field to the modulation electrode, diffracted light having a frequency obtained by shifting the frequency of the incident light is generated from the incident light incident on the waveguide.
 ある実施形態において、前記導波路は、少なくとも幅方向に関してマルチモードである。 In one embodiment, the waveguide is multimode at least in the width direction.
 ある実施形態において、前記基板の厚さは0.3mm以下である。 In one embodiment, the thickness of the substrate is 0.3 mm or less.
 ある実施形態において、前記入射光は前記所定の方向に対して傾いて前記導波路に入射する。 In one embodiment, the incident light is incident on the waveguide inclined with respect to the predetermined direction.
 ある実施形態において、前記入射光は、ブラッグ角以外の角度で前記所定の方向に対して傾いて前記基板に入射する。 In one embodiment, the incident light is inclined with respect to the predetermined direction at an angle other than a Bragg angle and is incident on the substrate.
 ある実施形態において、前記所定の方向に対する前記入射光の角度は、ブラッグ回折が行われるように設定されている。 In one embodiment, the angle of the incident light with respect to the predetermined direction is set so that Bragg diffraction is performed.
 ある実施形態において、前記変調電極は、前記基板の前記表面から前記裏面にわたる電界を形成する。 In one embodiment, the modulation electrode forms an electric field extending from the front surface to the back surface of the substrate.
 ある実施形態において、前記分極反転構造における前記所定の方向に直交する方向の周期は、前記入射光の半波長以上である。 In one embodiment, the period in the direction orthogonal to the predetermined direction in the polarization inversion structure is equal to or greater than a half wavelength of the incident light.
 ある実施形態において、前記分極反転構造は、少なくとも2つの分極反転構造を合成することによって得られた合成分極反転構造を有している。 In one embodiment, the domain-inverted structure has a synthetic domain-inverted structure obtained by synthesizing at least two domain-inverted structures.
 ある実施形態において、前記分極反転構造は、第1分極反転構造を有する第1領域と、前記第1分極反転構造とは異なる第2分極反転構造を有する第2領域とを有する。 In one embodiment, the domain-inverted structure includes a first region having a first domain-inverted structure and a second region having a second domain-inverted structure different from the first domain-inverted structure.
 本発明による周波数シフト方法は、分極反転構造を有する基板と、前記基板の表面において所定の方向に延びるように設けられた変調電極と、前記基板に設けられた導波路とを備える周波数シフタを用意する工程と、前記変調電極に交流電界を供給し、前記導波路に入射した入射光から、前記入射光の周波数をシフトさせた周波数を有する回折光を生成する工程とを包含する。 A frequency shift method according to the present invention provides a frequency shifter including a substrate having a domain-inverted structure, a modulation electrode provided to extend in a predetermined direction on the surface of the substrate, and a waveguide provided on the substrate. And a step of supplying an alternating electric field to the modulation electrode and generating diffracted light having a frequency obtained by shifting the frequency of the incident light from incident light incident on the waveguide.
 本発明による周波数シフタは、分極反転構造を有する基板と、前記基板の表面において所定の方向に延びるように設けられた変調電極とを備える、周波数シフタであって、前記変調電極に交流電界を供給することにより、前記基板に入射した入射光から、前記入射光の周波数をシフトさせた周波数を有する回折光を生成し、前記入射光は、ブラッグ角以外の角度で前記所定の方向に対して傾いて前記基板に入射する。 A frequency shifter according to the present invention includes a substrate having a domain-inverted structure and a modulation electrode provided to extend in a predetermined direction on the surface of the substrate, and supplies an alternating electric field to the modulation electrode. Thus, diffracted light having a frequency obtained by shifting the frequency of the incident light is generated from incident light incident on the substrate, and the incident light is inclined with respect to the predetermined direction at an angle other than a Bragg angle. Incident on the substrate.
 ある実施形態において、前記分極反転構造は、少なくとも2つの分極反転構造を合成することによって得られた合成分極反転構造を有している。 In one embodiment, the domain-inverted structure has a synthetic domain-inverted structure obtained by synthesizing at least two domain-inverted structures.
 ある実施形態において、前記分極反転構造は、第1分極反転構造を有する第1領域と、前記第1分極反転構造とは異なる第2分極反転構造を有する第2領域とを有する。 In one embodiment, the domain-inverted structure includes a first region having a first domain-inverted structure and a second region having a second domain-inverted structure different from the first domain-inverted structure.
 本発明による周波数シフト方法は、分極反転構造を有する基板と、前記基板の表面において所定の方向に延びるように設けられた変調電極とを備える周波数シフタを用意する工程と、前記変調電極に交流電界を供給することにより、前記基板に入射した入射光から、前記入射光の周波数をシフトさせた周波数を有する回折光を生成する工程とを包含し、前記回折光を生成する工程において、前記入射光は、ブラッグ角以外の角度で前記所定の方向に対して傾いて前記基板に入射する。 The frequency shift method according to the present invention includes a step of preparing a frequency shifter including a substrate having a domain-inverted structure and a modulation electrode provided to extend in a predetermined direction on the surface of the substrate, and an AC electric field applied to the modulation electrode. Generating diffracted light having a frequency obtained by shifting the frequency of the incident light from incident light incident on the substrate, and in the step of generating the diffracted light, Is incident on the substrate at an angle other than the Bragg angle with respect to the predetermined direction.
 本発明によれば、比較的大きな周波数シフトを簡便に実現することができる。また、本発明によれば、設計自由度を向上させた周波数シフタを提供することができる。 According to the present invention, a relatively large frequency shift can be easily realized. In addition, according to the present invention, it is possible to provide a frequency shifter with improved design freedom.
本発明による周波数シフタの実施形態の模式図である。FIG. 3 is a schematic diagram of an embodiment of a frequency shifter according to the present invention. (a)~(h)は、図1に示した周波数シフタの作製方法の一例を示す模式図である。(A)-(h) is a schematic diagram which shows an example of the manufacturing method of the frequency shifter shown in FIG. 本実施形態の周波数シフタの模式図である。It is a schematic diagram of the frequency shifter of this embodiment. 本実施形態の周波数シフタの模式図である。It is a schematic diagram of the frequency shifter of this embodiment. 本実施形態の周波数シフタを用いた周波数シフトの測定結果を示す図である。It is a figure which shows the measurement result of the frequency shift using the frequency shifter of this embodiment. 変調パワーの平方根に対するシフト効率の変化を示すグラフである。It is a graph which shows the change of the shift efficiency with respect to the square root of modulation power. 本実施形態の周波数シフタの変調指数を測定する変調指数測定装置の模式図である。It is a schematic diagram of a modulation index measuring device that measures the modulation index of the frequency shifter of the present embodiment. 変調電力の平方根に対する変調指数の変化を示すグラフである。It is a graph which shows the change of the modulation index with respect to the square root of modulation power. 基板の厚さに対する規格化変調指数の変化を示すグラフである。It is a graph which shows the change of the normalization modulation index with respect to the thickness of a substrate. 本実施形態の周波数シフタの模式図である。It is a schematic diagram of the frequency shifter of this embodiment. 図10に示した周波数シフタの模式的な上面図である。It is a typical top view of the frequency shifter shown in FIG. (a)は参考のための波数ベクトルの関係を示す模式図であり、(b)は本実施形態の周波数シフタにおける波数ベクトルの関係を示す模式図である。(A) is a schematic diagram which shows the relationship of the wave vector for reference, (b) is a schematic diagram which shows the relationship of the wave vector in the frequency shifter of this embodiment. 本実施形態の周波数シフタにおける波数ベクトルの関係の一例を示す模式図である。It is a schematic diagram which shows an example of the relationship of the wave vector in the frequency shifter of this embodiment. (a)は本実施形態の周波数シフタにおける規格化パワーの変調深さ依存性を示すグラフであり、(b)は出力スペクトルを示すグラフである。(A) is a graph which shows the modulation depth dependence of the normalization power in the frequency shifter of this embodiment, (b) is a graph which shows an output spectrum. 本実施形態の周波数シフタにおける波数ベクトルの関係の一例を示す模式図である。It is a schematic diagram which shows an example of the relationship of the wave vector in the frequency shifter of this embodiment. (a)は本実施形態の周波数シフタにおける規格化パワーの変調深さ依存性を示すグラフであり、(b)は出力スペクトルを示すグラフである。(A) is a graph which shows the modulation depth dependence of the normalization power in the frequency shifter of this embodiment, (b) is a graph which shows an output spectrum. (a)は本実施形態の周波数シフタにおける入力波および変調波のそれぞれの波数ベクトルがコリニアの場合の波数ベクトルの関係を説明するための模式図であり、(b)は(a)の一部拡大図である。(A) is a schematic diagram for demonstrating the relationship of the wave number vector when each wave number vector of the input wave and modulation wave in the frequency shifter of this embodiment is collinear, (b) is a part of (a) It is an enlarged view. 本実施形態の周波数シフタにおけるウォークオフを説明するための模式図である。It is a schematic diagram for demonstrating the walk-off in the frequency shifter of this embodiment. 本実施形態の周波数シフタの模式的な斜視図である。It is a typical perspective view of the frequency shifter of this embodiment. 本実施形態の周波数シフタの模式図である。It is a schematic diagram of the frequency shifter of this embodiment. (a)~(f)は、図20に示した周波数シフタの作製方法を示す模式図である。(A)-(f) is a schematic diagram which shows the manufacturing method of the frequency shifter shown in FIG.
 以下、図面を参照して本発明による周波数シフタおよび周波数シフト方法の実施形態を説明する。ただし、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of a frequency shifter and a frequency shift method according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments.
 [実施形態1]
 図1に、本発明による周波数シフタの実施形態を示す。本実施形態の周波数シフタ10は、分極反転構造を有する基板20と、基板20の表面に所定の方向に延びるように設けられた変調電極30と、基板20に設けられた導波路40とを備えている。
[Embodiment 1]
FIG. 1 shows an embodiment of a frequency shifter according to the present invention. The frequency shifter 10 of the present embodiment includes a substrate 20 having a domain-inverted structure, a modulation electrode 30 provided on the surface of the substrate 20 so as to extend in a predetermined direction, and a waveguide 40 provided on the substrate 20. ing.
 基板20は、電気光学効果を有する誘電体、半導体、有機材料などを含む。一例として、基板20は、強誘電体結晶から形成されている。強誘電体は、例えば、タンタル酸リチウム(Lithium Tantalate)である。基板20の分極反転構造は、例えば、強誘電体部材の所定の領域の分極を周期的に反転することによって作製される。なお、図1において、黒線で示された領域は分極の反転された領域を示している。 The substrate 20 includes a dielectric, a semiconductor, an organic material, etc. having an electro-optic effect. As an example, the substrate 20 is made of a ferroelectric crystal. The ferroelectric is, for example, lithium tantalate. The polarization inversion structure of the substrate 20 is produced by, for example, periodically inverting the polarization of a predetermined region of the ferroelectric member. In FIG. 1, a region indicated by a black line indicates a region where polarization is inverted.
