JP2800956B2 - Active matrix substrate - Google Patents

Active matrix substrate

Info

Publication number
JP2800956B2
JP2800956B2 JP5181792A JP5181792A JP2800956B2 JP 2800956 B2 JP2800956 B2 JP 2800956B2 JP 5181792 A JP5181792 A JP 5181792A JP 5181792 A JP5181792 A JP 5181792A JP 2800956 B2 JP2800956 B2 JP 2800956B2
Authority
JP
Japan
Prior art keywords
electrode
insulating film
additional capacitance
interlayer insulating
active matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5181792A
Other languages
Japanese (ja)
Other versions
JPH05257164A (en
Inventor
康浩 松島
尚幸 島田
俊弘 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5181792A priority Critical patent/JP2800956B2/en
Publication of JPH05257164A publication Critical patent/JPH05257164A/en
Application granted granted Critical
Publication of JP2800956B2 publication Critical patent/JP2800956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えばアクティブマト
リクス液晶表示装置等に用いられるアクティブマトリク
ス基板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an active matrix substrate used for, for example, an active matrix liquid crystal display device.

【0002】[0002]

【従来の技術】近年、液晶等を表示媒体として用いたア
クティブマトリクス表示装置が、活発に研究されてい
る。中でも、液晶を用いたアクティブマトリクス型の表
示装置は平面ディスプレイとして研究され、その成果も
着実に上がっている。このようなアクティブマトリクス
型液晶表示装置は、絵素電極、薄膜トランジスタ(TF
T)等が形成されたアクティブマトリクス基板と、対向
電極が形成された対向基板と、これらを対向させた間に
封入された液晶層とによって構成されている。
2. Description of the Related Art In recent years, active matrix display devices using a liquid crystal or the like as a display medium have been actively studied. In particular, active matrix display devices using liquid crystals have been studied as flat displays, and the results have been steadily increasing. Such an active matrix type liquid crystal display device includes a pixel electrode, a thin film transistor (TF)
T) and the like, an active matrix substrate formed with a counter electrode, a counter substrate formed with a counter electrode, and a liquid crystal layer sealed between these substrates.

【0003】特に、小型かつ高精細に設計されたアクテ
ィブマトリクス型液晶表示装置(LCD)では、その設
計上、絵素の面積が小さくなるので、絵素電極及び対向
電極との間で形成されるコンデンサ容量が小さくなる。
従って、映像信号を必要な時間保持することが出来なく
なるという問題が生じる。加えて、絵素電極の電位に対
するバス配線の電位の変動が大きくなるという問題も生
じる。そこで、絵素電極と対向電極との容量不足を補う
ために付加容量が設けられる。
In particular, in an active matrix type liquid crystal display (LCD) designed to be small and high definition, the area of a picture element is small due to its design, so that it is formed between a picture element electrode and a counter electrode. The capacitance of the capacitor becomes smaller.
Therefore, there is a problem that the video signal cannot be held for a required time. In addition, there is a problem that the potential of the bus wiring greatly varies with respect to the potential of the pixel electrode. Therefore, an additional capacitance is provided to compensate for the lack of capacitance between the pixel electrode and the counter electrode.

【0004】図4は、付加容量を備えた従来のアクティ
ブマトリクス基板の絵素1個分の平面図を示し、図5は
そのアクティブマトリクス基板のTFT25を通る断面
図(図4におけるB−B´に沿った断面図)である。こ
のアクティブマトリクス基板は、絶縁性基板11上に、
チャネル層12a、12b、ソース電極23及びドレイ
ン電極24を有する多結晶シリコンからなる半導体層3
0が形成されている。半導体層30のチャネル層12
a、12b以外の部分は、イオン注入法によるドーピン
グを行うことにより電気抵抗が低減されている。
FIG. 4 is a plan view of one picture element of a conventional active matrix substrate provided with an additional capacitor, and FIG. 5 is a cross-sectional view taken along a TFT 25 of the active matrix substrate (BB 'in FIG. 4). FIG. This active matrix substrate is provided on an insulating substrate 11,
Semiconductor layer 3 made of polycrystalline silicon having channel layers 12a and 12b, source electrode 23 and drain electrode 24
0 is formed. Channel layer 12 of semiconductor layer 30
The portions other than a and 12b are subjected to doping by ion implantation to reduce the electric resistance.

【0005】半導体層30を覆って基板11の上には、
ゲート絶縁膜13が形成され、このゲート絶縁膜13上
には、n+またはp+のどちらか一方の多結晶Siからな
るゲート電極3a、3bおよび付加容量電極6が形成さ
れている。上述のドーピングは、このゲート電極3a、
3bをマスクとして行われる。ゲート電極3aは、図1
に示すようにゲートバス配線1自身の一部からなり、ゲ
ート電極3bはゲートバス配線1から分岐した部分で構
成される。付加容量電極6は、図1に示すように帯状を
した付加容量共通配線8の一部であり、付加容量共通配
線8と絵素電極4との対向部分で付加容量が形成され
る。
[0005] On the substrate 11 covering the semiconductor layer 30,
A gate insulating film 13 is formed, and on this gate insulating film 13, gate electrodes 3a, 3b and additional capacitance electrode 6 made of either n + or p + polycrystalline Si are formed. The above-described doping is performed by the gate electrode 3a,
3b is used as a mask. The gate electrode 3a is shown in FIG.
As shown in (1), the gate bus line 1 is composed of a part of itself, and the gate electrode 3b is composed of a portion branched from the gate bus line 1. The additional capacitance electrode 6 is a part of a band-shaped additional capacitance common line 8 as shown in FIG. 1, and an additional capacitance is formed at a portion where the additional capacitance common line 8 and the pixel electrode 4 face each other.