 変調電極30はy方向に延びている。ここで、x方向およびy方向のそれぞれと直交するz方向は、基板20の主面の法線方向と平行である。 The modulation electrode 30 extends in the y direction. Here, the z direction orthogonal to each of the x direction and the y direction is parallel to the normal direction of the main surface of the substrate 20.
 変調電極30には交流(変調信号)が印加される。ここでは、交流は正弦波状に変化する。例えば、交流はマイクロ波である。この場合、市販のアンプを用いて変調電極30への電圧の印加を行うことも可能である。例えば、シンセサイザからの信号をアンプ(一例として、半導体アンプ)によって増幅した交流が変調電極30に印加される。なお、基板20(ここでは、導波路40)内を進行する光のx方向の空間的特質を利用(回折現象を利用)するため、変調電極30の幅は比較的広いことが好ましい。例えば、変調電極30の幅は0.5mm以上1.5mm以下である。このような変調電極30はマイクロストリップラインとも呼ばれる。 An alternating current (modulation signal) is applied to the modulation electrode 30. Here, the alternating current changes sinusoidally. For example, alternating current is microwave. In this case, it is also possible to apply a voltage to the modulation electrode 30 using a commercially available amplifier. For example, an alternating current obtained by amplifying a signal from the synthesizer by an amplifier (for example, a semiconductor amplifier) is applied to the modulation electrode 30. Note that the width of the modulation electrode 30 is preferably relatively wide in order to use the spatial characteristics of light traveling in the substrate 20 (here, the waveguide 40) in the x direction (using a diffraction phenomenon). For example, the width of the modulation electrode 30 is not less than 0.5 mm and not more than 1.5 mm. Such a modulation electrode 30 is also called a microstrip line.
 導波路40は基板20の他の領域よりも高い屈折率を示す。ここでは、導波路40は基板20の一方の主面全体に設けられており、導波路40はプレーナ型である。例えば、導波路40の厚さ(深さ)は約0.8μmである。導波路40はz方向(基板20の厚さ方向)に光を閉じ込めた状態で光の伝搬を行う。導波路40は長さ方向(y方向)に光を伝搬する。導波路40は少なくとも幅方向(x方向)に関してマルチモードである。また、導波路40は厚さ方向(z方向)に関してシングルモードであることが好ましい。 The waveguide 40 exhibits a higher refractive index than other regions of the substrate 20. Here, the waveguide 40 is provided on one entire main surface of the substrate 20, and the waveguide 40 is a planar type. For example, the thickness (depth) of the waveguide 40 is about 0.8 μm. The waveguide 40 propagates light in a state where light is confined in the z direction (thickness direction of the substrate 20). The waveguide 40 propagates light in the length direction (y direction). The waveguide 40 is multimode at least in the width direction (x direction). The waveguide 40 is preferably single mode with respect to the thickness direction (z direction).
 周波数シフタ10では、基板20の分極反転構造は、変調電極30の延びている方向に対して斜めに配置されている。このような周期分極反転構造は斜周期分極反転構造とも呼ばれる。なお、本明細書において、周期分極反転構造において分極が最短距離で反転する方向を分極反転方向と呼ぶことがある。 In the frequency shifter 10, the polarization inversion structure of the substrate 20 is disposed obliquely with respect to the direction in which the modulation electrode 30 extends. Such a periodic polarization inversion structure is also called an oblique periodic polarization inversion structure. In the present specification, the direction in which the polarization is reversed at the shortest distance in the periodically poled structure may be referred to as a polarization reversal direction.
 変調電極30に交流電界を供給することにより、基板20に入射した入射光から、入射光の周波数をシフトさせた周波数を有する回折光が生成される。周波数シフタ10では、入射光の周波数は、変調電極30に印加される交流の周波数に応じてシフトする。例えば、光の周波数は10GHzを超えてシフトする。変調電極30に印加される交流の周波数が10GHzの場合、導波路40からは、入射光の周波数の±N×10GHzシフトした周波数を有する回折光が出射される。ただし、Nは整数である。なお、上述したように、導波路40内の光はz方向に閉じ込められており、xy平面内で回折する。変調電極30には、数百GHzもの周波数の交流を印加してもよい。 By supplying an alternating electric field to the modulation electrode 30, diffracted light having a frequency obtained by shifting the frequency of the incident light is generated from the incident light incident on the substrate 20. In the frequency shifter 10, the frequency of the incident light is shifted according to the AC frequency applied to the modulation electrode 30. For example, the frequency of light shifts beyond 10 GHz. When the AC frequency applied to the modulation electrode 30 is 10 GHz, the waveguide 40 emits diffracted light having a frequency shifted by ± N × 10 GHz of the frequency of the incident light. However, N is an integer. As described above, the light in the waveguide 40 is confined in the z direction and is diffracted in the xy plane. An alternating current having a frequency of several hundred GHz may be applied to the modulation electrode 30.
 本実施形態の周波数シフタ10では基板20が周期分極反転構造を有していることにより、変調電極30に供給される交流(変調波)の位相速度と導波路40(基板20)内を進行する光波の群速度との違いが比較的大きいにもかかわらず、擬似的に速度を整合させることができ、入射光の変調を効率的に行うことができる。 In the frequency shifter 10 of the present embodiment, since the substrate 20 has a periodic polarization inversion structure, the phase velocity of the alternating current (modulated wave) supplied to the modulation electrode 30 and the waveguide 40 (substrate 20) travel. Although the difference from the group velocity of light waves is relatively large, the speed can be matched in a pseudo manner, and incident light can be efficiently modulated.
 なお、ここでは、変調電極30は導波路40と接触しているが、後述するように、変調電極30による光の損失を低減させるために、変調電極30と導波路40との間に絶縁層を設けることが好ましい。また、図1には特に図示していないが、周波数シフタ10では、基板20の2つの主面のうち変調電極30が設けられている主面とは別の主面にはグランド電極が設けられており、変調電極30は基板20の表面から裏面にわたる電界を形成する。 Although the modulation electrode 30 is in contact with the waveguide 40 here, an insulating layer is provided between the modulation electrode 30 and the waveguide 40 in order to reduce light loss due to the modulation electrode 30 as will be described later. Is preferably provided. Although not particularly shown in FIG. 1, in the frequency shifter 10, a ground electrode is provided on a main surface different from the main surface on which the modulation electrode 30 is provided on the two main surfaces of the substrate 20. The modulation electrode 30 forms an electric field extending from the front surface to the back surface of the substrate 20.
 本実施形態の周波数シフタ10には、導波路40が設けられていることにより、基板20が比較的薄くても、周波数シフタ10の相互作用長を比較的長くすることができる。例えば、基板20の厚さは0.3mm以下であり、一例として基板20の厚さは0.1mmである。この場合でも、30mm以上の相互作用長を実現することができる。また、このように、基板20が薄いことにより、変調電極30に印加する電力が比較的低くても、比較的高いシフト効率を実現することができる。 Since the frequency shifter 10 of the present embodiment is provided with the waveguide 40, the interaction length of the frequency shifter 10 can be made relatively long even if the substrate 20 is relatively thin. For example, the thickness of the substrate 20 is 0.3 mm or less, and as an example, the thickness of the substrate 20 is 0.1 mm. Even in this case, an interaction length of 30 mm or more can be realized. In addition, since the substrate 20 is thin as described above, relatively high shift efficiency can be realized even if the power applied to the modulation electrode 30 is relatively low.
 以下、図2を参照して周波数シフタ10の作製方法の一例を説明する。まず、図2(a)に示すように、基板20を用意する。基板20は強誘電体を含む。例えば、基板20は、z-カット一致溶融型LiTaO3(Congruent Lithium Tantalate:CLT)である。なお、図2では、基板20内の矢印は分極の方向を示している。 Hereinafter, an example of a method for manufacturing the frequency shifter 10 will be described with reference to FIG. First, as shown in FIG. 2A, a substrate 20 is prepared. The substrate 20 includes a ferroelectric material. For example, the substrate 20 is z-cut coincidence melting type LiTaO 3 (Congruent Lithium Tantalate: CLT). In FIG. 2, the arrow in the substrate 20 indicates the direction of polarization.
 図2(b)に示すように、基板20の上にレジストRを塗布する。例えば、レジストRは、基板20の表面に5秒1000回転、および、30秒3000回転でスピンコートを行うことによって塗布される。次に、90℃で40分ほどベーキングを行う。その後、分極反転パターンを転写したマスクMをレジストRの上に形成する。マスクMを用いて30~40秒程度の紫外線露光を行い、図2(c)に示すように、分極反転用のレジストパターンRPを形成する。 As shown in FIG. 2B, a resist R is applied on the substrate 20. For example, the resist R is applied to the surface of the substrate 20 by spin coating at 1000 rpm for 5 seconds and 3000 rpm for 30 seconds. Next, baking is performed at 90 ° C. for about 40 minutes. Thereafter, a mask M to which the polarization inversion pattern is transferred is formed on the resist R. Using the mask M, UV exposure is performed for about 30 to 40 seconds to form a polarization inversion resist pattern RP as shown in FIG.
 図2(d)に示すように、分極反転を行う。分極反転は、例えば、塩化リチウム水溶液E(例えば、水600mlに対して塩化リチウム500g)を液体電極として利用して行われる。なお、分極反転は、両面に銀をクイックコートまたは蒸着した電極を用いて行ってもよい。 As shown in FIG. 2 (d), polarization inversion is performed. The polarization inversion is performed using, for example, a lithium chloride aqueous solution E (for example, 500 g of lithium chloride per 600 ml of water) as a liquid electrode. Note that the polarization inversion may be performed using an electrode in which silver is quick-coated or vapor-deposited on both surfaces.
 図2(e)に示すように、レジストパターンRPを除去する。その後、基板20に導波路40を形成する。ここでは、図2(f)に示すように、基板20の表面に対してプロトン交換を行うことによって高屈折率領域を形成し、これにより、図2(g)に示すように、導波路40が形成される。 As shown in FIG. 2E, the resist pattern RP is removed. Thereafter, the waveguide 40 is formed on the substrate 20. Here, as shown in FIG. 2 (f), proton exchange is performed on the surface of the substrate 20 to form a high refractive index region, and as a result, as shown in FIG. Is formed.
 例えば、基板20として用いられるCLTにプロトン交換を行う場合、基板20を安息香酸(C65COOH)溶融液に浸すことにより、Li+とH+の交換が起こり、HxLi1-xTaO3が生成される。一般に、温度が高いほど、また、時間が長いほど、プロトン交換の行われる領域を深くすることができる。例えば、プロトン交換は240℃で4時間行われる。なお、安息香酸に代えて、フタル酸、インフタル酸またはピロリン酸を用いてもよい。 For example, when proton exchange is performed on the CLT used as the substrate 20, the substrate 20 is immersed in a benzoic acid (C 6 H 5 COOH) melt, whereby Li + and H + are exchanged, and H x Li 1-x TaO 3 is produced. Generally, the higher the temperature and the longer the time, the deeper the region where proton exchange takes place. For example, proton exchange is performed at 240 ° C. for 4 hours. In place of benzoic acid, phthalic acid, inphthalic acid or pyrophosphoric acid may be used.
 プロトン交換後、必要に応じて、アニール処理を行うことが好ましい。一般に、プロトン交換により、導波路40が損失するとともに電気光学定数γ33が低下することがあるが、アニール処理により、導波路40の損失とともに電気光学定数γ33を回復させることができる。例えば、アニール処理は400℃で30分行われる。 After proton exchange, it is preferable to perform an annealing treatment as necessary. In general, the waveguide 40 may be lost due to proton exchange and the electro-optic constant γ 33 may be reduced. However, the electro-optic constant γ 33 can be recovered together with the loss of the waveguide 40 by annealing. For example, the annealing process is performed at 400 ° C. for 30 minutes.
 図2(h)に示すように、基板20の上に変調電極30を形成する。変調電極30は、例えば、銀から形成される。以上のようにして、図1に示した周波数シフタ10を作製することができる。 As shown in FIG. 2H, the modulation electrode 30 is formed on the substrate 20. The modulation electrode 30 is made of silver, for example. As described above, the frequency shifter 10 shown in FIG. 1 can be manufactured.
 図1に示した周波数シフタ10では、変調電極30は導波路40の上に直接設けられていたが、本発明はこれに限定されない。変調電極30は別の部材を介して導波路40の上に設けられてもよい。 In the frequency shifter 10 shown in FIG. 1, the modulation electrode 30 is provided directly on the waveguide 40, but the present invention is not limited to this. The modulation electrode 30 may be provided on the waveguide 40 via another member.
 図3に、本実施形態の周波数シフタ10の模式図を示す。図3に示した周波数シフタ10は、変調電極30と導波路40との間に絶縁層50をさらに設ける点を除いて図1を参照して上述した周波数シフタ10と同様の構成を有しており、冗長を避ける目的で重複する記載を省略する。例えば、絶縁層50の厚さは約0.1μmである。 FIG. 3 shows a schematic diagram of the frequency shifter 10 of the present embodiment. The frequency shifter 10 shown in FIG. 3 has the same configuration as the frequency shifter 10 described above with reference to FIG. 1 except that an insulating layer 50 is further provided between the modulation electrode 30 and the waveguide 40. In order to avoid redundancy, duplicate descriptions are omitted. For example, the thickness of the insulating layer 50 is about 0.1 μm.
 絶縁層50は、例えば、酸化シリコン(SiO2)から形成される。酸化シリコン層50は、例えば、導波路50を形成した後に、SiO2ターゲットをスパッタリングすることによって形成される。例えば、この場合、導波路40の屈折率nfは2.262であり、絶縁層50の屈折率ncは1.467である。なお、入射光の波長が514.5nmである場合、導波路40の深さを0.8μm以下にすることにより、導波路40をシングルモードにすることができる。 The insulating layer 50 is made of, for example, silicon oxide (SiO 2 ). The silicon oxide layer 50 is formed, for example, by sputtering a SiO 2 target after forming the waveguide 50. For example, in this case, the refractive index n f of the waveguide 40 is 2.262, the refractive index n c of the insulating layer 50 is 1.467. In addition, when the wavelength of incident light is 514.5 nm, the waveguide 40 can be made into single mode by making the depth of the waveguide 40 into 0.8 micrometer or less.
 ここで、図4~図6を参照して周波数シフタ10による周波数シフトの測定結果を説明する。図4に、周波数シフタ10の模式図を示す。ここでは、相互作用長Ldは基板20の長さと等しい。基板20の長さLdは34mmであり、厚さtは0.1mmである。また、基板20における分極反転構造の周期(分極反転構造の分極反転方向に沿った距離)Λpは60μmであり、y方向に対する分極反転構造の傾きθtは0.567°である。また、分極反転長(y方向に沿った分極反転ピッチ)Luは3.03mmである。 Here, the measurement result of the frequency shift by the frequency shifter 10 will be described with reference to FIGS. FIG. 4 shows a schematic diagram of the frequency shifter 10. Here, the interaction length Ld is equal to the length of the substrate 20. The length Ld of the substrate 20 is 34 mm, and the thickness t is 0.1 mm. The period of the domain-inverted structure in the substrate 20 (distance along the domain-inverted direction of the domain-inverted structure) Λ p is 60 μm, and the inclination θ t of the domain-inverted structure with respect to the y-direction is 0.567 °. The polarization inversion length (polarization inversion pitch along the y direction) Lu is 3.03 mm.
 また、変調電極30の幅wは0.5mmであり、変調電極30の延びている方向(y方向)の長さは、基板20の長さLdと等しく34mmである。また、変調電極30には周波数16.25GHzの交流が約2.7Wで印加される。 The width w of the modulation electrode 30 is 0.5 mm, and the length of the modulation electrode 30 in the extending direction (y direction) is 34 mm, which is equal to the length Ld of the substrate 20. Further, an alternating current with a frequency of 16.25 GHz is applied to the modulation electrode 30 at about 2.7 W.
 導波路40には、Arレーザから波長514.5nmの光が入射する。基板20に設けられた分極反転構造において変調電極30の延びるy方向に直交するx方向の周期Λxは入射光の半波長以上である。ここでは、入射光はブラッグ角で入射する。例えば、入射光はy方向に対してx方向側にθだけ傾いて入射しており、入射角θは0.11°である。この場合、回折した光は、周波数シフタ10から、y方向に対して等しい出射角θ(すなわち、0.11°)でx方向側に傾いて出射される。このように、分極反転構造中を進行する光波は変調波(交流)と相互作用しており、入射光の周波数に対して変調波の周波数成分だけ周波数のシフトした回折光がブラッグ角で出射される。なお、周波数のシフトした出射光は、入射光の周波数と等しい周波数を有する光とは空間的に分離されている。 Light having a wavelength of 514.5 nm is incident on the waveguide 40 from an Ar laser. In the domain-inverted structure provided on the substrate 20, the period Λ x in the x direction perpendicular to the y direction in which the modulation electrode 30 extends is equal to or more than a half wavelength of the incident light. Here, incident light is incident at a Bragg angle. For example, incident light is incident on the x direction side with an inclination of θ with respect to the y direction, and the incident angle θ is 0.11 °. In this case, the diffracted light is emitted from the frequency shifter 10 while being inclined to the x direction side at the same emission angle θ (that is, 0.11 °) with respect to the y direction. In this way, the light wave traveling in the domain-inverted structure interacts with the modulated wave (alternating current), and diffracted light whose frequency is shifted by the frequency component of the modulated wave with respect to the frequency of the incident light is emitted at the Bragg angle. The Note that the emitted light having a shifted frequency is spatially separated from light having a frequency equal to the frequency of the incident light.
 図5に、図4に示した周波数シフタ10の測定結果を示す。図5において横軸は空間を示しており、縦軸は周波数を示している。周波数シフタ10では、回折格子において分光されているため、2つのプロット点の縦軸方向の差は光波の周波数シフト量に相当する。図5から、入射光と同じ周波数の0次回折光に対して、1次回折光の周波数が16.25GHzシフトしていることが理解される。なお、ここでは、変調電力は、入射光の周波数を有する成分と周波数シフトした周波数を有する成分との両方が測定されるように調整されている。 FIG. 5 shows the measurement results of the frequency shifter 10 shown in FIG. In FIG. 5, the horizontal axis indicates the space, and the vertical axis indicates the frequency. In the frequency shifter 10, since the light is dispersed in the diffraction grating, the difference between the two plotted points in the vertical axis direction corresponds to the frequency shift amount of the light wave. From FIG. 5, it is understood that the frequency of the first-order diffracted light is shifted by 16.25 GHz with respect to the zero-order diffracted light having the same frequency as the incident light. Here, the modulation power is adjusted so that both a component having a frequency of incident light and a component having a frequency shifted frequency are measured.
 図6に、変調パワーの平方根に対するシフト効率の変化を示す。図6から理解されるように、約2.7Wの変調電力で約68%のシフト効率を実現することができる。このような周波数シフタ10は、パルス駆動だけでなく連続駆動も可能である。なお、非特許文献1では、パルス駆動を行うマグネトロンを変調信号源として用いていることに留意されたい。 FIG. 6 shows the change in shift efficiency with respect to the square root of the modulation power. As understood from FIG. 6, a shift efficiency of about 68% can be realized with a modulation power of about 2.7 W. Such a frequency shifter 10 can be driven continuously as well as pulsed. Note that in Non-Patent Document 1, a magnetron that performs pulse driving is used as a modulation signal source.
 なお、上述したように、基板20の厚さは0.3mm以下であることが好ましい。以下、図7~図9を参照して基板20の厚さに応じた変調指数の変化を説明する。 As described above, the thickness of the substrate 20 is preferably 0.3 mm or less. Hereinafter, changes in the modulation index according to the thickness of the substrate 20 will be described with reference to FIGS.
 図7に、変調指数測定装置100の模式図を示す。ここでは、位相変調器Dの変調指数を測定する。位相変調器Dは、分極反転構造によって規定される分極反転方向が変調電極の延びている方向と平行である点を除いて上述した周波数シフタと同様の構成を有している。 FIG. 7 shows a schematic diagram of the modulation index measuring apparatus 100. Here, the modulation index of the phase modulator D is measured. The phase modulator D has the same configuration as the above-described frequency shifter except that the polarization inversion direction defined by the polarization inversion structure is parallel to the direction in which the modulation electrode extends.
 変調指数測定装置100は、位相変調器Dに入射する光を出射する光源110と、位相変調器Dの変調電極に交流電界を印加する交流電源120と、位相変調器Dから出射された光の周波数成分を空間的に分解する回折格子130と、フーリエ変換レンズ140と、撮像部150とを備えている。ここでは、光源110は波長514.5nmの光を出射するArレーザであり、撮像部150はCCD(Charged Coupled Device:電荷結合素子)カメラである。撮像部150で撮像されるサイドバンド像のフィッティングを行うことによって変調指数が得られる。 The modulation index measurement apparatus 100 includes a light source 110 that emits light incident on the phase modulator D, an AC power source 120 that applies an AC electric field to the modulation electrode of the phase modulator D, and the light emitted from the phase modulator D. A diffraction grating 130 for spatially decomposing frequency components, a Fourier transform lens 140, and an imaging unit 150 are provided. Here, the light source 110 is an Ar laser that emits light having a wavelength of 514.5 nm, and the imaging unit 150 is a CCD (Charged Coupled Device) camera. A modulation index is obtained by fitting a sideband image picked up by the image pickup unit 150.