【0006】更に、ゲート電極3a及び3bを覆って基
板11上の全面には、第1層間絶縁膜14が形成されて
いる。第1層間絶縁膜14には、スルーホール7a及び
7bが設けられている。スルーホール7aの上には、ソ
ースバス配線2から分岐した金属層10aが形成されて
いる。更に、分岐した金属層10aとは、別に同時に形
成された金属層10bが存在する。ソースバス配線2
は、スルーホール7aを介してTFT25のソース電極
23に接続されている。ここで、TFT25は、ゲート
電極3a及び3bを有するデュアルゲートと呼ばれる構
造が用いられている。一方のコンタクトホール7bは、
TFT25のドレイン電極24と金属層10bとの間に
おける電気的接続を確実に行うためにAlなどの金属を
使用して埋められる。
Further, a first interlayer insulating film 14 is formed on the entire surface of the substrate 11 covering the gate electrodes 3a and 3b. In the first interlayer insulating film 14, through holes 7a and 7b are provided. On the through hole 7a, a metal layer 10a branched from the source bus wiring 2 is formed. Further, there is a metal layer 10b formed simultaneously and separately from the branched metal layer 10a. Source bus wiring 2
Is connected to the source electrode 23 of the TFT 25 via the through hole 7a. Here, the TFT 25 has a structure called a dual gate having gate electrodes 3a and 3b. One contact hole 7b is
In order to ensure electrical connection between the drain electrode 24 of the TFT 25 and the metal layer 10b, it is filled with a metal such as Al.

【0007】その上には、第2層間絶縁膜17、遮光膜
15、第3の層間絶縁膜18及び絵素電極4がこの順に
形成されている。遮光膜15と前記金属層10bとは、
第2層間絶縁膜17に設けたコンタクトホール9bを介
して接続される。遮光膜15は、Ti−W合金などで形
成する。この遮光膜15は、コンタクトホール7bを埋
めるAl等の金属と、ITO等からなる絵素電極4との
間におけるオーミックコンタクトを実現させる役割も担
っている。遮光膜15と絵素電極4とは、第3の層間絶
縁膜18に形成したコンタクトホール16bを介して接
続される。
A second interlayer insulating film 17, a light-shielding film 15, a third interlayer insulating film 18, and a pixel electrode 4 are formed thereon in this order. The light-shielding film 15 and the metal layer 10b
The connection is made via a contact hole 9b provided in the second interlayer insulating film 17. The light-shielding film 15 is formed of a Ti-W alloy or the like. The light-shielding film 15 also has a role of realizing an ohmic contact between the metal such as Al filling the contact hole 7b and the pixel electrode 4 made of ITO or the like. The light-shielding film 15 and the picture element electrode 4 are connected via a contact hole 16b formed in the third interlayer insulating film 18.

【0008】[0008]

【発明が解決しようとする課題】ところで、この従来基
板においては、ゲートバス配線1の1つがオン状態とな
った後、最初にオン状態となるソースバス配線2では、
このゲートバス配線1がオフ状態となるまでの時間が十
分に長いので、ソースバス配線2を送られる映像信号
が、絵素電極4及び付加容量電極6に余裕をもって書き
込まれる。しかし、最後にオン状態となるソースバス配
線2では、ゲートバス配線1がオフ状態となるまでの時
間が短いため、映像信号の書き込み時間が制約されると
いう問題がある。
By the way, in this conventional substrate, after one of the gate bus lines 1 is turned on, the source bus line 2 which is first turned on is:
Since the time until the gate bus line 1 is turned off is sufficiently long, the video signal sent through the source bus line 2 is written into the picture element electrode 4 and the additional capacitance electrode 6 with a margin. However, in the source bus line 2 which is finally turned on, the time until the gate bus line 1 is turned off is short, so that there is a problem that the writing time of the video signal is restricted.

【0009】更に、付加容量共通配線8がn+の多結晶
Siで形成されているので抵抗が十分に小さいとは言え
ない。そのため、付加容量共通配線8を送られる信号は
遅延し、上述の制約された書き込み時間内に映像信号を
書き込むことができなくなり、絵素電極4に書き込まれ
た電位に変動が引き起こされるという問題もある。この
問題を、図6に基づいて説明する。
Further, since the additional capacitance common wiring 8 is formed of n + polycrystalline Si, the resistance cannot be said to be sufficiently small. Therefore, the signal sent to the additional capacitance common line 8 is delayed, so that the video signal cannot be written within the above-mentioned limited writing time, and the potential written to the pixel electrode 4 fluctuates. is there. This problem will be described with reference to FIG.