 図8に、変調電力の平方根に対する変調指数の変化を示す。基板20の厚さ、および、変調電極の長さの異なる複数の種類の位相変調器、並びに、導波路を設けないタイプ(すなわち、バルク型)の位相変調器の測定も行っている。 FIG. 8 shows the change of the modulation index with respect to the square root of the modulation power. A plurality of types of phase modulators having different thicknesses of the substrate 20 and the lengths of the modulation electrodes, and types of phase modulators without a waveguide (that is, bulk type) are also measured.
 いずれの場合も、変調電極の平方根が増大するほど、変調指数が増大する。また、導波路40を設けた場合、基板20が薄いほど、変調指数が高い。特に、基板20の厚さが0.3mm以下であると、厚さ0.5mmのバルク型よりも大きな変調指数が得られる。 In any case, the modulation index increases as the square root of the modulation electrode increases. When the waveguide 40 is provided, the thinner the substrate 20, the higher the modulation index. In particular, when the thickness of the substrate 20 is 0.3 mm or less, a modulation index larger than that of a bulk type having a thickness of 0.5 mm can be obtained.
 図9に、基板20の厚さに対する規格化変調指数の変化を示す。なお、ここでは、図8に示した測定結果に対して分極反転周期の補正を行うとともに、変調電極30の長さに応じて規格化している。図9から、基板20の厚さが0.1mmである場合の規格化変調指数はバルク型の3.4倍になり、これにより、電力効率が約10倍になることが理解される。以上のように、基板20の厚さは0.3mm以下であることが好ましい。ただし、当業者に理解されるように、基板20の好ましい厚さは種々の条件に応じて変化する。 FIG. 9 shows changes in the normalized modulation index with respect to the thickness of the substrate 20. Here, the polarization inversion period is corrected with respect to the measurement result shown in FIG. 8 and is normalized according to the length of the modulation electrode 30. From FIG. 9, it can be understood that the normalized modulation index when the thickness of the substrate 20 is 0.1 mm is 3.4 times that of the bulk type, which results in about 10 times the power efficiency. As described above, the thickness of the substrate 20 is preferably 0.3 mm or less. However, as will be appreciated by those skilled in the art, the preferred thickness of the substrate 20 varies depending on various conditions.
 なお、上述した説明では、基板20の分極反転構造のパターンは1つであったが、本発明はこれに限定されない。 In the above description, the pattern of the domain-inverted structure of the substrate 20 is one, but the present invention is not limited to this.
 図10に、本実施形態の周波数シフタの模式図を示す。図10に示した周波数シフタ10は、シフト部10aおよびシフト10bを備えている。シフト部10aは、分極反転構造を有する基板20aと、基板20aに設けられた導波路40aとを有している。シフト部10bは、基板20aとは異なる分極反転構造を有する基板20bと、基板20bに設けられた導波路40bとを有している。また、基板20a、20bにわたって変調電極30が設けられている。なお、導波路40bは導波路40aと連絡するように構成されている。 FIG. 10 shows a schematic diagram of the frequency shifter of the present embodiment. The frequency shifter 10 illustrated in FIG. 10 includes a shift unit 10a and a shift 10b. The shift unit 10a includes a substrate 20a having a domain-inverted structure and a waveguide 40a provided on the substrate 20a. The shift unit 10b includes a substrate 20b having a polarization inversion structure different from that of the substrate 20a, and a waveguide 40b provided on the substrate 20b. A modulation electrode 30 is provided over the substrates 20a and 20b. The waveguide 40b is configured to communicate with the waveguide 40a.
 なお、本明細書において、シフト部10a、基板20a、導波路40aをそれぞれ第1シフト部、第1基板、第1導波路と呼ぶことがあり、シフト部10b、基板20b、導波路40bをそれぞれ第2シフト部、第2基板、第2導波路と呼ぶことがある。また、基板20aの分極反転構造およびこの分極反転構造が設けられた領域をそれぞれ第1分極反転構造および第1領域と呼び、基板20bの分極反転構造およびこの分極反転構造が設けられた領域をそれぞれ第2分極反転構造および第2領域と呼ぶことがある。 In this specification, the shift unit 10a, the substrate 20a, and the waveguide 40a may be referred to as a first shift unit, a first substrate, and a first waveguide, respectively, and the shift unit 10b, the substrate 20b, and the waveguide 40b may be referred to as the first shift unit, the first substrate, and the first waveguide, respectively. It may be called a 2nd shift part, a 2nd board | substrate, and a 2nd waveguide. Further, the polarization inversion structure of the substrate 20a and the region provided with the polarization inversion structure are referred to as a first polarization inversion structure and a first region, respectively, and the polarization inversion structure of the substrate 20b and the region provided with the polarization inversion structure are respectively provided. Sometimes referred to as a second domain-inverted structure and a second region.
 第1基板20aの第1分極反転構造は、第2基板20bの第2分極反転構造とは異なる。例えば、第1分極反転構造の分極反転方向は、第2分極反転構造の分極反転方向とは異なる。ここでは、第1分極反転構造によって規定される分極反転方向はy方向の成分に加えてx方向の+成分を有しており、第2分極反転構造によって規定される分極反転方向はy方向の成分に加えてx方向の-成分を有している。ただし、第1分極反転構造の周期は、第2分極反転構造の周期と等しいことが好ましい。 The first domain-inverted structure of the first substrate 20a is different from the second domain-inverted structure of the second substrate 20b. For example, the polarization inversion direction of the first polarization inversion structure is different from the polarization inversion direction of the second polarization inversion structure. Here, the polarization inversion direction defined by the first polarization inversion structure has a + component in the x direction in addition to the y direction component, and the polarization inversion direction defined by the second polarization inversion structure is in the y direction. In addition to the component, it has a-component in the x direction. However, the period of the first domain-inverted structure is preferably equal to the period of the second domain-inverted structure.
 ここで、図11を参照して、図10に示した周波数シフタ10における回折方向を説明する。なお、図11では変調電極30を省略して示している。 Here, the diffraction direction in the frequency shifter 10 shown in FIG. 10 will be described with reference to FIG. In FIG. 11, the modulation electrode 30 is omitted.
 例えば、x方向成分が正、y方向成分が正の波数ベクトルで表される光が第1基板20aの第1導波路40aに入射すると、この光は、x方向成分が負、y方向成分が正の波数ベクトルで表される光として回折されて出射する。この光は、第2基板20bの第2導波路40bに入射した後、x方向成分が正、y方向成分が正の波数ベクトルで表される光として回折されて出射する。入射光は、第1基板20aに入射する前と比べて、周波数シフトが2回行われており、これにより、変調電極30に印加される交流の周波数の2倍だけシフトする。例えば、変調電極30に周波数16.25Hzの交流を供給した場合、図10に示した周波数シフタ10は、入射光の周波数に対して32.5GHzシフトした周波数を有する回折光を出射する。 For example, when light having a wave vector whose x-direction component is positive and whose y-direction component is positive is incident on the first waveguide 40a of the first substrate 20a, this light has a negative x-direction component and a y-direction component. The light is diffracted and emitted as light represented by a positive wave vector. After entering the second waveguide 40b of the second substrate 20b, this light is diffracted and emitted as light represented by a wave vector whose x-direction component is positive and whose y-direction component is positive. Incident light is frequency-shifted twice as compared with the incident light before entering the first substrate 20 a, thereby shifting the incident light by twice the frequency of the alternating current applied to the modulation electrode 30. For example, when alternating current with a frequency of 16.25 Hz is supplied to the modulation electrode 30, the frequency shifter 10 shown in FIG. 10 emits diffracted light having a frequency shifted by 32.5 GHz with respect to the frequency of incident light.
 なお、上述した説明では、第1分極反転構造によって規定される分極反転方向におけるx方向の成分は第2分極反転構造によって規定される分極反転方向におけるx方向の成分と反対の符号を有していたが、本発明はこれに限定されない。第1分極反転構造によって規定される分極反転方向におけるx方向の成分は第2分極反転構造によって規定される分極反転方向におけるx方向の成分と等しい符号を有してもよい。例えば、変調電極30の延びている方向に対して第2分極反転構造によって規定される分極反転方向となす角は、第1分極反転構造によって規定される分極反転方向よりも大きく、第2導波路40bの回折は第1導波路40aと同じ方向に行われてもよい。 In the above description, the x-direction component in the polarization inversion direction defined by the first polarization inversion structure has the opposite sign to the x-direction component in the polarization inversion direction defined by the second polarization inversion structure. However, the present invention is not limited to this. The component in the x direction in the polarization inversion direction defined by the first polarization inversion structure may have the same sign as the component in the x direction in the polarization inversion direction defined by the second polarization inversion structure. For example, the angle between the direction in which the modulation electrode 30 extends and the polarization inversion direction defined by the second polarization inversion structure is larger than the polarization inversion direction defined by the first polarization inversion structure, and the second waveguide The diffraction of 40b may be performed in the same direction as the first waveguide 40a.
 なお、図10および図11には図示していないが、シフト部10aおよびシフト部10bの少なくとも一方は、図3を参照して上述したように、変調電極30および導波路40の間に絶縁層50をさらに有してもよい。また、図10では、周波数シフタ10は2つのシフト部10a、10bを備えていたが、本発明はこれに限定されない。周波数シフタ10は3以上のシフト部を備えてもよい。 Although not shown in FIGS. 10 and 11, at least one of the shift portion 10a and the shift portion 10b is an insulating layer between the modulation electrode 30 and the waveguide 40 as described above with reference to FIG. 50 may be further included. In FIG. 10, the frequency shifter 10 includes the two shift units 10a and 10b. However, the present invention is not limited to this. The frequency shifter 10 may include three or more shift units.
 なお、上述した説明、および、非特許文献1および2では、周波数のシフトはブラッグ回折で行われたが、本願発明者は、ブラッグ回折によることなく周波数のシフトが行うことができることを見出した。上述したように、周波数シフタ10は、変調電流(電波)に基づいて、入射光の周波数からシフトした周波数を有する回折光を生成する。このような周波数シフタ10による周波数シフトは、入力波(入射光)と、屈折率分布波(交流電界の印加された分極反転構造内に生じる屈折率分布の波)と、生成波(回折光)との3波の混合によって生じると考えることができる。 In the above description and Non-Patent Documents 1 and 2, the frequency shift was performed by Bragg diffraction, but the present inventor has found that the frequency shift can be performed without Bragg diffraction. As described above, the frequency shifter 10 generates diffracted light having a frequency shifted from the frequency of incident light based on the modulation current (radio wave). Such a frequency shift by the frequency shifter 10 includes an input wave (incident light), a refractive index distribution wave (a wave of a refractive index distribution generated in a domain-inverted structure to which an AC electric field is applied), and a generated wave (diffracted light). It can be considered that this is caused by the mixing of the three waves.
 まず、ここでは、入力波と変調波がコリニアの状態を考える。また、入力波の周波数をf0とする。入力波の周波数f0から、変調波の周波数+fmだけ周波数のシフトした成分に注目する。この成分の波数ベクトルと入力波の波数ベクトルと変調波の波数ベクトルの和との差は、
Figure JPOXMLDOC01-appb-M000001
と表される。ここで、cは真空中の光速を示し、ngは群屈折率を示し、nmは変調波に対する屈折率を示す。
First, let us consider a state where the input wave and the modulated wave are collinear. Further, the frequency of the input wave is f 0 . From the frequency f 0 of the input wave, focusing on the shifted component of the frequency by the frequency + f m of the modulation wave. The difference between the wave vector of this component, the wave vector of the input wave, and the sum of the wave vector of the modulated wave is
Figure JPOXMLDOC01-appb-M000001
It is expressed. Here, c is shown a speed of light in vacuum, n g represents the group refractive index, n m is the refractive index for the modulation wave.
 周期分極反転により、このΔkがゼロとなるように補償することが可能となる。これは、擬似位相整合とも呼ばれる。このときの分極反転周期は、
Figure JPOXMLDOC01-appb-M000002
で表される。ここで、vgは光波の群速度を示し、vmは変調波の位相速度を示す。
It is possible to compensate so that Δk becomes zero by the periodic polarization inversion. This is also called quasi phase matching. The polarization inversion period at this time is
Figure JPOXMLDOC01-appb-M000002
It is represented by Here, v g represents the group velocity of the light wave, v m denotes the phase velocity of the modulating wave.
 ここで、参考のために、図12(a)を参照して、通常の位相変調における波数ベクトルの関係を説明する。 0 は入力波の波数ベクトルを示しており、 m は変調波の波数ベクトルを示している。本明細書において、下線の付いた符号はベクトルを示している。通常の位相変調では、図12(a)に示すように、波数ベクトル 0 m と同じ方向の波数ベクトルを有する周期分極反転構造によって擬似位相整合が実現される。この場合、運動量保存則の観点から、0次成分と1次成分との結合は、
   1  =  0  +  m  + 
と表される。なお、波数ベクトル 0 は周波数f0の入射光の進行方向を規定しており、波数ベクトル 1 は周波数f1(=f0+fm)の光の進行方向を規定している。
Here, for reference, the relationship between wave number vectors in normal phase modulation will be described with reference to FIG. k 0 represents the wave vector of the input wave, and k m represents the wave vector of the modulated wave. In the present specification, underlined symbols indicate vectors. In a typical phase modulation, as shown in FIG. 12 (a), quasi-phase matching is achieved by periodically poled structure with a wave vector k 0, k m and the wave vector K in the same direction. In this case, from the viewpoint of the momentum conservation law, the coupling between the zeroth-order component and the first-order component is
k 1 = k 0 + k m + K
It is expressed. The wave number vector k 0 defines the traveling direction of the incident light having the frequency f 0 , and the wave number vector k 1 defines the traveling direction of the light having the frequency f 1 (= f 0 + f m ).
 また、1次成分と2次成分との結合は、
   2  =  1  +  m  + 
と表される。群速度分散が無い限り、他の次数も同様の関係を有している。また、負の次数に関しても同様であり、0次成分と-1次成分との結合は、
   -1  =  0  -  m  - 
と表される。このようなn次の成分と(n±1)次の成分が結合した状況のn次成分の振幅はJn(Δθ)と表される。ここで、Jn( )はBessel関数であり、Δθは変調指数である。このため、特定のサイドバンド成分に100%の効率でエネルギーを移動させることはできない。したがって、通常の位相変調方式では所望のサイドバンド成分をフィルタなどで抜き出すことが必要となり、最も高いエネルギー移動効率は入力波に対して周波数が±fmだけシフトした成分の34%である。もちろん、より高次の周波数成分へのエネルギー移動効率はさらに低い。なお、いわゆるSSB方式の周波数シフタはいずれもこのように周波数シフトを行っている。
The combination of the primary component and the secondary component is
k 2 = k 1 + k m + K
It is expressed. As long as there is no group velocity dispersion, the other orders have the same relationship. The same applies to the negative order, and the coupling between the 0th-order component and the −1st-order component is
k -1 = k 0 - k m - K
It is expressed. The amplitude of the n-order component in a situation where the n-order component and the (n ± 1) -order component are combined is expressed as J n (Δθ). Here, J n () is a Bessel function, and Δθ is a modulation index. For this reason, energy cannot be transferred to a specific sideband component with 100% efficiency. Therefore, in the conventional phase modulation scheme must be withdrawn in such a filter the desired sideband components, the highest energy transfer efficiency is 34% of the component frequencies with respect to the input wave is shifted by ± f m. Of course, the energy transfer efficiency to higher frequency components is even lower. All so-called SSB frequency shifters shift the frequency in this way.
 これに対して、本実施形態の周波数シフタ10では、周期分極反転構造の波数ベクトルの方向と、入力波の波数ベクトル 0 および変調波の波数ベクトル m の方向との間に角度をつけることによって、エネルギー結合するモードの数を制限し、目的の周波数成分への効率的なエネルギー移動を実現する。図12(b)に、波数ベクトルの関係を示す模式図を示す。周期分極反転構造の波数ベクトルは、コリニアな入力波および変調波の波数ベクトル 0 m に対してある角度(θ1≠0)だけ傾いている。なお、屈折率分布波の波数ベクトルは波数ベクトルと波数ベクトル m との合成ベクトルで表される。屈折率分布波と入力波、回折波との3波の間の位相整合条件( 1  =  0 +  m +  )を満たすように、||とθ1を決めることで、波数ベクトル 0 1 のみが結合する状況をつくることができる。このため、理論的には、入力波(f0 0 )のエネルギーをそれと結合した(f1=f0+fm 1 )の成分に100%移動させることが可能となる。 In contrast, in the frequency shifter 10 of the present embodiment, an angle is provided between the direction of the wave vector K of the periodically poled structure and the direction of the wave vector k 0 of the input wave and the wave vector k m of the modulated wave. Thus, the number of modes for energy coupling is limited, and efficient energy transfer to a target frequency component is realized. FIG. 12B is a schematic diagram showing the relationship between wave vectors. Wave vector K periodically poled structure, the angle (θ 1 ≠ 0) with respect to wave vector k 0, k m collinear input wave and the modulated wave is inclined by. Note that the wave vector of the refractive index distribution wave is expressed by a composite vector of the wave vector K and the wave vector k m. Refractive index distribution wave and the input wave, so as to satisfy the phase matching condition between the three waves of the diffracted wave (k 1 = k 0 + k m + K), | K | by determining a theta 1, wave vector A situation can be created in which only k 0 and k 1 are combined. Therefore, theoretically, the energy of the input wave (f 0 , k 0 ) can be moved 100% to the component (f 1 = f 0 + f m , k 1 ) combined therewith.
 ところで、(f0 0 )と(f1 1 )とが結合状態であり、かつ、(f0 0 )と(f-1 -1 )とが結合状態となるような条件は、K = 2πfm(nm-ng)/c かつ、波数ベクトルの方向は波数ベクトル 0 m の方向と同一となる。これは、まさしく、図12(a)を参照して上述した条件と同一である。そのため、理論的には、コリニアな波数ベクトル 0 m に対して波数ベクトルを傾ける事で所望のモードのみの結合を実現できる。 By the way, (f 0 , k 0 ) and (f 1 , k 1 ) are in a coupled state, and (f 0 , k 0 ) and (f −1 , k −1 ) are in a coupled state. a condition, K = 2πf m (n m -n g) / c and the direction of the wave vector K is the same as the direction of wave vector k 0, k m. This is exactly the same condition as described above with reference to FIG. Therefore, in theory, it can be realized binding of only the desired mode by tilting the wave vector K with respect to the collinear wavevector k 0, k m.
 なお、図12(b)では、入力波と変調波をコリニアにしているが、必ずしもコリニアである必要はない。-fmへ周波数がシフトする状況も同様の考え方で実現可能である。 In FIG. 12B, the input wave and the modulated wave are collinear, but they are not necessarily collinear. Situation in which the frequency is shifted to the -f m can also be realized by a similar concept.
 なお、詳細は後述するが、このような考え方に基づくと、(f0 0 )と(f1 1 )と(f2 2 )との成分間にのみ結合を生じさせたカスケード型のエネルギー移動も可能となる。ただし、
   f1 = f+ fm
   f2 = f+ fm = f+ 2fm
である。この場合、分極反転構造は2つの波数ベクトル 1 2 を有しており、(f0 0 )と(f1 1 )とのエネルギー結合には波数ベクトル 1 m によって示される屈折率分布波による擬似位相整合(Quasi-Phase-Matching:QPM)を利用し、(f1 1 )と(f2 2 )とのエネルギー結合には波数ベクトル 2 m によって示される屈折率分布波によるQPMを利用する。なお、ここでは、+2fmへの周波数シフトを説明したが、-2fmへの周波数シフトも同様に行うことができる。このような光エネルギーのカスケード移動により、変調周波数の整数倍だけ周波数のシフトした成分にエネルギーを効率的に移動させることができる。
Although details will be described later, on the basis of such a concept, only the components of (f 0 , k 0 ), (f 1 , k 1 ), and (f 2 , k 2 ) are coupled. Cascade type energy transfer is also possible. However,
f 1 = f 0 + f m ,
f 2 = f 1 + f m = f 0 + 2f m
It is. In this case, the polarization inversion structure has two wave vectors K 1, K 2, (f 0, k 0) and (f 1, k 1) wave vector in the energy coupling between K 1 + k m quasi-phase matching according to the refractive index distribution wave represented by (quasi-phase-matching: QPM ) using, (f 1, k 1) and (f 2, k 2) is the energy coupling between the wave vector K 2 + k utilizing QPM by refractive index distribution waves indicated by m. Here, + has been described a frequency shift to 2f m, it can be carried out similarly frequency shift to -2f m. By such cascaded movement of light energy, energy can be efficiently transferred to a component whose frequency is shifted by an integral multiple of the modulation frequency.