【0010】図6は、1つの絵素部分の等価回路図を示
す。TFT31のドレイン電極32に接続された絵素電
極33と、この絵素電極33に対向し、かつ対向電極配
線が接続された対向電極34との間では、液晶層を挟ん
で容量CLCが形成される。また、TFT31のドレイン
電極32は、付加容量CSを介して付加容量共通配線に
接続されている。更に、TFT31のゲート電極35及
びドレイン電極32との間では容量Cgdが形成されてい
る。
FIG. 6 shows an equivalent circuit diagram of one picture element portion. A capacitor CLC is formed between a pixel electrode 33 connected to the drain electrode 32 of the TFT 31 and a counter electrode 34 facing the pixel electrode 33 and connected to a counter electrode wiring with a liquid crystal layer interposed therebetween. You. The drain electrode 32 of the TFT 31 is connected to an additional capacitance common line via an additional capacitance CS. Further, a capacitance Cgd is formed between the gate electrode 35 and the drain electrode 32 of the TFT 31.

【0011】このとき、TFTのゲートバス配線にゲー
トオンの信号が送られると、TFTはオン状態となり、
ソースバス配線には映像信号Vdが書き込まれる。ここ
で、付加容量共通配線の信号伝達の時定数をτCS、絵素
電極への信号書き込み時間TONとすると、τCS《TONの
条件が満たされない場合には、付加容量CSへの充電が
不十分となり、絵素電極の電位が変動するという問題が
生じる。
At this time, when a gate-on signal is sent to the gate bus wiring of the TFT, the TFT is turned on,
The video signal Vd is written to the source bus wiring. Here, assuming that the time constant of signal transmission of the additional capacitance common wiring is τCS and the signal writing time TON to the picture element electrode is τCS << TON, if the condition of TON is not satisfied, the charging of the additional capacitance CS becomes insufficient. This causes a problem that the potential of the pixel electrode fluctuates.

【0012】ところで、TFTがオフ状態となり、τCS
に比べて十分に長い時間が経過した後における実際の表
示状態に対応する絵素電極の電位Vd´は、下記の1式
で表される。
By the way, the TFT is turned off, and τCS
The potential Vd 'of the picture element electrode corresponding to the actual display state after a sufficiently long time has elapsed is expressed by the following equation.

【0013】 Vd´=Vd−{Cgd/(Cgd+CLC+CS)・△Vg}−a …(1) ここで、ΔVgは、TFTのオン状態の時のゲート電位
とオフ状態の時のゲート電位との差である。aは、書き
込み時間内に付加容量を十分充電できないために生じる
電位の変動を表し、下記の2式で示される。
Vd '= Vd- {Cgd / (Cgd + CLC + CS) .multidot.Vg} -a (1) Here, .DELTA.Vg is the difference between the gate potential when the TFT is on and the gate potential when it is off. It is. “a” represents a change in potential caused by insufficient charging of the additional capacitance within the writing time, and is represented by the following two equations.

【0014】 a=Vd・exp(−Ton/τCS)・{CS/(Cgd+CLC+CS)} …(2) 上記1式における第2項は、TFTをオフ状態とするた
めにゲートバス配線の電圧が変動することによる絵素電
極の電位の変動を表す。書き込まれた映像信号によって
忠実な表示を行わせるためには、1式の第2項及び2式
のaの値を小さくしなければならない。1式の第2項の
値を小さくするためには、 Cgd《CLC+CS …(3) が成り立つことが必要である。高精細のアクティブマト
リクス基板では絵素電極が、小さくCLCが小さいので、
3式の条件を満たすにはある程度の大きさの付加容量C
Sが必要となる。
A = Vd · exp (−Ton / τCS) · {CS / (Cgd + CLC + CS)} (2) The second term in the above equation is that the voltage of the gate bus line fluctuates to turn off the TFT. This indicates a change in the potential of the picture element electrode due to the above. In order to perform a faithful display by the written video signal, the value of the second term in Equation 1 and the value of a in Equation 2 must be reduced. In order to reduce the value of the second term of the equation (1), it is necessary that Cgd << CLC + CS (3) holds. In a high-definition active matrix substrate, the pixel electrodes are small and the CLC is small.
In order to satisfy the condition of Equation (3), a certain amount of additional capacitance C is required.
S is required.

【0015】このように付加容量CSは或る程度の大き
さが必要なので、aの値を小さくするためには、 Ton《τCS …(4) が成り立つことが必要である。特に、駆動回路をTFT
アレイと同一の基板上に形成した小型かつ高精細のアク
ティブマトリクス基板では、上記4式の条件を満たすに
は困難が伴う。その理由を次に示す。
As described above, since the additional capacitance CS needs to have a certain size, it is necessary to satisfy Ton << τCS (4) in order to reduce the value of a. In particular, the driving circuit is TFT
With a small and high-definition active matrix substrate formed on the same substrate as the array, it is difficult to satisfy the above four conditions. The reason is as follows.

【0016】ゲートバス配線の本数が多くなり、ゲー
トバス配線1本当たりに割り当てられる時間が短くな
る。
The number of gate bus lines increases, and the time allocated per gate bus line decreases.