 ここで、図13を参照して、(f0 0 )成分から(f0+fm 1 )成分へのエネルギー移動を説明する。| 0 |、| m |、| 1 |、||は以下のように表される。
   | 0 | = k0 = 2πn00/c、
   | m | = km = 2πnmm/c、
   | 1 | = k1 = 2π(n00 + ngm)/c、
   ||  = K = 2π/Λ、
ここで、Λは周期分極反転構造の周期である。周期Λを決めた場合、QPMの条件を満たす角度θ1、および、入力波と回折波とのなす角φ1は以下のように決まる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Here, with reference to FIG. 13, energy transfer from the (f 0 , k 0 ) component to the (f 0 + f m , k 1 ) component will be described. | K 0 |, | k m |, | k 1 |, | K | is expressed as follows.
| K 0 | = k 0 = 2πn 0 f 0 / c,
| K m | = k m = 2πn m f m / c,
| K 1 | = k 1 = 2π (n 0 f 0 + ng f m ) / c,
| K | = K = 2π / Λ,
Here, Λ is the period of the periodically poled structure. When the period Λ is determined, the angle θ 1 that satisfies the condition of QPM and the angle φ 1 formed by the input wave and the diffracted wave are determined as follows.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 入射光の光源としてArレーザを使用し、非線形光学媒質としてLiTaO3結晶を使用する場合、変調周波数fm=16GHz、Λ=10μmとすると、θ1 = ±1.58rad、φ1 = ±0.023radとなる。 When an Ar laser is used as the light source of incident light and a LiTaO 3 crystal is used as the nonlinear optical medium, θ 1 = ± 1.58 rad, φ 1 = ± 0 .0, assuming that the modulation frequency is f m = 16 GHz and Λ = 10 μm. 023 rad.
 図14(a)に、ビーム伝搬法(Beam Propagation Method:BPM)に基づくシミュレーション結果を示す。ここでは、電気光学定数γ33は32.2pm/Vであり、変調電極30に印加される交流の電力は3Wであり、基板20の厚さtは0.1mmであり、基板20の長さ(デバイス長)Ldは34mmである。変調波による屈折率変化の振幅Δnがπλ0/(4Ld)の時に、入力波(f0 0 )のエネルギーは、+fmだけ周波数のシフトした(f1 1 )成分に100%の効率で移動する。 FIG. 14A shows a simulation result based on a beam propagation method (BPM). Here, the electro-optic constant γ 33 is 32.2 pm / V, the AC power applied to the modulation electrode 30 is 3 W, the thickness t of the substrate 20 is 0.1 mm, and the length of the substrate 20 is (Device length) Ld is 34 mm. When the amplitude Δn of the refractive index change due to the modulation wave is πλ 0 / (4Ld), the energy of the input wave (f 0, k 0) is, + f m just shifted frequency (f 1, k 1) component 100% Move with efficiency.
 図14(b)に、出射光のスペクトルを示す。図14(b)において破線は入射光の周波数成分を示している。実線は(f1 1 )成分であり、この周波数は入力波の周波数に対して+fmシフトしている。 FIG. 14B shows the spectrum of the emitted light. In FIG. 14B, the broken line indicates the frequency component of the incident light. The solid line is (f 1, k 1) component, this frequency is + f m shift with respect to the frequency of the input wave.
 以上、図12~図14を参照して波数ベクトルの関係を説明したが、波数ベクトル 0 から波数ベクトル 1 へのエネルギー移動が生じるとともに、波数ベクトル 1 から波数ベクトル 2 へのエネルギー移動が生じてもよい。 The wave vector relationship has been described above with reference to FIGS. 12 to 14. However, energy transfer from the wave vector k 0 to the wave vector k 1 occurs, and energy transfer from the wave vector k 1 to the wave vector k 2 occurs. May occur.
 以下、図15を参照して、波数ベクトル 0 から波数ベクトル 1 へのエネルギー移動とともに、波数ベクトル 1 から波数ベクトル 2 へのエネルギー移動が生じる場合の波数ベクトルの関係を説明する。この場合、入力波の周波数に対して+2fmだけ周波数シフトした成分にエネルギーがカスケード型に移動する。なお、ここでは、+2fmへの周波数シフトを説明するが、上述したように、-2fmへの周波数シフトも可能である。 Referring to FIG. 15, with the energy transfer from the wave vector k 0 to the wave vector k 1, illustrating the relationship between the wave vector of the case where the energy transfer from the wave vector k 1 to the wave vector k 2 is generated. In this case, energy is transferred in a cascade type and frequency shifted by + 2f m with respect to the frequency of the input wave component. Here, + the frequency shift to 2f m be described, as described above, it is also possible frequency shift to -2f m.
 波数ベクトル m と波数ベクトル 1 との合成ベクトルである波数ベクトル m1’ で示される屈折率分布波による擬似位相整合法(Quasi Phase Matching:QPM)によって(f0 0 )成分と(f1 1 )成分とがエネルギー的に結合するとともに、波数ベクトル m と波数ベクトル 2 との合成ベクトルである波数ベクトル m2’ で示される屈折率分布波による擬似位相整合法によって(f1 1 )成分と(f2 2 )成分とがエネルギー的に結合する状況を作ることができる。ただし、| 1 | = K1 = 2π/Λ1、| 2 | = K2 = 2π/Λ2である。Λ1とΛ2を決めると、それぞれの擬似位相整合条件を満たようにθ1、φ1、θ2、φ2が決定される。ここで、θ1とφ1は上述したように求められる。一方、θ2とφ2は以下の方程式から求めることができる。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Wave vector k m and wave vector K 1 and quasi-phase matching method using the refractive index distribution wave represented by the wavevector k m1 'is a composite vector of (Quasi Phase Matching: QPM) by (f 0, k 0) component and ( f 1 , k 1 ) are energetically coupled to each other, and by a quasi-phase matching method using a refractive index distribution wave indicated by a wave vector k m2 ′ which is a composite vector of the wave vector k m and the wave vector K 2 ( It is possible to create a situation where the (f 1 , k 1 ) component and the (f 2 , k 2 ) component are energetically coupled. However, | K 1 | = K 1 = 2π / Λ 1 , | K 2 | = K 2 = 2π / Λ 2 . When Λ 1 and Λ 2 are determined, θ 1 , φ 1 , θ 2 , and φ 2 are determined so as to satisfy the respective pseudo phase matching conditions. Here, θ 1 and φ 1 are obtained as described above. On the other hand, θ 2 and φ 2 can be obtained from the following equations.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 上述したのと同じ条件で、さらに、Λ1 = 10μm、Λ2 = 20μmとする場合、θ1 = 1.58rad、φ1 = 0.023rad、θ2 = 1.60rad、φ2 = 0.034radとなる。なお、基板20(例えば、図1参照)には、2つの分極反転構造を示す波数ベクトル 1 2 の合成されたベクトルに対応する合成分極反転構造が形成される。 When Λ 1 = 10 μm and Λ 2 = 20 μm under the same conditions as described above, θ 1 = 1.58 rad, φ 1 = 0.023 rad, θ 2 = 1.60 rad, φ 2 = 0.034 rad It becomes. The substrate 20 (see, for example, FIG. 1) is formed with a combined polarization inversion structure corresponding to a combined vector of wave number vectors K 1 and K 2 indicating two polarization inversion structures.
 図16(a)に、BPMに基づくシミュレーション結果を示す。カスケード型のエネルギー移動により、(f2=f0 + 2fm 2 )成分に100%の効率でエネルギーが移動していることが理解される。なお、ここでは、Λ1およびΛ2は異なっていたが、Λ1およびΛ2は互いに等しくてもよい。 FIG. 16A shows a simulation result based on BPM. The energy transfer cascade is understood that the moving energy efficiency of 100% (f 2 = f 0 + 2f m, k 2) to component. Although Λ 1 and Λ 2 are different here, Λ 1 and Λ 2 may be equal to each other.
 図16(b)に、出射光のスペクトルを示す。図16(b)において破線は入射光の周波数成分を示している。実線は(f2 2 )成分であり、この周波数は入力波の周波数に対して+2fmシフトしている。 FIG. 16B shows the spectrum of the emitted light. In FIG. 16B, the broken line indicates the frequency component of the incident light. The solid line is (f 2, k 2) component, this frequency is + 2f m shift with respect to the frequency of the input wave.
 なお、ここでは、3つの波数ベクトルの結合について説明したが、本発明はこれに限定されない。4以上の波数ベクトルが結合してもよい。 In addition, although the connection of three wave vector was demonstrated here, this invention is not limited to this. Four or more wave vectors may be combined.
 また、上述したように、理論的には、周波数f0の成分はf0+fmの成分またはf0-fmの成分に、エネルギーを選択的に移動させることができる。しかしながら、現実的には、相互作用長等が有限であるため、結合に用いる波数は不確定性を含んでおり、意図しない他のモード(特に、+fmに周波数を選択的にシフトする場合には-fm、または、-fmに周波数を選択的にシフトする際には+fm)へのエネルギー移動も容易に生じることがある。 As described above, in theory, the component of the frequency f 0 can be moved to a component of the component or f 0 -f m of f 0 + f m, the energy selectively. However, in reality, since the interaction length and the like are finite, the wave number used for coupling includes uncertainty, and in the case of selectively shifting the frequency to other unintended modes (particularly, + fm ). May easily cause energy transfer to −f m or + f m when the frequency is selectively shifted to −f m .
 この問題は、波数ベクトル 1 -1 との波数差k1-k-1 = 4πngm/cが通常の3光波混合と比較して非常に小さく、波数の違いによる成分の差別化が困難であることに起因している。例えば、上述の数値を用いた場合、k1-k0は800程度である。一方、一般に、デバイス長は有限であるため、相互作用長を無限に長くすることはできない。例えば、周波数シフタ10の相互作用長を30mmと仮定した場合、kmの不確定量は400程度となり、先の波数差と同じオーダとなる。 This problem is very small wavenumber difference k 1 -k -1 = 4πn g f m / c with wave vector k 1 and k -1 are compared to normal three-wave mixing, discrimination of the components due to a difference in wavenumber This is due to the difficulty of making it. For example, when the above numerical values are used, k 1 -k 0 is about 800. On the other hand, since the device length is generally finite, the interaction length cannot be made infinitely long. For example, assuming the interaction length of the frequency shifter 10 and 30 mm, uncertainty of k m becomes about 400, is the same order as the previous wave number difference.
 ここで、図17を参照して波数ベクトルの関係を説明する。図17(a)は本実施形態の周波数シフタにおける入力波および変調波のそれぞれの波数ベクトルがコリニアの場合の波数ベクトルの関係を示す模式図であり、図17(b)は図17(a)の一部拡大図である。図17(a)および図17(b)に示すように、波数ベクトル 0 と波数ベクトル 1 とが結合するための位相整合条件を設定しても、波数の不確定性により、波数ベクトル 0 と波数ベクトル -1 との結合が生じてしまうことがある。 Here, the relationship of the wave vector will be described with reference to FIG. FIG. 17A is a schematic diagram showing a relationship between wave number vectors when the wave number vectors of the input wave and the modulated wave in the frequency shifter of the present embodiment are collinear, and FIG. FIG. As shown in FIGS. 17A and 17B, even if the phase matching condition for combining the wave vector k 0 and the wave vector k 1 is set, the wave vector k There may be a coupling between 0 and the wave vector k −1 .
 このため、周波数シフタ10では、図18に示すように、変調波の波数ベクトル m に対して入力波の波数ベクトル 0 をコリニアにしないことが好ましい。例えば、波数ベクトル m と波数ベクトル 0 との和が波数ベクトル 1 となるように波数ベクトルが決められている場合、波数ベクトル 1 と波数ベクトル m とのなす角も入射角(α)と同程度となるように設計すると、波数ベクトル -1 は、波数ベクトル m に対して倍の角(2α)を有することになり、波数ベクトル -1 の波数ベクトル m に対するウォークオフ角が波数ベクトル 1 と比べて2倍となる。変調電極30の大きさは有限であるため、大きなウォークオフ角の結果、波数ベクトル -1 と波数ベクトル 0 との相互作用長が制限され、波数ベクトル 0 から波数ベクトル -1 へのエネルギー移動が抑制される。 Therefore, the frequency shifter 10, as shown in FIG. 18, it is preferable not to co-linear to wave vector k 0 of the input wave with wavenumber vector k m of the modulation wave. For example, if the sum of the wave vector K + k m and the wave number vector k 0 is the wave vector K are determined so that the wave vector k 1, also the angle between the wave vector k 1 and the wave vector k m incident When designed to be approximately equal to the angle (alpha), the wave vector k -1 will have a multiple of the angular (2.alpha) with wavenumber vector k m, the wave vector k m of wave vector k -1 The walk-off angle with respect to is doubled compared to the wave vector k 1 . Since the size of the modulation electrode 30 is finite, as a result of the large walk-off angle, the interaction length between the wave vector k −1 and the wave vector k 0 is limited, and the wave vector k 0 to the wave vector k −1 is limited. Energy transfer is suppressed.
 なお、伝搬とともに2つの波が離れていき、伝搬とともに相互作用する2つの波の空間的な重なりの程度が減少する現象はウォークオフとも呼ばれる。周波数シフタ10において光ビームの径と変調電極30の幅は有限であるので、生成波と変調波の波数ベクトルの進行方向に違いがあることにより(生成波と変調波がコリニアではないことにより)、伝搬とともに2つの波の空間的重なりの程度は減少する。図18では、n次の波数ベクトルとn+1次の波数ベクトルとのなす角がn次の波数ベクトルとn-1次の波数ベクトルとのなす角と異なることにより(ここでnは整数)、n次の波数ベクトルとn+1次の波数ベクトルとの間のウォークオフの程度がn次の波数ベクトルとn-1次の波数ベクトルとの間のウォークオフの程度と異なるため、所定の波数ベクトルへのエネルギー移動が効率的に行われる。 It should be noted that the phenomenon in which two waves move away with propagation and the degree of spatial overlap between the two waves interacting with propagation decreases is also called walk-off. Since the diameter of the light beam and the width of the modulation electrode 30 in the frequency shifter 10 are finite, there is a difference in the traveling direction of the wave vector of the generated wave and the modulated wave (because the generated wave and the modulated wave are not collinear). As the wave propagates, the degree of spatial overlap of the two waves decreases. In FIG. 18, the angle formed by the nth-order wave vector and the n + 1-order wave vector differs from the angle formed by the n-th wave vector and the n−1th wave vector (where n is an integer), n Since the degree of walk-off between the next wave vector and the n + 1-th wave vector is different from the degree of walk-off between the n-th wave vector and the n−1-th wave vector, Energy transfer is performed efficiently.
 以上のように、変調波の波数ベクトル m に対して入力波の波数ベクトル 0 をコリニアにせず、両者が小さい角度で交わることが好ましい。具体的には、入射光は変調電極30の延びている方向に対して斜めに入射角αで入射することが好ましい。 As described above, without the wave vector k 0 of the input wave to the collinear with wavenumber vector k m of the modulation wave, it is preferred that intersect at an angle both small. Specifically, the incident light is preferably incident at an incident angle α obliquely with respect to the direction in which the modulation electrode 30 extends.
 なお、図1に示した周波数シフタ10では、導波路40は基板20の主面全体に形成されていたが、本発明はこれに限定されない。基板20の主面の法線方向から見た場合に、基板20の一部の領域に設けられてもよい。ただし、図19に示すように、導波路40の幅wo(x方向に沿った長さ)は変調電極30の幅wよりも大きいことが好ましい。 In the frequency shifter 10 shown in FIG. 1, the waveguide 40 is formed on the entire main surface of the substrate 20, but the present invention is not limited to this. When viewed from the normal direction of the main surface of the substrate 20, it may be provided in a partial region of the substrate 20. However, as shown in FIG. 19, the width wo (the length along the x direction) of the waveguide 40 is preferably larger than the width w of the modulation electrode 30.
 例えば、導波路40の幅woが変調電極30の幅wよりも小さい場合、導波路40内のすべての伝搬モードは変調波と相互作用することとなり、上述のウォークオフによるエネルギー結合の制限が生じないことがある。これに対して、導波路40の幅woが変調電極30の幅wよりも大きい場合、導波路40内のある特定の伝搬モードについては、伝搬に従って変調波電界と光波との重なりがなくなり、その結果、変調波を利用したその他の光とのエネルギー結合を生じないようにすることができる。 For example, when the width wo of the waveguide 40 is smaller than the width w of the modulation electrode 30, all the propagation modes in the waveguide 40 interact with the modulation wave, and the above-described walk-off causes energy coupling limitation. There may not be. On the other hand, when the width wo of the waveguide 40 is larger than the width w of the modulation electrode 30, with respect to a specific propagation mode in the waveguide 40, there is no overlap between the modulated wave electric field and the light wave according to the propagation. As a result, it is possible to prevent energy coupling with other light using the modulated wave.
 なお、ここでは、上述したように、入射角αはブラッグ角であってもよく、周波数シフタ10の回折はブラッグ回折であってもよい。例えば、図1に示した変調電極30の延びている方向に対する入射光の角度は、ブラッグ回折が行われるように設定されていてもよい。あるいは、入射角αはブラッグ角でなくてもよく、周波数シフタ10の回折はブラッグ回折でなくてもよい。 Here, as described above, the incident angle α may be a Bragg angle, and the diffraction of the frequency shifter 10 may be a Bragg diffraction. For example, the angle of incident light with respect to the extending direction of the modulation electrode 30 shown in FIG. 1 may be set so that Bragg diffraction is performed. Alternatively, the incident angle α may not be a Bragg angle, and the diffraction of the frequency shifter 10 may not be a Bragg diffraction.
 [実施形態2]
 図20に、本実施形態の周波数シフタ10の模式図を示す。周波数シフタ10は、分極反転構造を有する基板20と、基板20の表面に設けられた変調電極30とを備える。なお、図20に示した周波数シフタ10は、基板20に導波路が設けられていない点を除いて上述した周波数シフタと同様の構成を有しており、冗長を避ける目的で重複する説明を省略する。
[Embodiment 2]
In FIG. 20, the schematic diagram of the frequency shifter 10 of this embodiment is shown. The frequency shifter 10 includes a substrate 20 having a domain-inverted structure and a modulation electrode 30 provided on the surface of the substrate 20. The frequency shifter 10 shown in FIG. 20 has the same configuration as the above-described frequency shifter except that the substrate 20 is not provided with a waveguide, and redundant description is omitted for the purpose of avoiding redundancy. To do.
 本実施形態の周波数シフタ10では、入射光は、ブラッグ角以外の角度で変調電極30の延びている方向に対して傾いて基板20に入射する。この場合も、図17および図18を参照して上述したように、意図しないモードにエネルギーが移動することを抑制できる。また、周波数シフタ10では、ブラッグ回折とは異なる回折を行うことにより、Qを10以下であってもよく、周波数シフタ10の設計の自由度を向上させることができる。 In the frequency shifter 10 of the present embodiment, the incident light is incident on the substrate 20 with an inclination other than the Bragg angle with respect to the direction in which the modulation electrode 30 extends. Also in this case, as described above with reference to FIGS. 17 and 18, it is possible to suppress energy from moving to an unintended mode. Further, in the frequency shifter 10, by performing diffraction different from Bragg diffraction, Q may be 10 or less, and the degree of freedom in designing the frequency shifter 10 can be improved.
 なお、冗長を避けるために重複する詳細な説明を省略するが、本実施形態の周波数シフタ10でも、図10を参照して上述したように、2つのシフト部10a、10bを備えてもよい。あるいは、本実施形態の周波数シフタ10でも、図15を参照して上述したように、基板20には、2つの分極反転構造を示す波数ベクトル 1 2 の合成されたベクトルに対応する合成分極反転構造が形成されてもよい。 In addition, although the detailed description which overlaps in order to avoid redundancy is abbreviate | omitted, the frequency shifter 10 of this embodiment may also be provided with the two shift parts 10a and 10b as above-mentioned with reference to FIG. Alternatively, also in the frequency shifter 10 of the present embodiment, as described above with reference to FIG. 15, the substrate 20 includes a synthesis corresponding to a synthesized vector of wave number vectors K 1 and K 2 indicating two polarization inversion structures. A domain-inverted structure may be formed.
 図20に示した周波数シフタ10は、例えば、以下のように作製される。以下、図21を参照してこの周波数シフタ10の作製方法を説明する。 The frequency shifter 10 shown in FIG. 20 is manufactured as follows, for example. Hereinafter, a method of manufacturing the frequency shifter 10 will be described with reference to FIG.
 まず、図21(a)に示すように、基板20を用意する。基板20は非線形光学特性を有する誘電体を含む。例えば、基板20は、z-カット一致溶融型LiTaO3(Congruent Lithium Tantalate:CLT)である。 First, as shown in FIG. 21A, a substrate 20 is prepared. The substrate 20 includes a dielectric having nonlinear optical characteristics. For example, the substrate 20 is z-cut coincidence melting type LiTaO 3 (Congruent Lithium Tantalate: CLT).
 図21(b)に示すように、基板20の上にレジストRを塗布する。例えば、レジストRの塗布は基板20の表面に5秒1000回転と30秒3000回転スピンコートすることによって行われる。次に、90℃で40分ほどベーキングを行う。その後、分極反転パターンを転写したマスクMをレジストRの上に形成する。マスクMを用いて30~40秒程度の紫外線露光を行い、図21(c)に示すように、分極反転のレジストパターンRPを形成する。 As shown in FIG. 21B, a resist R is applied on the substrate 20. For example, the resist R is applied by spin coating the surface of the substrate 20 for 5 seconds at 1000 rpm and 30 seconds at 3000 rpm. Next, baking is performed at 90 ° C. for about 40 minutes. Thereafter, a mask M to which the polarization inversion pattern is transferred is formed on the resist R. Using the mask M, UV exposure is performed for about 30 to 40 seconds to form a polarization-inverted resist pattern RP as shown in FIG.