【0017】ドライバICを実装する方式では、全て
のソースバス配線に同時に映像信号が出力されるので問
題ないが、パネルサンプルホールド方式を採用する場合
には、それぞれのソースバス配線に順次映像信号が出力
されるので、最後に書き込みが行われるソースバス配線
における書き込み時間が短くなる。
In the method of mounting the driver IC, there is no problem because the video signal is output to all the source bus wirings at the same time. However, when the panel sample and hold method is adopted, the video signal is sequentially transmitted to each source bus wiring. Since the data is output, the writing time in the source bus line where the writing is performed last is shortened.

【0018】表示装置の高精細化に伴う開口率の低下
を防ぐため、配線の線幅を狭くする必要がある。そのた
め付加容量共通配線の抵抗が大きくなり、τCSを小さく
することができない。
It is necessary to reduce the line width of the wiring in order to prevent a decrease in the aperture ratio due to the high definition of the display device. Therefore, the resistance of the additional capacitance common wiring increases, and τCS cannot be reduced.

【0019】絵素数が増加しても1絵素あたりの付加
容量共通電極の大きさを小さくすることができない。従
って、1本の付加容量共通配線に接続される付加容量の
総和が大きくなり、τCSを小さくすることができない。
Even if the number of picture elements increases, the size of the additional capacitance common electrode per picture element cannot be reduced. Therefore, the sum of the additional capacitances connected to one additional capacitance common wiring increases, and τCS cannot be reduced.

【0020】このような問題点の解決策として、付加容
量共通配線の両端に対向電極と同電位の電圧を印加する
ことが考えるが、それだけでは付加容量共通配線の抵抗
が十分に小さくならないために十分な解決策とは言えな
い。
As a solution to such a problem, it is conceivable to apply a voltage having the same potential as that of the counter electrode to both ends of the additional capacitance common line. However, this alone does not reduce the resistance of the additional capacitance common line sufficiently. Not a good solution.

【0021】本発明はこのような問題点を解決するもの
であり、映像信号を送る配線の抵抗を小さくして信号遅
延を生じにくくできるアクティブマトリクス基板を提供
することを目的とする。
An object of the present invention is to solve such a problem, and an object of the present invention is to provide an active matrix substrate in which the resistance of a wiring for transmitting a video signal is reduced so that a signal delay is hardly caused.

【0022】[0022]

【課題を解決するための手段】本発明のアクティブマト
リクス基板は、薄膜トランジスタ、付加容量電極及び付
加容量共通配線が形成された基板上に第1の層間絶縁膜
を介して形成された遮光膜と、該遮光膜上に第2の層間
絶縁膜を介して形成された絵素電極とを有し、該遮光膜
が、該第1の層間絶縁膜に形成されたコンタクトホール
を介して該付加容量共通配線に電気的に接続され、か
つ、該絵素電極が該第1の層間絶縁膜及び該第2の層間
絶縁膜に形成された各コンタクトホールを介して該薄膜
トランジスタに電気的に接続されており、そのことによ
り上記目的を達成できる。
According to the present invention, there is provided an active matrix substrate comprising: a thin film transistor; an additional capacitance electrode;
A first interlayer insulating film on the substrate on which the added capacitance common wiring is formed;
And a second interlayer on the light-shielding film
A pixel electrode formed with an insulating film interposed therebetween;
Are contact holes formed in the first interlayer insulating film.
Is electrically connected to the additional capacitance common wiring through
The pixel electrode is formed between the first interlayer insulating film and the second interlayer insulating film;
The thin film through each contact hole formed in the insulating film
The transistor is electrically connected to the transistor , so that the above object can be achieved.

【0023】前記遮光膜は、W、Ti、Mo又はTi−
W合金で形成してもよい。
The light shielding film is made of W, Ti, Mo or Ti-
It may be formed of a W alloy.

【0024】[0024]

【作用】本発明にあっては、遮光膜が、薄膜トランジス
タ、付加容量電極及び付加容量共通配線が形成された基
板上に第1の層間絶縁膜を介して形成されると共に、遮
光膜と付加容量共通配線とが第1の層間絶縁膜に設けた
コンタクトホールを介して電気的に接続されているの
で、遮光膜と付加容量共通配線とが並列接続された回路
構成となり、抵抗が小さくなる。
According to the present invention, the light shielding film is a thin film transistor.
On which the capacitor, additional capacitance electrode and additional capacitance common wiring are formed.
Since the light-shielding film and the additional capacitance common wiring are electrically connected via the contact holes provided in the first interlayer insulating film, the light-shielding film is formed on the board via the first interlayer insulating film. The circuit configuration is such that the film and the additional capacitance common wiring are connected in parallel, and the resistance is reduced.

【0025】[0025]

【実施例】図3にアクティブマトリクス表示装置の平面
模式図を示す。
FIG. 3 is a schematic plan view of an active matrix display device.

【0026】この表示装置は、ガラス等の絶縁膜基板1
1上にゲート駆動回路54、ソース駆動回路55及びT
FTアレイ部53が形成されている。TFTアレイ部5
3には、ゲート駆動回路54から延びる多数の平行する
走査線としてのゲートバス配線1が配されている。ソー
ス駆動回路55からは信号線としての多数のソースバス
配線2がゲートバス配線1に直交して配設されている。
更に、ソースバス配線2と平行に、付加容量共通配線8
が配設されている。
This display device has an insulating film substrate 1 made of glass or the like.
1, a gate drive circuit 54, a source drive circuit 55 and T
An FT array section 53 is formed. TFT array unit 5
3, a gate bus line 1 as a number of parallel scanning lines extending from the gate drive circuit 54 is provided. From the source drive circuit 55, a number of source bus lines 2 as signal lines are arranged orthogonal to the gate bus lines 1.
Further, in parallel with the source bus wiring 2, the additional capacitance common wiring 8
Are arranged.

【0027】2本のゲートバス配線1の間であって、ソ
ースバス配線2及び付加容量共通配線8で挟まれた矩形
の領域には、TFT25、絵素57及び付加容量27が
設けられている。TFT25のゲート電極はゲートバス
配線1に接続され、ソース電極はソースバス配線2に接
続されている。絵素57は、TFT25のドレイン電極
に接続された絵素電極と対向基板上の対向電極との間
に、液晶が封入されて構成されている。また、付加容量
共通配線8は、対向電極と同じ電位の電極に接続されて
いる。
A TFT 25, a picture element 57 and an additional capacitor 27 are provided in a rectangular area between the two gate bus lines 1 and between the source bus line 2 and the additional capacitor common line 8. . The gate electrode of the TFT 25 is connected to the gate bus line 1, and the source electrode is connected to the source bus line 2. The picture element 57 is configured such that liquid crystal is sealed between the picture element electrode connected to the drain electrode of the TFT 25 and the counter electrode on the counter substrate. Further, the additional capacitance common wiring 8 is connected to an electrode having the same potential as the counter electrode.

【0028】図1は本実施例のアクティブマトリクス基
板における絵素1個分の平面図を示す。図2は図1にお
けるA−A´に沿った断面図である。このアクティブマ
トリクス基板の構成を、製造工程に従って説明する。
FIG. 1 is a plan view of one picture element on the active matrix substrate of this embodiment. FIG. 2 is a sectional view taken along the line AA ′ in FIG. The configuration of this active matrix substrate will be described according to the manufacturing process.

【0029】まず、絶縁性基板11上に、例えばCVD
法によって多結晶Siからなる半導体層30をパターン
形成した後、基板11上の全面にゲート絶縁膜13とな
る絶縁膜を形成した。この絶縁膜は、例えばCVD法、
スパッタリング法、又は上記多結晶Si薄膜30の上面
を熱酸化する方式により形成される。ゲート絶縁膜13
の厚さは、例えば約100nmである。また、半導体層
30の層厚は、例えば40〜80nmである。
First, for example, CVD is performed on the insulating substrate 11.
After patterning the semiconductor layer 30 made of polycrystalline Si by the method, an insulating film to be the gate insulating film 13 was formed on the entire surface of the substrate 11. This insulating film is formed, for example, by a CVD method,
It is formed by a sputtering method or a method in which the upper surface of the polycrystalline Si thin film 30 is thermally oxidized. Gate insulating film 13
Is about 100 nm, for example. The thickness of the semiconductor layer 30 is, for example, 40 to 80 nm.

【0030】次に、低抵抗の多結晶Siを付着した後に
パターニングを行って、ゲートバス配線1、ゲート電極
3a、3b及び付加容量共通配線8を形成した。付加容
量共通配線8は、図1のように突出形成した部分である
付加容量電極6を含んだものである。次いで、上記ゲー
ト電極3a及び3bをマスクとし、かつフォトリソグラ
フィー法によって形成されたマスクを用いて半導体層3
0のゲート電極の下方以外の部分にイオン注入を行う。
これにより、半導体層30にチャネル層12a、12b
が形成される。
Next, patterning was performed after low-resistance polycrystalline Si was deposited, thereby forming the gate bus wiring 1, the gate electrodes 3a and 3b, and the additional capacitance common wiring 8. The additional capacitance common wiring 8 includes the additional capacitance electrode 6 which is a protruding portion as shown in FIG. Then, using the gate electrodes 3a and 3b as a mask and a mask formed by photolithography, the semiconductor layer 3 is formed.
Ion implantation is performed on portions other than below the 0 gate electrode.
Thereby, the channel layers 12a and 12b are formed in the semiconductor layer 30.
Is formed.

【0031】その後、この基板上の全面に第1層間絶縁
膜14を、例えば700nmの厚さに形成した。次に、
第1層間絶縁膜14の所定箇所にコンタクトホール7
a、7b及びコンタクトホール7cを形成した。各コン
タクトホール7a、7b、7cは、それぞれソース電極
23、ドレイン電極24、付加容量共通配線8の上に配
設されている。
Thereafter, a first interlayer insulating film 14 was formed on the entire surface of the substrate to a thickness of, for example, 700 nm. next,
A contact hole 7 is formed in a predetermined portion of the first interlayer insulating film 14.
a, 7b and a contact hole 7c were formed. The contact holes 7a, 7b, 7c are provided on the source electrode 23, the drain electrode 24, and the additional capacitance common wiring 8, respectively.

【0032】次に、ソースバス配線2及び、金属層10
a、10b、10c等をAl等の低抵抗の金属を用いて
同時に形成した。このとき、金属層10a、10b、1
0cは、それぞれコンタクトホール7a、7b、7cを
埋めるように形成され、ソース電極23、ドレイン電極
24、付加容量共通配線8と接続される。第1層間絶縁
膜14の上に飛び出している金属層10a、10b、1
0cの層厚は、例えば600nmである。なお、金属層
10aはソースバス配線2から分岐させた部分であり、
ソースバス配線2は金属層10a及びコンタクトホール
7aを介してソース電極23に接続される。
Next, the source bus wiring 2 and the metal layer 10
a, 10b, 10c, etc. were simultaneously formed using a low resistance metal such as Al. At this time, the metal layers 10a, 10b, 1
0c is formed to fill the contact holes 7a, 7b, 7c, respectively, and is connected to the source electrode 23, the drain electrode 24, and the additional capacitance common wiring 8. The metal layers 10a, 10b, 1 protruding above the first interlayer insulating film 14
The layer thickness of 0c is, for example, 600 nm. The metal layer 10a is a portion branched from the source bus wiring 2,
Source bus line 2 is connected to source electrode 23 via metal layer 10a and contact hole 7a.

【0033】次に、この基板上の全面に第2層間絶縁膜
17を、例えばCVD法によって600nmの厚さに形
成した。次に、第2層間絶縁膜17にコンタクトホール
9b、9cを形成した。コンタクトホール9bはドレイ
ン電極を接続するためのものであり、コンタクトホール
9cは遮光膜15と付加容量共通配線8を電気的に接続
するためのものである。
Next, a second interlayer insulating film 17 was formed on the entire surface of the substrate to a thickness of 600 nm by, for example, a CVD method. Next, contact holes 9b and 9c were formed in the second interlayer insulating film 17. The contact hole 9b is for connecting the drain electrode, and the contact hole 9c is for electrically connecting the light shielding film 15 and the additional capacitance common wiring 8.

【0034】次に、遮光膜15を、TFT25の上部の
他、コンタクトホール9b、9cを埋めるようにパター
ン形成した。遮光膜15の材料は、例えばTi−W合金
などの金属を使用し、厚みは例えば120〜150nm
とした。コンタクトホール9bの周りは、遮光膜15が
存在しないが、この部分には金属層10bが形成されて
いるので、遮光膜15が無い部分から光が漏れるという
ことはない。なお、遮光膜15は、上述のTi−W合金
の他に、W、Ti、Moなどの金属を使用できる。ま
た、コンタクトホール9b上の遮光膜15は、ドレイン
電極24と、後述する絵素電極4とのオーミックコンタ
クトを取るためのものである。
Next, a pattern of the light-shielding film 15 was formed so as to fill the contact holes 9b and 9c in addition to the upper portion of the TFT 25. The light shielding film 15 is made of a metal such as a Ti-W alloy, and has a thickness of, for example, 120 to 150 nm.
And The light-shielding film 15 does not exist around the contact hole 9b, but since the metal layer 10b is formed in this portion, light does not leak from a portion where the light-shielding film 15 is not provided. The light-shielding film 15 can be made of a metal such as W, Ti, or Mo, in addition to the above-described Ti-W alloy. The light-shielding film 15 on the contact hole 9b is for obtaining an ohmic contact between the drain electrode 24 and a pixel electrode 4 described later.

【0035】その後、第3の層間絶縁膜18を200n
m形成し、コンタクトホール16bをあけて絵素電極4
を形成した。
After that, the third interlayer insulating film 18 is
m, the contact hole 16b is opened, and the pixel electrode 4 is formed.
Was formed.

【0036】したがって、このように構成された本実施
例のアクティブマトリクス基板においては、遮光膜15
と付加容量共通配線8とが平行に形成されており、遮光
膜15と付加容量共通配線8とが第1、第2層間絶縁膜
14、17にそれぞれ設けたコンタクトホール7c、9
cを介して電気的に接続されているので、遮光膜15と
付加容量共通配線8とが並列接続された回路構成となっ
て抵抗が小さくなり、信号遅延の発生を抑制できる。
Therefore, in the active matrix substrate of the present embodiment thus configured, the light shielding film 15
And the additional capacitance common wiring 8 are formed in parallel with each other, and the light shielding film 15 and the additional capacitance common wiring 8 are formed in the first and second interlayer insulating films 14 and 17 with contact holes 7c and 9 provided respectively.
Since they are electrically connected to each other via c, the circuit configuration is such that the light shielding film 15 and the additional capacitance common wiring 8 are connected in parallel, the resistance is reduced, and the occurrence of signal delay can be suppressed.

【0037】また、付加容量共通配線8と遮光膜15と
が2層構造となっているので、開口率を上げるために付
加容量共通配線8の線幅を細くしたときに生じる断線を
防ぐことができる。
Further, since the additional capacitance common wiring 8 and the light shielding film 15 have a two-layer structure, it is possible to prevent disconnection that occurs when the line width of the additional capacitance common wiring 8 is reduced in order to increase the aperture ratio. it can.

【0038】[0038]

【発明の効果】以上詳述したように、本発明のアクティ
ブマトリクス基板は、遮光膜と付加容量共通配線とが並
列接続された回路構成となって抵抗が小さくなり、信号
遅延の発生を抑制できる。また、付加容量共通配線と遮
光膜とが2層構造となっているので、断線を防止した状
態で付加容量共通配線の線幅を小さくなし得、これによ
り開口率の大きい、明るい画面を有する高精細な表示装
置を提供することができる。
As described in detail above, the active matrix substrate of the present invention has a circuit configuration in which the light shielding film and the additional capacitance common wiring are connected in parallel, the resistance is reduced, and the occurrence of signal delay can be suppressed. . Further, since the additional capacitance common wiring and the light-shielding film have a two-layer structure, the line width of the additional capacitance common wiring can be reduced in a state where disconnection is prevented. A fine display device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例のアクティブマトリクス基板における
絵素1個分を示す平面図。
FIG. 1 is a plan view showing one picture element in an active matrix substrate according to an embodiment.

【図2】図1のA−A´に沿った断面図。FIG. 2 is a sectional view taken along the line AA ′ of FIG. 1;

【図3】図1のアクティブマトリクス基板を備えたアク
ティブマトリクス表示装置の平面模式図。
FIG. 3 is a schematic plan view of an active matrix display device including the active matrix substrate of FIG.

【図4】従来のアクティブマトリクス基板における絵素
1個分の平面図。
FIG. 4 is a plan view of one picture element on a conventional active matrix substrate.

【図5】図4のB−B´に沿った断面図。FIG. 5 is a sectional view taken along the line BB ′ of FIG. 4;

【図6】絵素部分の等価回路図。FIG. 6 is an equivalent circuit diagram of a picture element portion.

【符号の説明】[Explanation of symbols]

1 ゲートバス配線 2 ソースバス配線 3a、3b ゲート電極 4 絵素電極 6 付加容量電極 7a、7b、7c コンタクトホール 8 付加容量共通電極 9b、9c コンタクトホール 10a、10b、10c 金属層 11 絶縁性基板 12a、12b チャネル層 13 ゲート絶縁膜 14 第1層間絶縁膜 15 遮光膜 16b コンタクトホール 17 第2層間絶縁膜 18 第3層間絶縁膜 23 ソース電極 24 ドレイン電極 25 TFT 30 半導体層 DESCRIPTION OF SYMBOLS 1 Gate bus wiring 2 Source bus wiring 3a, 3b Gate electrode 4 Pixel electrode 6 Additional capacitance electrode 7a, 7b, 7c Contact hole 8 Additional capacitance common electrode 9b, 9c Contact hole 10a, 10b, 10c Metal layer 11 Insulating substrate 12a , 12b Channel layer 13 Gate insulating film 14 First interlayer insulating film 15 Light shielding film 16b Contact hole 17 Second interlayer insulating film 18 Third interlayer insulating film 23 Source electrode 24 Drain electrode 25 TFT 30 Semiconductor layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G02F 1/136 500──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) G02F 1/136 500

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 薄膜トランジスタ、付加容量電極及び付
加容量共通配線が形成された基板上に第1の層間絶縁膜
を介して形成された遮光膜と、 該遮光膜上に第2の層間絶縁膜を介して形成された絵素
電極とを有し、 該遮光膜が、該第1の層間絶縁膜に形成されたコンタク
トホールを介して該付加容量共通配線に電気的に接続さ
れ、かつ、該絵素電極が該第1の層間絶縁膜及び該第2
の層間絶縁膜に形成された各コンタクトホールを介して
該薄膜トランジスタに電気的に接続されている アクティ
ブマトリクス基板。
1. A thin film transistor, an additional capacitance electrode, and an
A first interlayer insulating film on the substrate on which the added capacitance common wiring is formed;
And a picture element formed on the light- shielding film via a second interlayer insulating film
And a contact formed on the first interlayer insulating film.
Electrically connected to the additional capacitance common wiring through a through hole.
And the picture element electrode is connected to the first interlayer insulating film and the second interlayer insulating film.
Through each contact hole formed in the interlayer insulating film of
An active matrix substrate electrically connected to the thin film transistor .
【請求項2】 前記遮光膜がW、Ti、Mo、Ti−W
合金からなる請求項1記載のアクティブマトリクス基
板。
2. The light-shielding film is made of W, Ti, Mo, Ti-W.
2. The active matrix substrate according to claim 1, comprising an alloy.
JP5181792A 1992-03-10 1992-03-10 Active matrix substrate Expired - Lifetime JP2800956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5181792A JP2800956B2 (en) 1992-03-10 1992-03-10 Active matrix substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5181792A JP2800956B2 (en) 1992-03-10 1992-03-10 Active matrix substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10107402A Division JP3035263B2 (en) 1998-04-17 1998-04-17 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH05257164A JPH05257164A (en) 1993-10-08
JP2800956B2 true JP2800956B2 (en) 1998-09-21

Family

ID=12897455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5181792A Expired - Lifetime JP2800956B2 (en) 1992-03-10 1992-03-10 Active matrix substrate

Country Status (1)

Country Link
JP (1) JP2800956B2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926603A (en) 1995-05-08 1997-01-28 Semiconductor Energy Lab Co Ltd Display device
JP3307181B2 (en) * 1995-07-31 2002-07-24 ソニー株式会社 Transmissive display
KR970011972A (en) * 1995-08-11 1997-03-29 쯔지 하루오 Transmission type liquid crystal display device and manufacturing method thereof
US5917563A (en) * 1995-10-16 1999-06-29 Sharp Kabushiki Kaisha Liquid crystal display device having an insulation film made of organic material between an additional capacity and a bus line
JP3647542B2 (en) 1996-02-20 2005-05-11 株式会社半導体エネルギー研究所 Liquid crystal display
KR100244450B1 (en) * 1996-08-30 2000-02-01 구본준 Substrate manufacturing method of liquid crystal display device and substrate
US6940566B1 (en) 1996-11-26 2005-09-06 Samsung Electronics Co., Ltd. Liquid crystal displays including organic passivation layer contacting a portion of the semiconductor layer between source and drain regions
JP3784491B2 (en) * 1997-03-28 2006-06-14 株式会社半導体エネルギー研究所 Active matrix display device
CN1267781C (en) * 1998-03-19 2006-08-02 精工爱普生株式会社 Liquid crystal display device and projection display device
JP2000075280A (en) * 1998-08-28 2000-03-14 Sony Corp Liquid crystal display device
US6850292B1 (en) * 1998-12-28 2005-02-01 Seiko Epson Corporation Electric-optic device, method of fabricating the same, and electronic apparatus
JP2000206562A (en) * 1999-01-08 2000-07-28 Sony Corp Liquid crystal display device
US6576924B1 (en) * 1999-02-12 2003-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having at least a pixel unit and a driver circuit unit over a same substrate
JP4860293B2 (en) * 1999-02-12 2012-01-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
EP2284605A3 (en) 1999-02-23 2017-10-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and fabrication method thereof
JP2000276078A (en) 1999-03-23 2000-10-06 Sanyo Electric Co Ltd Organic electroluminescence display device
US6750835B2 (en) 1999-12-27 2004-06-15 Semiconductor Energy Laboratory Co., Ltd. Image display device and driving method thereof
TWI301915B (en) * 2000-03-17 2008-10-11 Seiko Epson Corp
JP4092851B2 (en) * 2000-04-19 2008-05-28 セイコーエプソン株式会社 Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
JP3700697B2 (en) * 2002-02-12 2005-09-28 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
TWI261797B (en) 2002-05-21 2006-09-11 Seiko Epson Corp Electro-optical device and electronic apparatus
JP2006243753A (en) * 2006-05-19 2006-09-14 Seiko Epson Corp Substrate device, optoelectronic device, and electronic instrument
JP4967631B2 (en) * 2006-12-07 2012-07-04 三菱電機株式会社 Display device
JP2008065356A (en) * 2007-11-26 2008-03-21 Sony Corp Liquid crystal display device
JP5158131B2 (en) * 2010-05-21 2013-03-06 セイコーエプソン株式会社 Electro-optical device and projector
JP2011002855A (en) * 2010-09-22 2011-01-06 Semiconductor Energy Lab Co Ltd Liquid crystal display
JP5526187B2 (en) * 2012-05-07 2014-06-18 株式会社半導体エネルギー研究所 Display device
JP2015007806A (en) * 2014-09-12 2015-01-15 株式会社半導体エネルギー研究所 Liquid crystal display device
CN106597771B (en) * 2017-01-19 2019-07-26 厦门天马微电子有限公司 Array substrate, liquid crystal display panel and display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2622183B2 (en) * 1990-04-05 1997-06-18 シャープ株式会社 Active matrix display device

Also Published As

Publication number Publication date
JPH05257164A (en) 1993-10-08

Similar Documents

Publication Publication Date Title
JP2800956B2 (en) Active matrix substrate
JP2622183B2 (en) Active matrix display device
JP2720862B2 (en) Thin film transistor and thin film transistor array
US5159477A (en) Active matrix display device having additional capacitors connected to switching elements and additional capacitor common line
JPH1010548A (en) Active matrix substrate and its production
JP2625268B2 (en) Active matrix substrate
JP3226836B2 (en) Liquid crystal display device and manufacturing method thereof
JP2000507002A (en) Electronic device and its manufacture
JP3251401B2 (en) Semiconductor device
JPH04326329A (en) Liquid crystal display device and its manufacture
JP3423380B2 (en) Liquid crystal display
JP3035263B2 (en) Liquid crystal display
JPH04265945A (en) Active matrix substrate
JP3286843B2 (en) LCD panel
US6046063A (en) Method of manufacturing liquid crystal display
JP3504993B2 (en) Active matrix circuit
JPH0239103B2 (en)
JPH10206872A (en) Liquid crystal display device
JP4468626B2 (en) Display device substrate and display device including the same
US8059221B2 (en) Liquid crystal display and manufacturing method of the same
JPS6112271B2 (en)
JPH06242453A (en) Active matrix type liquid crystal display device
JP2947299B2 (en) Matrix display device
KR0144233B1 (en) Manufacturing method and apparatus of active matrix lcd
JPH03163530A (en) Active matrix display device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070710

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100710

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110710

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110710

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 14