 図21(d)に示すように、分極反転を行う。分極反転は、塩化リチウム水溶液E(例えば、水600mlに対して塩化リチウム500g)を液体電極として利用して行われる。なお、分極反転は、両面に銀をクイックコートまたは蒸着した電極を用いて行ってもよい。 As shown in FIG. 21 (d), polarization inversion is performed. The polarization inversion is performed using a lithium chloride aqueous solution E (for example, 500 g of lithium chloride per 600 ml of water) as a liquid electrode. Note that the polarization inversion may be performed using an electrode in which silver is quick-coated or vapor-deposited on both surfaces.
 図21(e)に示すように、レジストパターンRPを除去する。その後、図21(f)に示すように、基板20の上に変調電極30を形成する。変調電極30は、例えば、銀から形成される。以上のようにして、図20に示した周波数シフタ10を作製することができる。 As shown in FIG. 21 (e), the resist pattern RP is removed. Thereafter, as shown in FIG. 21F, the modulation electrode 30 is formed on the substrate 20. The modulation electrode 30 is made of silver, for example. As described above, the frequency shifter 10 shown in FIG. 20 can be manufactured.
 本発明によれば、比較的大きな周波数シフトを簡便に実現することができる。また、本発明によれば、周波数シフタの設計自由度を向上させることができる。このような周波数シフタを用いることにより、光計測における分解能の向上を実現することができる。本発明の周波数シフタは、超短光パルスの高精度特性評価に応用することができる。また、次世代のコヒーレント光通信システムにおける精密な周波数制御のために利用することができる。 According to the present invention, a relatively large frequency shift can be easily realized. Moreover, according to the present invention, the degree of freedom in designing the frequency shifter can be improved. By using such a frequency shifter, it is possible to improve the resolution in optical measurement. The frequency shifter of the present invention can be applied to high-accuracy characteristic evaluation of ultrashort light pulses. It can also be used for precise frequency control in the next generation coherent optical communication system.
 10 周波数シフタ
 20 基板
 30 変調電極
 40 導波路
 50 絶縁層
10 frequency shifter 20 substrate 30 modulation electrode 40 waveguide 50 insulating layer

Claims (12)

  1.  分極反転構造を有する基板と、
     前記基板の表面において所定の方向に延びるように設けられた変調電極と、
     前記基板に設けられた導波路と
    を備える、周波数シフタであって、
     前記変調電極に交流電界を供給することにより、前記導波路に入射した入射光から、前記入射光の周波数をシフトさせた周波数を有する回折光を生成する、周波数シフタ。
    A substrate having a domain-inverted structure;
    A modulation electrode provided to extend in a predetermined direction on the surface of the substrate;
    A frequency shifter comprising a waveguide provided on the substrate,
    A frequency shifter that generates diffracted light having a frequency obtained by shifting the frequency of the incident light from incident light incident on the waveguide by supplying an alternating electric field to the modulation electrode.
  2.  前記導波路は、少なくとも幅方向に関してマルチモードである、請求項1に記載の周波数シフタ。 The frequency shifter according to claim 1, wherein the waveguide is multimode at least in the width direction.
  3.  前記導波路の幅は前記変調電極の幅よりも大きい、請求項1または2に記載の周波数シフタ。 The frequency shifter according to claim 1 or 2, wherein a width of the waveguide is larger than a width of the modulation electrode.
  4.  前記基板の厚さは0.3mm以下である、請求項1から3のいずれかに記載の周波数シフタ。 The frequency shifter according to any one of claims 1 to 3, wherein the thickness of the substrate is 0.3 mm or less.
  5.  前記入射光は前記所定の方向に対して傾いて前記導波路に入射する、請求項1から4のいずれかに記載の周波数シフタ。 The frequency shifter according to any one of claims 1 to 4, wherein the incident light is inclined with respect to the predetermined direction and enters the waveguide.
  6.  前記入射光は、ブラッグ角以外の角度で前記所定の方向に対して傾いて前記基板に入射する、請求項5に記載の周波数シフタ。 6. The frequency shifter according to claim 5, wherein the incident light is inclined with respect to the predetermined direction at an angle other than a Bragg angle and is incident on the substrate.
  7.  前記所定の方向に対する前記入射光の角度は、ブラッグ回折が行われるように設定されている、請求項5に記載の周波数シフタ。 The frequency shifter according to claim 5, wherein an angle of the incident light with respect to the predetermined direction is set so that Bragg diffraction is performed.
  8.  前記変調電極は、前記基板の前記表面から前記裏面にわたる電界を形成する、請求項1から7のいずれかに記載の周波数シフタ。 The frequency shifter according to any one of claims 1 to 7, wherein the modulation electrode forms an electric field extending from the front surface to the back surface of the substrate.
  9.  前記分極反転構造における前記所定の方向に直交する方向の周期は、前記入射光の半波長以上である、請求項1から8のいずれかに記載の周波数シフタ。 The frequency shifter according to any one of claims 1 to 8, wherein a period in a direction orthogonal to the predetermined direction in the domain-inverted structure is equal to or more than a half wavelength of the incident light.
  10.  前記分極反転構造は、少なくとも2つの分極反転構造を合成することによって得られた合成分極反転構造を有している、請求項1から9のいずれかに記載の周波数シフタ。 10. The frequency shifter according to claim 1, wherein the domain-inverted structure has a synthetic domain-inverted structure obtained by synthesizing at least two domain-inverted structures.
  11.  前記分極反転構造は、第1分極反転構造を有する第1領域と、前記第1分極反転構造とは異なる第2分極反転構造を有する第2領域とを有する、請求項1から10のいずれかに記載の周波数シフタ。 11. The domain inversion structure according to claim 1, wherein the domain inversion structure includes a first region having a first domain inversion structure and a second region having a second domain inversion structure different from the first domain inversion structure. The described frequency shifter.
  12.  分極反転構造を有する基板と、前記基板の表面において所定の方向に延びるように設けられた変調電極と、前記基板に設けられた導波路とを備える周波数シフタを用意する工程と、
     前記変調電極に交流電界を供給し、前記導波路に入射した入射光から、前記入射光の周波数をシフトさせた周波数を有する回折光を生成する工程と
    を包含する、周波数シフト方法。
    Providing a frequency shifter comprising a substrate having a domain-inverted structure, a modulation electrode provided to extend in a predetermined direction on the surface of the substrate, and a waveguide provided on the substrate;
    And supplying an alternating electric field to the modulation electrode and generating diffracted light having a frequency obtained by shifting the frequency of the incident light from incident light incident on the waveguide.
PCT/JP2012/070502 2011-08-15 2012-08-10 Frequency shifter and frequency shifting method WO2013024818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-177782 2011-08-15
JP2011177782 2011-08-15

Publications (1)

Publication Number Publication Date
WO2013024818A1 true WO2013024818A1 (en) 2013-02-21

Family

ID=47715136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070502 WO2013024818A1 (en) 2011-08-15 2012-08-10 Frequency shifter and frequency shifting method

Country Status (1)

Country Link
WO (1) WO2013024818A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3031203A1 (en) * 2014-12-24 2016-07-01 Bull Sas METHOD FOR THE ORDERING OF TASKS AT THE KNOB LEVELS OF A COMPUTER CLUSTER, ORDERER OF TASKS AND CLUSTER ASSOCIATED

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083001A (en) * 1996-09-06 1998-03-31 Univ Osaka Superhigh velocity electro-optical deflector utilizing oblique periodic polarization inversion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083001A (en) * 1996-09-06 1998-03-31 Univ Osaka Superhigh velocity electro-optical deflector utilizing oblique periodic polarization inversion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KENJI HATTORI ET AL.: "Kiban Hakuhenka ni yoru Giji Sokudo Seigogata Hikari Iso Henchoki no Hencho Koritsu Kojo", EXTENDED ABSTRACTS, JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES (CD-ROM), vol. 57, 2010, pages 19A-A-5 *
SHINTARO HISATAKE ET AL.: "Multiplication of optical frequency shift by cascaded electro-optic traveling phase gratings operating above 10 GHz", OPTICS LETTERS, vol. 36, no. 8, 15 April 2011 (2011-04-15), pages 1350 - 1352 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3031203A1 (en) * 2014-12-24 2016-07-01 Bull Sas METHOD FOR THE ORDERING OF TASKS AT THE KNOB LEVELS OF A COMPUTER CLUSTER, ORDERER OF TASKS AND CLUSTER ASSOCIATED
US10698729B2 (en) 2014-12-24 2020-06-30 Bull Sas Method for organizing tasks in the nodes of a computer cluster, associated task organizer and cluster

Similar Documents

Publication Publication Date Title
Boes et al. Lithium niobate photonics: Unlocking the electromagnetic spectrum
Boes et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits
JP4864143B2 (en) Compact, single-chip based entangled polarization state photon source and method for generating photons in an entangled polarization state
US6806986B2 (en) Wavelength converter and wavelength converting apparatus
JP3957217B2 (en) Light modulator
US20110043895A1 (en) Wavelength converting device, laser, and method to stabilize the wavelength conversion efficiency
JPH05273623A (en) Optical wavelength conversion element and laser beam source using the same
JP2009175576A (en) Super flat optical frequency comb signal generator
JP4770565B2 (en) Wave generation by wave propagation phase shift compensation in nonlinear optical media
WO2006025333A1 (en) Electrooptic ssb optical modulator and optical frequency shifter
Chen et al. Engineering quadratic nonlinear photonic crystals for frequency conversion of lasers
US6952307B2 (en) Electric field poling of ferroelectric materials
US6710912B1 (en) Technique for quasi-phase matching
US11092873B1 (en) Reconfigurable electro-optic frequency shifters
WO2013024818A1 (en) Frequency shifter and frequency shifting method
JP3272250B2 (en) Wavelength converter
JP3639198B2 (en) Period domain inversion structure electro-optic SSB optical modulator and optical frequency shifter
Park et al. Spatial mode behavior of second harmonic generation in a ridge-type waveguide with a periodically poled MgO-doped lithium niobate crystal
JP7160194B2 (en) Wavelength conversion element
Ebers et al. Flexible source of correlated photons based on LNOI rib waveguides
JPH1083001A (en) Superhigh velocity electro-optical deflector utilizing oblique periodic polarization inversion
Shibuya et al. 10-GHz-order high-efficiency electrooptic frequency shifter using slant-periodic domain inversion
Tao Integrated Electro-Optics Modulator
JPH0519310A (en) Optical modulation wavelength converting element
JPH0667235A (en) Wavelength conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823917

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP