JP2792354B2 - Polytetrafluoroethylene porous membrane - Google Patents

Polytetrafluoroethylene porous membrane

Info

Publication number
JP2792354B2
JP2792354B2 JP19666392A JP19666392A JP2792354B2 JP 2792354 B2 JP2792354 B2 JP 2792354B2 JP 19666392 A JP19666392 A JP 19666392A JP 19666392 A JP19666392 A JP 19666392A JP 2792354 B2 JP2792354 B2 JP 2792354B2
Authority
JP
Japan
Prior art keywords
polytetrafluoroethylene
porous membrane
film
ptfe
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19666392A
Other languages
Japanese (ja)
Other versions
JPH05202217A (en
Inventor
眞司 田丸
修 田中
浩文 西林
治 井上
勝年 山本
智男 楠見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP19666392A priority Critical patent/JP2792354B2/en
Publication of JPH05202217A publication Critical patent/JPH05202217A/en
Application granted granted Critical
Publication of JP2792354B2 publication Critical patent/JP2792354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ポリテトラフルオロエ
チレン(以下、「PTFE」という。)多孔膜およびその製
法に関し、さらに詳しくは、半導体工業などのクリーン
ルームで使用される空気及び気体中の浮遊微粒子の捕獲
に適し、空気及び気体の圧力損失の小さいエアフィルタ
ーとしての優れた新規なPTFE多孔膜およびその製法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous film of polytetrafluoroethylene (hereinafter referred to as "PTFE") and a method for producing the same, and more particularly, to a method of floating in air and gas used in a clean room such as a semiconductor industry. The present invention relates to a novel porous PTFE membrane excellent as an air filter suitable for capturing fine particles and having a small pressure loss of air and gas, and a method for producing the same.

【0002】[0002]

【従来の技術】クリーンルームで使用されるエアフィル
ターの材料として、ガラス繊維にバインダーを加えて抄
紙した濾材が多く使用されている。しかし、このような
濾材にはいくつかの欠点がある。例えば、濾材中の付着
小繊維の存在、または加工による折り曲げ時の自己発塵
の発生、あるいは自己発塵を防ぐためにバインダーを増
大させると圧力損失が増大することなどである(特開昭
63−16019号公報参照)。さらに、この濾材は、
フッ酸などのある種の化学薬品と接触するとガラス及び
バインダーの劣化により、発塵するという問題もあっ
た。
2. Description of the Related Art As a material for an air filter used in a clean room, a filter medium formed by adding a binder to glass fiber and making paper is often used. However, such filter media have several disadvantages. For example, the presence of attached fibrils in the filter medium, the occurrence of self-dusting at the time of bending due to processing, or the increase in the binder to prevent self-dusting increases the pressure loss (Japanese Patent Application Laid-Open No. 63-163). No. 16019). In addition, this filter media
There is also a problem that, when contacted with a certain chemical such as hydrofluoric acid, dust is generated due to deterioration of the glass and the binder.

【0003】これらの問題を解決するために合成繊維の
エレクトレット濾材(特開昭54−53365号公報参
照)を用いることが提案されているが、エレクトレット
の減衰の発生が示されている。
In order to solve these problems, it has been proposed to use an electret filter medium made of synthetic fiber (see Japanese Patent Application Laid-Open No. 54-53365), but it has been shown that electret attenuation occurs.

【0004】そこで、これらの欠点を防ぎ、清浄空間を
得るための手段としてPTFEの延伸多孔膜を補助手段
として用いることが提案されている(特開昭63−16
019号公報及び特開平2−284614号公報)。し
かしこの提案も、圧力損失の増大を防ぐために孔径1μ
m以上の多孔膜を使用している。この提案などで見られ
る孔径よりも小さな浮遊粒子を捕集できるとされる理由
は次の様な理論である。
Therefore, it has been proposed to use a stretched porous PTFE membrane as an auxiliary means to prevent these drawbacks and to obtain a clean space (Japanese Patent Laid-Open No. 63-16 / 1988).
019 and JP-A-2-284614). However, this proposal also requires a hole diameter of 1 μm to prevent an increase in pressure loss.
m or more porous membrane is used. The reason that it is possible to collect suspended particles smaller than the pore size found in this proposal is based on the following theory.

【0005】流体中の粒子の除去メカニズムは次の三つ
の主要メカニズムがあるとされている(ドムニク・ハン
ター・フィルターズ・リミテッド(Domnick Hunter F
ilters Limited)カタログ参照): 1)直接遮断:比較的大きな粒子はマイクロ・ファイバー
によって遮断され、あたかもふるいにかけられたように
除去されるメカニズム。 2)慣性衝突:粒子がマイクロ・ファイバーの間の曲りく
ねった通り道を通過する際、気体ほどには迅速に方向転
換できず、結局マイクロ・ファイバーに衝突し付着する
メカニズム。 3)拡散/ブラウン運動:非常に小さい粒子は分子間力や
静電気に支配され、気体中を螺旋状に回転運動する結
果、見掛けの径が大きくなり、慣性衝突と同様に、マイ
クロ・ファイバーに付着するメカニズム。 その他にエレクトレット繊維の電荷捕集のメカニズムで
除去する方法(特開昭54−53365号公報)が提案さ
れているが、特開平2−284614号公報に記載され
たデータが示すように、1μm以下の粒子を完全に除去
できるものでないことがわかる。
[0005] It is said that there are three main mechanisms for removing particles in a fluid (Domnick Hunter F. Limited).
ilters Limited) Catalog: 1) Direct blockage: A mechanism in which relatively large particles are blocked by microfibers and removed as if sieved. 2) Inertial collision: A mechanism by which particles cannot turn as quickly as gas when passing along a winding path between microfibers, and eventually strike and adhere to the microfibers. 3) Diffusion / Brownian motion: Very small particles are governed by intermolecular forces and static electricity, and rotate spirally in gas, resulting in a large apparent diameter and sticking to microfibers, similar to inertial collisions Mechanism to do. In addition, a method of removing electret fibers by a mechanism of collecting electric charge (JP-A-54-53365) has been proposed. However, as shown in the data described in JP-A-2-284614, 1 μm or less is proposed. It can be seen that particles cannot be completely removed.

【0006】フィルター濾材として用いられるPTFE
多孔膜の代表例は、特公昭56−17216号公報に開
示されている。この発明では、圧損の小さいフィルター
膜とするために延伸倍率を大きくとり、空孔率を増大さ
せる必要がある。そのために結果として孔径が大きくな
る。逆に孔径を小さくしようとすると延伸倍率が大きく
できないために圧損の大きい多孔膜となるのである。
PTFE used as a filter medium
A typical example of the porous membrane is disclosed in Japanese Patent Publication No. 56-17216. In the present invention, it is necessary to increase the draw ratio and increase the porosity in order to obtain a filter membrane having a small pressure loss. This results in a larger pore size. Conversely, if the pore size is reduced, the stretching ratio cannot be increased, resulting in a porous film having a large pressure loss.

【0007】[0007]

【発明が解決しようとする課題】本発明は、微小孔径
で、しかも圧損の小さいPTFE多孔膜を提供しようと
するものである。さらには本発明は、超微粒子の捕集性
能の向上したフィルター濾材を提供しようとするもので
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a PTFE porous membrane having a small pore size and a small pressure loss. Still another object of the present invention is to provide a filter medium having an improved collection performance of ultrafine particles.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する為、
本発明は、PTFE半焼成体を二軸方向に伸張面積倍率
で少なくとも50倍に延伸し、PTFEの融点以上の温
度で熱処理することによって、多孔膜が圧倒的にフィブ
リルからなり、即ち走査型電子顕微鏡写真の画像処理に
よるフィブリルと結節の面積比が99:1〜75:25で
あり、平均フィブリル径が0.05μm〜0.2μmであ
り、結節の最大面積が2μm2以下であり、さらに平均孔
径が0.2〜0.5μmであるPTFE多孔膜を提供す
る。
In order to solve the above-mentioned problems,
In the present invention, the porous membrane is predominantly made of fibrils by stretching the semi-fired PTFE biaxially at least 50 times in the stretch area ratio and heat-treating it at a temperature not lower than the melting point of PTFE. The area ratio of fibrils and nodules by microscopic image processing is 99: 1 to 75:25, the average fibril diameter is 0.05 μm to 0.2 μm, the maximum area of the nodules is 2 μm 2 or less, and the average A porous PTFE membrane having a pore size of 0.2 to 0.5 μm is provided.

【0009】また、本発明は、厚みが半焼成体の約20
分の1以下(半焼成体の元の厚みがたとえば100μmな
ら、延伸焼成後5μm以下となる)で、平均孔径が0.2
〜0.5μmであり、5.3cm/秒の流速で空気を透過
させたときの圧力損失が10〜100mmH2Oであるこ
とを特徴とするPTFE多孔膜を提供する。
Further, the present invention provides a semi-sintered body having a thickness of about 20%.
1 / or less (if the original thickness of the semi-sintered body is, for example, 100 μm, it becomes 5 μm or less after stretching and firing) and the average pore diameter is 0.2
A ~0.5Myuemu, provides a PTFE porous membrane pressure loss with air permeated at a flow rate of 5.3 cm / sec, characterized in that a 10~100mmH 2 O.

【0010】本発明のPTFE多孔膜は、そのままでも
使用できるが、他の低圧損多孔質材料(補強材)とラミネ
ートして補強することもできる。ラミネートしたPTF
E多孔膜は、取り扱い性が向上する。ラミネートしたP
TFE多孔膜は、プリーツ状に折り畳み、超微粒子捕集
用フィルターとして使用することができる。
Although the PTFE porous membrane of the present invention can be used as it is, it can also be reinforced by laminating it with another low-pressure-loss porous material (reinforcing material). Laminated PTF
The E-porous membrane has improved handleability. Laminated P
The TFE porous membrane can be folded in a pleated shape and used as a filter for collecting ultrafine particles.

【0011】補強材としては、不織布、織布、メッシ
ュ、その他の多孔膜が使用できる。補強材の材質として
は、オレフィン(たとえば、ポリエチレン、ポリプロピ
レンなど)、ナイロン、ポリエステル、アラミド、又は
これらを複合したもの(たとえば、芯/鞘構造の繊維か
ら成る不織布、低融点材料と高融点材料の2層不織布な
ど)、更にフッ素系多孔膜(たとえば、PFA(テトラフ
ルオロエチレン/パーフルオロアルキルビニルエーテル
共重合体)、FEP(テトラフルオロエチレン/ヘキサフ
ルオロプロピレン共重合体)、PTFEの多孔質膜など)
が例示できる。
As the reinforcing material, non-woven fabric, woven fabric, mesh, and other porous membranes can be used. As the material of the reinforcing material, olefin (for example, polyethylene, polypropylene, etc.), nylon, polyester, aramid, or a composite thereof (for example, non-woven fabric composed of core / sheath fiber, low melting point material and high melting point material) A two-layer nonwoven fabric, etc., and a fluorine-based porous membrane (eg, PFA (tetrafluoroethylene / perfluoroalkylvinyl ether copolymer), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), PTFE porous membrane, etc.)
Can be exemplified.

【0012】とりわけ、芯/鞘構造の繊維から成る不織
布、低融点材料と高融点材料の2層不織布などが好まし
い。このような補強材は、ラミネート時に収縮しない。
また、このような補強材とのラミネート膜は、HEPA
フィルターとして加工しやすく、フィルターエレメント
にする際に折込みピッチが増やせる。
In particular, a nonwoven fabric made of fibers having a core / sheath structure, a two-layer nonwoven fabric of a low-melting material and a high-melting material, and the like are preferable. Such reinforcements do not shrink during lamination.
In addition, a laminate film with such a reinforcing material is made of HEPA.
It is easy to process as a filter, and the insertion pitch can be increased when making it into a filter element.

【0013】ラミネートの態様は、補強材の片面または
両面に本発明のPTFE多孔膜をラミネートしてもよい
し、また、本発明のPTFE多孔膜を2枚の補強材でサ
ンドイッチしてもよい。
In the laminating mode, the porous PTFE membrane of the present invention may be laminated on one or both sides of the reinforcing material, or the porous PTFE membrane of the present invention may be sandwiched between two reinforcing materials.

【0014】ラミネートの方法は、既知の方法の中から
適宜選択すればよく、補強材の一部を溶融して行う熱圧
着、ポリエチレン、ポリエステル、PFAなどの粉末を
接着材として用いる熱圧着、ホットメルト樹脂を用いる
熱圧着などが好ましい。
The laminating method may be appropriately selected from known methods, such as thermocompression bonding by melting a part of the reinforcing material, thermocompression bonding using a powder of polyethylene, polyester, PFA or the like as an adhesive, hot lamination. Thermocompression bonding using a melt resin is preferred.

【0015】粒子捕集メカニズムは、前述したが、粒子
を確実に捕集する為にはフィルターの繊維に付着した粒
子の再離脱の防止や貫通粒子の遮蔽が必要である。その
為には、確実に捕集したい粒子の大きさよりも小さい孔
径のフィルター材を用いるべきである。従って、PTF
E多孔膜にあっては平均孔径の小さいものが好ましいこ
とは言うまでもない。
Although the particle collecting mechanism has been described above, in order to reliably collect the particles, it is necessary to prevent the particles adhering to the fibers of the filter from being detached again and to shield the penetrating particles. For that purpose, a filter material having a pore size smaller than the size of the particles to be surely collected should be used. Therefore, PTF
It is needless to say that a porous membrane having a small average pore diameter is preferred.

【0016】フィルター材料の孔径と空孔率が同一であ
れば圧力損失は膜厚に比例するので、膜厚は薄い方が好
ましい。
If the pore size and the porosity of the filter material are the same, the pressure loss is proportional to the film thickness.

【0017】フィルター材料の圧力損失、孔径、空孔
率、膜厚が同じであっても粒子捕集性能は異なるもので
あり、理論上は0.5μm以下の細かい繊維を用い又バ
インダーを可能なかぎり少量に抑える、すなわち繊維以
外の部分を減らすことが好ましいといわれている(化学
工学協会52年会江見準講演要旨集参照)。本発明のP
TFE多孔膜は、このような諸条件を満足するものであ
る。
Even if the filter material has the same pressure loss, pore size, porosity, and film thickness, the particle collecting performance is different. In theory, fine fibers of 0.5 μm or less can be used and a binder can be used. It is said that it is preferable to keep the amount as small as possible, that is, to reduce the portion other than the fiber (see the Abstracts of the 52nd Annual Meeting of the Society of Chemical Engineers, Emi). P of the present invention
The TFE porous membrane satisfies these conditions.

【0018】本発明を、製法を含めてより詳細に説明す
る。本発明で用いるPTFE多孔膜の延伸前の材料は、
特開昭59−152825公報で定義されたPTFE半
焼成体に準拠するものである。このPTFE半焼成体を
二軸方向に伸張面積倍率で少なくとも50倍、好ましく
は少なくとも100倍、さらに好ましくは少なくとも2
50倍延伸し焼成した延伸多孔体の構造は、ほとんど結
節のない微細な繊維からなる特有な膜構造を有する。
The present invention will be described in more detail including the production method. The material before stretching of the PTFE porous membrane used in the present invention is:
This is based on the PTFE semi-fired body defined in JP-A-59-152825. This semi-sintered PTFE is stretched at least 50 times, preferably at least 100 times, more preferably at least 2 times in the biaxial direction.
The structure of the stretched porous body stretched and fired 50 times has a unique membrane structure composed of fine fibers having almost no nodes.

【0019】しかも、そのようにして製造したPTFE
多孔膜の平均孔径はきわめて小さく、通常0.5μm〜
0.2μmであり、さらに膜の厚みも延伸前の20分の
1から100分の1程度に減少している。
Moreover, the PTFE thus produced is
The average pore size of the porous membrane is extremely small, usually from 0.5 μm
0.2 μm, and the thickness of the film is also reduced from 1/20 before stretching to about 1/100.

【0020】これらの諸要件は、半導体の微細パターン
を加工する高度な清浄空間を維持するためのエアフィル
ター材料に適している。
These requirements are suitable for an air filter material for maintaining a high clean space for processing a semiconductor fine pattern.

【0021】この様な構造のPTFE多孔膜は、従来の
製法では到底得られないものである。例えば特公昭56
−17216号公報第11頁左欄第23行以下によれ
ば、「第1図には単軸方向の伸張効果が示されている
が、二軸方向における伸張でまた全方向における伸張
で、同じような小繊維形成が前記方向に生じ、くもの巣
様の或は交さ結合された形状が生成され、それに付随し
て強さが増大される。重合体の結節と小繊維との間の空
所が数と大きさとを増大するので、多孔率もまた増大す
る。」と記載され、延伸倍率の増大は孔径を大きくする
のみであった。
A PTFE porous membrane having such a structure cannot be obtained by a conventional manufacturing method. For example, Tokiko 56
According to No. 17216, page 11, left column, line 23 et seq., "FIG. 1 shows the stretching effect in the uniaxial direction, but the stretching effect in the biaxial direction and the stretching in all directions are the same. Such fibril formation occurs in that direction, creating a web-like or cross-linked shape and concomitantly increasing the strength. Porosity also increases as voids increase in number and size. "Increasing the draw ratio only increased the pore size.

【0022】圧力損失は孔径が大きくなるほど又膜厚が
薄くなるほど低くなる。そこで孔径が小さく圧力損失が
低いエアフィルターを作製するためには薄いPTFE多
孔膜を用いれば良いことになるが、従来法(特公昭56
−17216号公報)では延伸倍率を増大させても巾も
厚みもほとんど減少しない。けれども、極端に延伸倍率
を増大させると孔径は大きくなるので、結局、延伸前の
フィルム厚みを薄くし、低倍率で延伸せざるを得ない。
しかし工業的に利用できるフィルムの延伸前厚みはせい
ぜい30μm〜50μmまでである。品質及び歩留りを考
えると、100μm前後の厚みの延伸前フィルムが通常
である。
The pressure loss decreases as the pore diameter increases and as the film thickness decreases. In order to manufacture an air filter having a small pore size and a low pressure loss, a thin PTFE porous membrane may be used.
In JP-A-17216), the width and the thickness hardly decrease even when the stretching ratio is increased. However, if the stretching ratio is extremely increased, the pore size becomes large, and as a result, the film thickness before stretching must be reduced, and the film must be stretched at a low ratio.
However, the thickness of an industrially usable film before stretching is at most 30 μm to 50 μm. In consideration of quality and yield, a film before stretching having a thickness of about 100 μm is usually used.

【0023】本発明の一つの特徴は、工業的に生産性に
支障のない厚み100μm程度の延伸前フィルムを用い
て目的を達成することができることである。
One feature of the present invention is that the object can be achieved using a film before stretching having a thickness of about 100 μm which does not hinder industrial productivity.

【0024】本発明における各パラメータの一般的は範
囲および好ましい範囲をまとめて示す。 一般的な範囲 好ましい範囲 焼成度: 0.30〜0.80 0.35〜0.70 延伸倍率: MD 4 〜 30倍 MD 5 〜 25倍 TD 10〜100倍 TD 15 〜 70倍 合計 50〜1000倍 合計 75〜850倍 延伸倍率の合計が250倍以上の時には、焼成度が0.
35〜0.48であることが好ましい。 平均孔径: 0.2〜0.5μm 0.2〜0.4μm 膜厚: 0.5〜15μm 0.5〜10μm フィブリル/結節面積比:99/1〜75/25 99/1〜85/15 平均フィブリル径: 0.05〜0.2μm 0.05〜0.2μm 結節の最大面積: 2μm2以下 0.05〜1μm2 圧力損失: 10〜100mmH2O 10〜70mmH2
The general ranges and preferred ranges of each parameter in the present invention are shown together. General range Preferred range Firing degree: 0.30 to 0.80 0.35 to 0.70 Stretching ratio: MD 4 to 30 times MD 5 to 25 times TD 10 to 100 times TD 15 to 70 times Total 50 to 1000 75 times 850 times When the total stretching ratio is 250 times or more, the degree of firing is 0.1 times.
It is preferably from 35 to 0.48. Average pore size: 0.2-0.5 μm 0.2-0.4 μm Film thickness: 0.5-15 μm 0.5-10 μm Fibril / knot area ratio: 99 / 1-75 / 25 99 / 1-85 / 15 Average fibril diameter: 0.05-0.2 μm 0.05-0.2 μm Maximum area of nodule: 2 μm 2 or less 0.05-1 μm 2 Pressure loss: 10-100 mmH 2 O 10-70 mmH 2 O

【0025】本発明のPTFE多孔膜は、エアフィルタ
ーとして使用できるだけでなく、例えば本発明のPTF
E多孔膜を隔壁として液体を気化させた場合、液体中の
微粒子を除去した清澄なガス体を得ることができる。そ
のような具体的な用途の一例はクリーンな加湿器の隔膜
である。
The porous PTFE membrane of the present invention can be used not only as an air filter but also for example, of the present invention.
When the liquid is vaporized using the E porous membrane as a partition, a clear gas body from which fine particles in the liquid have been removed can be obtained. One example of such a specific application is a clean humidifier diaphragm.

【0026】さらに本発明によれば、非常に薄いPTF
E多孔膜を工業的に生産することができ、本発明のPT
FE多孔膜は撥水性を必要とする用途や通気性を必要と
する用途に使用できる。
Further according to the present invention, a very thin PTF
E porous membrane can be industrially produced, and the PT
The FE porous membrane can be used for applications requiring water repellency and applications requiring air permeability.

【0027】[0027]

【実施例】実施例1 PTFEファインパウダー(ダイキン工業株式会社製「ポ
リフロン・ファインパウダーF−104」)から製造した
厚み100μmの未延伸未焼成フィルムを339℃のオ
ーブン中で50秒間加熱処理して、焼成度0.50の連
続した半焼成フィルムを得た。
Example 1 An unstretched unfired film having a thickness of 100 μm manufactured from PTFE fine powder (“Polyflon Fine Powder F-104” manufactured by Daikin Industries, Ltd.) was heated in an oven at 339 ° C. for 50 seconds. A continuous semi-baked film having a baking degree of 0.50 was obtained.

【0028】次にこの半焼成フィルムを約9cm角に裁断
し、同時及び逐次に二軸方向に延伸できる装置(株式会
社岩本製作所製)を用いて裁断フィルムの四方を装置の
クリップではさみ、雰囲気温度320℃で15分間加熱
した後、フィルムの長手方向(MD方向と呼ぶ)に100
%/秒の延伸速度で5倍に延伸した。次にフィルムの幅
方向(TD方向と呼ぶ)にMD方向の長さを固定しつつ連
続的に15倍に延伸し、合計で75倍(面積倍率)に延伸
された多孔膜を得た。
Next, this semi-baked film is cut into about 9 cm squares, and the four sides of the cut film are sandwiched between the clips of the apparatus using an apparatus (manufactured by Iwamoto Seisakusho) capable of simultaneously and sequentially stretching in two directions. After heating at a temperature of 320 ° C. for 15 minutes, 100
The film was stretched 5 times at a stretching speed of% / sec. Next, the film was continuously stretched 15 times while fixing the length in the MD direction in the width direction (referred to as the TD direction) of the film to obtain a porous film stretched 75 times (area ratio) in total.

【0029】この多孔膜を収縮しない様に枠で固定し、
雰囲気温度350℃のオーブンに3分間入れてヒートセ
ットを行った。
This porous membrane is fixed by a frame so as not to shrink,
The heat set was performed by placing it in an oven at an ambient temperature of 350 ° C. for 3 minutes.

【0030】実施例2 実施例1と同じ焼成度0.5の半焼成フィルムを用い、
実施例1と同様にしてMD方向に8倍、TD方向に25
倍延伸し、合計で200倍延伸された多孔膜を得た。こ
の多孔膜を実施例1と同様に、350℃で3分間ヒート
セットした。
Example 2 A semi-baked film having the same degree of baking of 0.5 as in Example 1 was used.
8 times in the MD direction and 25 times in the TD direction as in the first embodiment.
The film was stretched twice and a porous film stretched 200 times in total was obtained. This porous membrane was heat-set at 350 ° C. for 3 minutes as in Example 1.

【0031】実施例3 PTFEファインパウダー(ダイキン工業株式会社製
「ポリフロン・ファインパウダーF104」)からペー
スト押出、圧延ロール、助剤乾燥の通常の加工法によっ
て製造した、厚み100μmの未延伸・未焼成フィルム
を338℃のオーブン中で45秒間加熱処理して焼成度
0.40の連続した半焼成フィルムを得た。この工程
で、熱処理前のフィルムは、幅215mm、比重1.5
5g/cm3であり、熱処理後は、幅200mm、比重
2.25g/cm3に変化し、厚みはほとんど変化しな
かった。
Example 3 Unstretched and unsintered with a thickness of 100 μm, which was produced from PTFE fine powder ("Polyflon Fine Powder F104" manufactured by Daikin Industries, Ltd.) by a usual processing method of paste extrusion, rolling rolls, and auxiliary agent drying. The film was heat-treated in an oven at 338 ° C. for 45 seconds to obtain a continuous semi-baked film having a baking degree of 0.40. In this step, the film before heat treatment has a width of 215 mm and a specific gravity of 1.5.
A 5 g / cm 3, after the heat treatment, the width 200 mm, changing the specific gravity of 2.25 g / cm 3, the thickness hardly changed.

【0032】次に、この半焼成フィルムを参考例の装置
を用いて、まず長手方向に20倍の延伸を行った。 この長手方向の延伸条件は次の通りであった。 ロール3、4: 巻出速度0.5m/分、室温、フィル
ム幅200mm ロール6: 周速度4m/分、温度300℃ ロール7: 周速度10m/分、温度300℃ ロール10: 周速度10m/分、温度25℃ ロール2: 巻取速度10m/分、室温、フィルム幅1
45mm ロール6とロール7の外径間距離:5mm この結果、この長手方向の延伸面積倍率は計算によって
14.5倍となる。
Next, this semi-baked film was first stretched 20 times in the longitudinal direction using the apparatus of the reference example. The stretching conditions in the longitudinal direction were as follows. Rolls 3 and 4: unwinding speed 0.5 m / min, room temperature, film width 200 mm Roll 6: peripheral speed 4 m / min, temperature 300 ° C. Roll 7: peripheral speed 10 m / min, temperature 300 ° C. Roll 10: peripheral speed 10 m / Min, temperature 25 ° C Roll 2: winding speed 10m / min, room temperature, film width 1
45 mm Distance between the outer diameters of the rolls 6 and 7: 5 mm As a result, the stretching area magnification in the longitudinal direction becomes 14.5 times by calculation.

【0033】続いて、この長手方向延伸フィルムの両端
を連続的にクリップではさむことのできる図25に示す
装置により幅方向に約34倍の延伸および引き続きヒー
トセットを行った。この幅方向の延伸およびヒートセッ
ト条件は次の通りであった。 ・フィルムの走行速度 3m/分 ・予熱オーブンの温度 305℃ ・幅方向延伸オーブンの温度 320℃ ・熱固定オーブンの温度 350℃ この結果、長手方向と幅方向の延伸の総面積倍率は計算
によってほぼ490倍になる。
Subsequently, the film was stretched about 34 times in the width direction and subsequently heat-set by an apparatus shown in FIG. 25 which can continuously clip both ends of the longitudinally stretched film. The stretching and heat setting conditions in the width direction were as follows.・ Film running speed 3m / min ・ Preheating oven temperature 305 ℃ ・ Width stretching oven temperature 320 ℃ ・ Heat setting oven temperature 350 ℃ As a result, the total area magnification of stretching in the longitudinal direction and width direction is almost calculated. 490 times.

【0034】実施例4 実施例3の幅方向延伸フィルムの両面に図25のラミネ
ート装置を用いて不織布をラミネートした。このラミネ
ート条件は次の通りであった。 ・上側不織布 エルベスT1003WDO(ユニチカ株
式会社製品) ・下側不織布 メルフィットBT030E(ユニセル株
式会社製品) ・加熱ロールの温度 150℃ この不織布をラミネートした膜の圧力損失を測定したと
ころ平均25mmH2Oであった。(この測定は両端を
均等に裁断して幅800mmとしたものを幅方向に4等
分した、4ケ所の平均値であり、最大27mmH2O、
最小23mmH2Oであった。)
Example 4 A nonwoven fabric was laminated on both sides of the stretched film in Example 3 using the laminating apparatus shown in FIG. The lamination conditions were as follows. - upper nonwoven ELEVES T1003WDO (Unitika Ltd. products) and lower side nonwoven Mel fit BT030E (UniCel® Ltd. products) Temperature 0.99 ° C. of the heating roll was measured the pressure loss of the film laminated with the nonwoven fabric mean 25mmH 2 O met Was. (This measurement is an average value of four places obtained by equally cutting the both ends to obtain a width of 800 mm and dividing it into four equal parts in the width direction. The maximum value is 27 mmH 2 O,
Min 23mmH was 2 O. )

【0035】参考例 実施例1と同じ焼成度0.5の半焼成フィルムを用い、
図1に示す装置により延伸した。すなわち、フィルム巻
出ロール1から半焼成フィルムをロール3,4,5を介し
て、ロール6,7に送り、ここでMD方向へ6倍に延伸
した。延伸されたフィルムは、ロール8,9、ヒートセ
ットロール10、冷却ロール11およびロール12を介
して巻取ロール2に巻取った。
Reference Example A semi-baked film having the same degree of baking of 0.5 as used in Example 1 was used.
The film was stretched by the apparatus shown in FIG. That is, the semi-baked film was sent from the film unwinding roll 1 to the rolls 6 and 7 via the rolls 3, 4, and 5, and was stretched 6 times in the MD direction. The stretched film was wound around a winding roll 2 via rolls 8 and 9, a heat set roll 10, a cooling roll 11 and a roll 12.

【0036】この時の延伸条件は次の通りであった。 ロール6: ロール表面温度300℃、周速度1m/分 ロール7: ロール表面温度300℃、周速度6m/分 ロール6とロール7の外径間距離: 5mm ロール10: ロール表面温度300℃。周速度はロー
ル7に同調
The stretching conditions at this time were as follows. Roll 6: Roll surface temperature 300 ° C., peripheral speed 1 m / min Roll 7: Roll surface temperature 300 ° C., peripheral speed 6 m / min Distance between the outer diameters of the roll 6 and the roll 7: 5 mm Roll 10: Roll surface temperature 300 ° C. Peripheral speed tuned to roll 7

【0037】次に、前記延伸フィルムを長さ1m、幅1
5cmに裁断し、室温で幅を固定せずにTD方向に4倍に
延伸し、実施例1と同様に350℃3分間ヒートセット
を行った。なお、この延伸フィルムには、本発明でいう
結節は認められなかった。
Next, the stretched film is 1 m long and 1 width wide.
It was cut to 5 cm, stretched 4 times in the TD direction at room temperature without fixing the width, and heat-set at 350 ° C. for 3 minutes in the same manner as in Example 1. The stretched film did not have the nodules referred to in the present invention.

【0038】実施例1、2及び3、参考例、および比較
例として市販の0.1μm多孔膜2種に付いて、平均孔
径、膜厚、フィブリル/結節面積比、平均フィブリル
径、結節の最大面積及び圧力損失を測定した。測定方法
は後記の通りである。結果を表1に示す。
Examples 1, 2 and 3, a reference example, and two kinds of commercially available 0.1 μm porous membranes as comparative examples were prepared. The average pore diameter, the film thickness, the fibril / nodule area ratio, the average fibril diameter, and the maximum nodule were obtained. The area and pressure drop were measured. The measuring method is as described below. Table 1 shows the results.

【0039】[0039]

【表1】 注: 市販品A:ミリポア社製フロロガートTPカートリ
ッジ0.1μmに使用の多孔膜。 市販品B:アドバンテック東洋社製T300A293−
D PTFEメンブレンフィルター 実施例3は、延伸膜の両端を均等に裁断して幅800m
mとしたのち、さらに幅方向に4等分し、これら4ケ所
を測定した平均値である。
[Table 1] Note: Commercial product A: A porous membrane used for 0.1 μm Fluorogart TP cartridge manufactured by Millipore. Commercial product B: Advantech Toyo T300A293-
D PTFE membrane filter In Example 3, the both ends of the stretched film were equally cut and the width was 800 m.
The average value was obtained by measuring the four points after dividing the width into four equal parts in the width direction.

【0040】表1の結果より、本発明のPTFE多孔膜
の平均孔径は市販品A及び参考例の平均孔径とほぼ同じ
であるが、圧力損失は非常に小さいこと、逆に、本発明
の実施例1、2のPTFE多孔膜の圧力損失は市販品B
の圧力損失と同程度であるが、市販品Bの平均孔径はか
なり大きいことが分かる。さらに、実施例3の様に面積
倍率を500倍近く延伸することにより、平均孔径はほ
とんど変わらなくても、圧力損失をさらに低くすること
ができることが分かる。
From the results shown in Table 1, the average pore size of the PTFE porous membrane of the present invention is almost the same as that of the commercial product A and the reference example, but the pressure loss is very small. The pressure loss of the porous PTFE membranes of Examples 1 and 2
It can be seen that the average pore size of the commercial product B is considerably large, although the pressure loss is almost the same as that of the commercial product B. Further, it can be seen that the pressure loss can be further reduced even when the average pore diameter is hardly changed by stretching the area magnification to nearly 500 times as in Example 3.

【0041】フィブリル/結節面積比からは、市販品A
よりも実施例のものの方が大きい。平均フィブリル径
は、参考例のものより実施例のものの方が細い。また、
最大結節面積は、本発明のものの方が市販品Aよりかな
り小さい。
From the fibril / node area ratio, the commercial product A
The example is larger than the example. The average fibril diameter is smaller in the example than in the reference example. Also,
The maximum nodule area of the present invention is considerably smaller than that of the commercial product A.

【0042】本明細書に記載した各特性の測定方法を説
明する。平均孔径 ASTM F−316−86の記載に準じて測定される
ミーンフローポアサイズ(MFP)を平均孔径とした。実
際の測定は、コールター・ポロメーター(Coulter Por
ometer)[コールター・エレクトロニクス(Coulter Ele
ctronics)社(英国)製]で測定を行った。
A method for measuring each characteristic described in this specification will be described. Mean flow pore size measured according to the description of the average pore size of ASTM F-316-86 with (MFP) was defined as the average pore diameter. The actual measurement was made using a Coulter Porometer.
ometer) [Coulter Ele
ctronics) (UK)].

【0043】膜厚 株式会社ミツトヨ製1D−110MH型膜厚計を使用
し、多孔膜を5枚重ねて全体の膜厚を測定し、その膜厚
を5で割り、得られた値を1枚の膜の膜厚とした。
[0043] Using the film thickness Mitutoyo Corporation Ltd. 1D-110MH type film thickness meter, the thickness of the entire measured repeatedly five porous membrane dividing the thickness at 5, one obtained value Film thickness.

【0044】圧力損失 多孔膜を直径47mmの円形に切り出し、透過有効面積1
2.6cm2のフィルターホルダーにセットし、これの入
口側を0.4kg/cm2に加圧し、出口側から出る空気の
流量を上島製作所製流量計で調節し、多孔膜透過流速を
5.3cm/秒にに合わせた。その時の圧力損失をマノメ
ーターで測定した。
The pressure loss porous membrane was cut into a circle having a diameter of 47 mm, and the effective transmission area was 1
The filter was set in a 2.6 cm 2 filter holder, the inlet side of the filter was pressurized to 0.4 kg / cm 2 , the flow rate of the air flowing out of the outlet side was adjusted by a flow meter manufactured by Ueshima Seisakusho, and the permeation rate of the porous membrane was adjusted to 5. Adjusted to 3 cm / sec. The pressure loss at that time was measured with a manometer.

【0045】焼成度 本発明のPTFE半焼成体の焼成度は次の様にして決定
される。まず、PTFE未焼成体から3.0±0.1mg
の試料を秤量して切取り、この試料を用いてまず結晶融
解曲線を求める。同様にPTFE半焼成体から3.0±
0.1mgの試料を秤量して切取り、この試料を用いて結
晶融解曲線を求める。
The firing of the PTFE semi-fired body of the firing of the present invention is determined in the following manner. First, 3.0 ± 0.1 mg from the unfired PTFE
Is weighed and cut out, and a crystal melting curve is first determined using this sample. Similarly, from the semi-fired PTFE, 3.0 ±
A 0.1 mg sample is weighed and cut out, and a crystal melting curve is obtained using this sample.

【0046】結晶融解曲線は、示差走査熱量計(以下、
「DSC」という。例えば島津製作所社製DSC−50
型)を用いて記録する。まずPTFE未焼成体の試料
を、DSCのアルミニウム製パンに仕込み、未焼成体の
融解熱および焼成体の融解熱を次の手順で測定する。 (1) 試料を50℃/分の加熱速度で250℃に加熱
し、次いで10℃/分の加熱速度で250℃から380
℃まで加熱する。この加熱工程において記録された結晶
融解曲線の1例を図2の曲線Aとして示す。この工程に
おいて現われる吸熱カーブのピーク位置を「PTFE未
焼成体の融点」または「PTFEファインパウダーの融
点」と定義する。 (2) 380℃まで加熱した直後、試料を10℃/分の
冷却速度で250℃に冷却する。 (3) 試料を再び10℃/分の加熱速度で380℃に加
熱する。 加熱工程(3)において記録される結晶融解曲線の1例を
図2の曲線Bとして示す。加熱工程(3)において現われ
る吸熱カーブのピーク位置を「PTFE焼成体の融点」と
定義する。
The crystal melting curve was measured by a differential scanning calorimeter (hereinafter referred to as
It is called "DSC". For example, DSC-50 manufactured by Shimadzu Corporation
(Type). First, a sample of the unfired PTFE is charged into a DSC aluminum pan, and the heat of fusion of the unfired body and the heat of fusion of the fired body are measured in the following procedure. (1) The sample is heated to 250 ° C. at a heating rate of 50 ° C./min and then from 250 ° C. to 380 at a heating rate of 10 ° C./min.
Heat to ° C. One example of the crystal melting curve recorded in this heating step is shown as curve A in FIG. The peak position of the endothermic curve appearing in this step is defined as “the melting point of the unfired PTFE” or “the melting point of the PTFE fine powder”. (2) Immediately after heating to 380 ° C, the sample is cooled to 250 ° C at a cooling rate of 10 ° C / min. (3) The sample is heated again to 380 ° C. at a heating rate of 10 ° C./min. One example of the crystal melting curve recorded in the heating step (3) is shown as curve B in FIG. The peak position of the endothermic curve appearing in the heating step (3) is defined as "the melting point of the fired PTFE".

【0047】続いてPTFE半焼成体について結晶融解
曲線を工程(1)に従って記録する。この場合の曲線の1
例を図3に示す。PTFE未焼成体、焼成体、半焼成体
の融解熱は吸熱カーブとベースラインとの間の面積に比
例し、島津製作所社製DSC−50型では解析温度を設
定すれば自動的に計算される。
Subsequently, the crystal melting curve of the semi-baked PTFE is recorded according to the step (1). Curve 1 in this case
An example is shown in FIG. The heat of fusion of the unfired, fired, and semi-fired PTFE bodies is proportional to the area between the endothermic curve and the baseline, and is automatically calculated by setting the analysis temperature for DSC-50, manufactured by Shimadzu Corporation. .

【0048】そこで焼成度は次の式によって計算され
る。 焼成度=(ΔH1−ΔH3)/(ΔH1−ΔH2) ここで、ΔH1はPTFE未焼成体の融解熱、ΔH2はP
TFE焼成体の融解熱、ΔH3はPTFE半焼成体の融
解熱である。PTFE半焼成体に関しては、特開昭59
−152825号公報に詳細な説明がある。
Therefore, the degree of firing is calculated by the following equation. Firing degree = (ΔH 1 −ΔH 3 ) / (ΔH 1 −ΔH 2 ) where ΔH 1 is the heat of fusion of the unfired PTFE and ΔH 2 is P
The heat of fusion of the fired TFE, ΔH 3, is the heat of fusion of the semi-fired PTFE. Japanese Patent Application Laid-Open No.
A detailed description is given in -152825.

【0049】画像解析 フィブリルと結節の面積比、平均フィブリル径、最大の
結節面積は次に示す方法で測定した。多孔膜表面の写真
を走査型電子顕微鏡(日立S−4000型蒸着は日立E
1030型)でとる(SEM写真。倍率1000倍〜50
00倍)。この写真を画像処理装置(本体名:日本アビオ
ニクス株式会社TVイメージプロセッサTVIP−41
00II、制御ソフト名:ラトックシステムエンジニアリ
ング株式会社TVイメージプロセッサイメージコマンド
4198)に取り込み、結節とフィブリルに分離し、結
節のみからなる像と繊維のみからなる像を得る。結節の
みからなる像を演算処理することで最大の結節面積を求
め、フィブリルのみからなる像を演算処理しフィブリル
の平均径を求めた(総面積を総周長の1/2で割る)。フ
ィブリルと結節の面積比は、フィブリル像の面積の総和
と結節像の面積の総和の比から求めた。
Image analysis The area ratio between fibrils and nodules, average fibril diameter, and maximum nodule area were measured by the following methods. A photograph of the surface of the porous film is taken with a scanning electron microscope (Hitachi S-4000 type is Hitachi E
1030 type) (SEM photograph. Magnification 1000 times to 50 times)
00 times). This photograph is processed by an image processing device (main unit name: Nippon Avionics Co., Ltd.
00II, control software name: Ratok System Engineering Co., Ltd. TV image processor Image command 4198), separates into nodules and fibrils, and obtains an image consisting only of nodules and an image consisting only of fibers. The maximum nodule area was determined by processing the image consisting of nodules only, and the average diameter of fibrils was obtained by processing the image consisting only of fibrils (the total area was divided by 1/2 of the total circumference). The area ratio between fibrils and nodules was determined from the ratio of the sum of the areas of the fibril images to the area of the nodules.

【0050】図4及び図5は、実施例1及び2で製造し
たPTFE多孔膜の繊維構造のSEM写真をそれぞれ示
す。図6及び図7は、図4及び図5をそれぞれ画像処理
した図を示す。図8及び図9は、図6及び図7それぞれ
から分離したフィブリルの図である。図10及び図11
は、図6及び図7それぞれから分離した結節の図であ
る。
FIGS. 4 and 5 show SEM photographs of the fiber structure of the porous PTFE membranes produced in Examples 1 and 2, respectively. FIG. 6 and FIG. 7 are views showing image processing of FIG. 4 and FIG. 5, respectively. 8 and 9 are views of the fibrils separated from FIGS. 6 and 7, respectively. 10 and 11
FIG. 8 is a view of a nodule separated from each of FIGS. 6 and 7.

【0051】図12及び図13は、市販品A及びBの多
孔膜の繊維構造のSEM写真をそれぞれ示す。図14及
び図15は、図12及び図13をそれぞれ画像処理した
図から分離したフィブリルの図である。図16及び図1
7は、図12及び図13をそれぞれ画像処理した図から
分離した結節の図である。
FIGS. 12 and 13 show SEM photographs of the fiber structures of the porous membranes of the commercial products A and B, respectively. FIGS. 14 and 15 are diagrams of fibrils separated from the image-processed diagrams of FIGS. 12 and 13, respectively. FIG. 16 and FIG.
FIG. 7 is a diagram of a nodule separated from the image obtained by processing each of FIGS. 12 and 13.

【0052】結節の定義 結節は、次のいずれかを満足するものをいう。 (1)複数のフィブリルがつながっているかたまり(図1
8:点で埋められた部分。) (2)つながっているかたまりがフィブリル径より太い
(図21及び図22:斜線部) (3)一次粒子及び一次粒子がかたまっていて、そこから
フィブリルが放射線状に伸びている(図19、図20及
び図23:斜線部) なお、図24は、結節とは見なさない例である。すなわ
ち、フィブリルが枝分かれしているが、フィブリルと分
岐部分の径が同じである場合、分岐分岐は結節とは見な
さない。
Definition of a nodule A nodule is one that satisfies any of the following. (1) Multiple fibrils are connected together (Fig. 1
8: Part filled with dots. (2) Connected lump is thicker than fibril diameter
(FIG. 21 and FIG. 22: shaded portion) (3) Primary particles and primary particles are gathered, and fibrils extend radially from there (FIGS. 19, 20, and 23: shaded portion). Is an example that is not considered a nodule. That is, if the fibrils are branched, but the fibrils and the bifurcation have the same diameter, the bifurcation is not considered a nodule.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 参考例で使用した延伸装置の模式図。FIG. 1 is a schematic view of a stretching apparatus used in a reference example.

【図2】 焼成度を測定する場合にDSCにより測定さ
れた未焼成PTFE及び焼成PTFEの結晶融解曲線の
一例を示す図。
FIG. 2 is a view showing an example of a crystal melting curve of unfired PTFE and fired PTFE measured by DSC when measuring the degree of firing.

【図3】 焼成度を測定する場合にDSCによる測定さ
れた半焼成PTFEの結晶融解曲線の一例を示す図。
FIG. 3 is a view showing an example of a crystal melting curve of semi-baked PTFE measured by DSC when measuring a degree of firing.

【図4】 実施例1で製造したPTFE多孔膜の繊維形
状のSEM写真。
FIG. 4 is an SEM photograph of a fiber shape of the PTFE porous membrane produced in Example 1.

【図5】 実施例2で製造したPTFE多孔膜の繊維形
状のSEM写真。
FIG. 5 is an SEM photograph of a fiber shape of the PTFE porous membrane produced in Example 2.

【図6】 図4を画像処理した繊維形状を示す写真。6 is a photograph showing a fiber shape obtained by performing image processing on FIG.

【図7】 図5を画像処理した繊維形状を示す写真。FIG. 7 is a photograph showing a fiber shape obtained by performing image processing on FIG. 5;

【図8】 図6から分離した繊維の写真。FIG. 8 is a photograph of the fiber separated from FIG.

【図9】 図7から分離した繊維の写真。FIG. 9 is a photograph of the fiber separated from FIG.

【図10】 図6から分離した結節粒子の写真。FIG. 10 is a photograph of a nodule particle separated from FIG.

【図11】 図7から分離した結節粒子の写真。FIG. 11 is a photograph of a nodule particle separated from FIG.

【図12】 市販品Aの多孔膜の繊維形状のSEM写
真。
FIG. 12 is an SEM photograph of a fiber shape of a porous membrane of a commercial product A.

【図13】 市販品Bの多孔膜の繊維形状のSEM写
真。
FIG. 13 is an SEM photograph of a fiber shape of a porous membrane of a commercial product B.

【図14】 図12を画像処理した図から分離した繊維
形状の写真。
FIG. 14 is a photograph of a fiber shape separated from the image obtained by processing the image of FIG.

【図15】 図13を画像処理した図から分離した繊維
形状の写真。
FIG. 15 is a photograph of a fiber shape separated from the image obtained by image-processing FIG.

【図16】 図12を画像処理した図から分離した結節
粒子の写真。
FIG. 16 is a photograph of a nodule particle separated from the image obtained by image-processing FIG.

【図17】 図13を画像処理した図から分離した結節
粒子の写真。
FIG. 17 is a photograph of a nodule particle separated from the image obtained by processing the image of FIG.

【図18】 フィブリル−結節構造の一例の模式図。FIG. 18 is a schematic view of an example of a fibril-knot structure.

【図19】 フィブリル−結節構造の一例の模式図。FIG. 19 is a schematic view of an example of a fibril-knot structure.

【図20】 フィブリル−結節構造の一例の模式図。FIG. 20 is a schematic view of an example of a fibril-knot structure.

【図21】 フィブリル−結節構造の一例の模式図。FIG. 21 is a schematic view of an example of a fibril-knot structure.

【図22】 フィブリル−結節構造の一例の模式図。FIG. 22 is a schematic view of an example of a fibril-knot structure.

【図23】 フィブリル−結節構造の一例の模式図。FIG. 23 is a schematic view of an example of a fibril-knot structure.

【図24】 フィブリル−結節構造の一例の模式図。FIG. 24 is a schematic view of an example of a fibril-knot structure.

【図25】 実施例3および4で使用した延伸装置およ
びラミネート装置の模式図。
FIG. 25 is a schematic view of a stretching device and a laminating device used in Examples 3 and 4.

【符号の説明】 1:フィルム巻出ロール、2:巻取ロール、3,4,5,6,
7,8,9:ロール、10:ヒートセットロール、11:冷
却ロール、12:ロール、13:フィルム巻出ドラム、
14:巻出制御機構、15:予熱オーブン、16:幅方
向延伸オーブン、17:熱固定オーブン、18,19:
ラミネートロール、19:加熱ロール、20:巻取制御
機構、21:フィルム幅方向延伸フィルム巻取ドラム、
22,23:不織布取付ドラム、
[Explanation of Signs] 1: Film unwinding roll, 2: Winding roll, 3, 4, 5, 6,
7, 8, 9: roll, 10: heat set roll, 11: cooling roll, 12: roll, 13: film unwinding drum,
14: unwinding control mechanism, 15: preheating oven, 16: width stretching oven, 17: heat fixing oven, 18, 19:
Laminating roll, 19: heating roll, 20: winding control mechanism, 21: film width direction stretched film winding drum,
22, 23: Non-woven fabric mounting drum

フロントページの続き (51)Int.Cl.6 識別記号 FI B29K 105:04 B29L 7:00 C08L 27:18 (72)発明者 井上 治 大阪府摂津市西一津屋1番1号 ダイキ ン工業株式会社淀川製作所内 (72)発明者 山本 勝年 大阪府摂津市西一津屋1番1号 ダイキ ン工業株式会社淀川製作所内 (72)発明者 楠見 智男 大阪府摂津市西一津屋1番1号 ダイキ ン工業株式会社淀川製作所内 (56)参考文献 特開 昭59−152825(JP,A) 特開 平2−6832(JP,A) 特開 平3−221541(JP,A) (58)調査した分野(Int.Cl.6,DB名) C08J 9/00 - 9/42Continued on the front page (51) Int.Cl. 6 Identification code FI B29K 105: 04 B29L 7:00 C08L 27:18 (72) Inventor Osamu Inoue 1-1, Nishiichitsuya, Settsu-shi, Osaka Daikin Industry Co., Ltd. Yodogawa Inside the factory (72) Inventor Katsunori Yamamoto 1-1, Nishiichitsuya, Settsu-shi, Osaka Daikin Industries, Ltd. Inside Yodogawa Factory (72) Inventor Tomoo Kusumi 1-1, Nishiichitsuya, Settsu-shi, Osaka Daikin Industries, Ltd. (56) References JP-A-59-152825 (JP, A) JP-A-2-6832 (JP, A) JP-A-3-221541 (JP, A) (58) Fields studied (Int. Cl 6, DB name) C08J 9/00 -. 9/42

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリテトラフルオロエチレン半焼成体を
延伸したのちこれをポリテトラフルオロエチレン焼成体
の融点以上の温度でヒートセットしてなるポリテトラフ
ルオロエチレン多孔膜であって、走査型電子顕微鏡写真
の画像処理によるフィブリルと結節の面積比が99:1
〜75:25であり、平均フィブリル径が0.05μm〜
0.2μmであり、結節の最大面積が2μm2以下であ
り、かつ平均孔径が0.2μm〜0.5μmであることを
特徴とするポリテトラフルオロエチレン多孔膜。
1. A polytetrafluoroethylene porous film obtained by stretching a semi-fired polytetrafluoroethylene body and then heat-setting it at a temperature equal to or higher than the melting point of the fired polytetrafluoroethylene body. Image ratio of fibrils to nodules is 99: 1
~ 75: 25, average fibril diameter is 0.05 μm ~
A polytetrafluoroethylene porous membrane having a thickness of 0.2 μm, a maximum nodule area of 2 μm 2 or less, and an average pore diameter of 0.2 μm to 0.5 μm.
【請求項2】 平均孔径が0.2μm〜0.5μmであ
り、かつ5.3cm/秒の流速で空気を透過させた時の圧
力損失が10mmH2O〜100mmH2Oであることを特徴
とするポリテトラフルオロエチレン多孔膜。
And wherein the wherein the mean pore diameter of 0.2Myuemu~0.5Myuemu, and pressure loss with air permeated at a flow rate of 5.3 cm / sec is 10mmH 2 O~100mmH 2 O Polytetrafluoroethylene porous membrane.
【請求項3】 ポリテトラフルオロエチレン半焼成体を
二軸方向に少なくとも50倍の伸張面積倍率で延伸し、
ポリテトラフルオロエチレン焼成体の融点以上でヒート
セットされたことを特徴とするポリテトラフルオロエチ
レン多孔膜。
3. A polytetrafluoroethylene semi-baked article is stretched in a biaxial direction at an extension area magnification of at least 50 times,
A polytetrafluoroethylene porous membrane which is heat-set at a temperature not lower than the melting point of the polytetrafluoroethylene fired body.
【請求項4】 オレフィン系多孔質材料又はフッ素系多
孔質材料の上に、接着剤を介しもしくは介さずにラミネ
ートされた請求項1〜3のいずれかに記載のポリテトラ
フルオロエチレン多孔膜。
4. The polytetrafluoroethylene porous membrane according to claim 1, which is laminated on an olefin porous material or a fluorine porous material with or without an adhesive.
【請求項5】 ポリテトラフルオロエチレン半焼成体を
二軸方向に少なくとも50倍の伸張面積倍率で延伸し、
ポリテトラフルオロエチレン焼成体の融点以上でヒート
セットすることを特徴とする請求項1〜3のいずれかに
記載のポリテトラフルオロエチレン多孔膜の製法。
5. A polytetrafluoroethylene semi-fired body is stretched in a biaxial direction at an extension area ratio of at least 50 times,
The method for producing a polytetrafluoroethylene porous membrane according to any one of claims 1 to 3, wherein heat setting is performed at a temperature equal to or higher than the melting point of the polytetrafluoroethylene fired body.
【請求項6】 請求項1〜4のいずれかに記載のポリテ
トラフルオロエチレン多孔膜からなるエアフィルター。
6. An air filter comprising the polytetrafluoroethylene porous membrane according to claim 1.
JP19666392A 1991-07-23 1992-07-23 Polytetrafluoroethylene porous membrane Expired - Fee Related JP2792354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19666392A JP2792354B2 (en) 1991-07-23 1992-07-23 Polytetrafluoroethylene porous membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18236491 1991-07-23
JP3-182364 1991-07-23
JP19666392A JP2792354B2 (en) 1991-07-23 1992-07-23 Polytetrafluoroethylene porous membrane

Publications (2)

Publication Number Publication Date
JPH05202217A JPH05202217A (en) 1993-08-10
JP2792354B2 true JP2792354B2 (en) 1998-09-03

Family

ID=26501188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19666392A Expired - Fee Related JP2792354B2 (en) 1991-07-23 1992-07-23 Polytetrafluoroethylene porous membrane

Country Status (1)

Country Link
JP (1) JP2792354B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119493A1 (en) 2008-05-12 2009-11-18 Nitto Denko Corporation Porous polytetrafluoroethylene membrane and method of producing the same, and filter medium
CN106863860A (en) * 2017-01-12 2017-06-20 浙江国泰萧星密封材料股份有限公司 A kind of preparation method of high intensity EPTFE bands

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355135B1 (en) 1993-01-25 2002-03-12 Daikin Industries, Ltd. Method of laminating gas permeable sheet material
JP3003500B2 (en) * 1994-04-28 2000-01-31 ダイキン工業株式会社 Polytetrafluoroethylene composite porous membrane
JPH09206568A (en) * 1996-02-01 1997-08-12 Nitto Denko Corp Material for air filter
JP3273735B2 (en) * 1996-05-17 2002-04-15 日東電工株式会社 Polytetrafluoroethylene porous membrane and method for producing the same, sheet-like polytetrafluoroethylene molded article, and filter medium for air filter
TW438678B (en) 1996-08-09 2001-06-07 Daikin Ind Ltd Fire-retardant filter medium and air filter unit using the same
TW371284B (en) * 1996-12-04 1999-10-01 Daikin Ind Ltd Filtration material of filter and air cleaning device using the filtration material
JP3512100B2 (en) * 1997-04-11 2004-03-29 ダイキン工業株式会社 Air filter unit and method of manufacturing the same
AU9795498A (en) * 1997-11-06 1999-05-31 Microbar Incorporated Process for removing silica from wastewater
JP3365617B2 (en) * 1998-06-11 2003-01-14 日東電工株式会社 Manufacturing method of filter medium for air filter
JP2000140587A (en) * 1998-11-16 2000-05-23 Tonen Tapirusu Kk Filter unit and dust-proof mask using filter unit
JP2000176262A (en) * 1998-12-11 2000-06-27 Daikin Ind Ltd Porous material, filter material for air filter, air filter unit, and supporting material for filter material for air filter
JP3584855B2 (en) 1999-10-07 2004-11-04 ダイキン工業株式会社 Air filter media
JP2009234272A (en) * 2000-04-05 2009-10-15 Nitto Denko Corp Air-permeable filter for ink case
JP4826023B2 (en) * 2001-04-05 2011-11-30 ダイキン工業株式会社 Filter medium, filter pack and air filter unit using the same, and method for producing filter medium
DE60210261T2 (en) 2001-04-05 2007-03-29 Daikin Industries, Ltd. METHOD FOR PRODUCING FILTRATION MATERIAL
EP1266681B1 (en) 2001-06-13 2013-12-25 Nitto Denko Corporation Filter medium for turbine and methods of using and producing the same
WO2006058233A1 (en) * 2004-11-24 2006-06-01 Donaldson Company, Inc. Ptfe membrane
JP5008850B2 (en) 2005-09-15 2012-08-22 住友電工ファインポリマー株式会社 Tetrafluoroethylene resin molded body, stretched tetrafluoroethylene resin molded body, manufacturing method thereof, composite, filter, impact deformation absorbing material, and sealing material
JP5204384B2 (en) 2006-05-19 2013-06-05 富士フイルム株式会社 Crystalline polymer microporous membrane, method for producing the same, and filter for filtration
JP5154784B2 (en) * 2006-11-15 2013-02-27 住友電工ファインポリマー株式会社 filter
JP2010058026A (en) * 2008-09-02 2010-03-18 Fujifilm Corp Crystalline polymer microporous membrane, method for manufacturing the same, and filter for filtration
JP2012011369A (en) 2010-06-01 2012-01-19 Fujifilm Corp Crystalline polymer microporous membrane, method for manufacturing the same, and filter for filtering
JP5595802B2 (en) * 2010-06-15 2014-09-24 日東電工株式会社 Polytetrafluoroethylene porous membrane having low elongation anisotropy and method for producing the same
JP2012045524A (en) * 2010-08-30 2012-03-08 Fujifilm Corp Crystallizable polymer microporous membrane and method for manufacturing the same, and filteration filter
JP2012228687A (en) * 2012-05-31 2012-11-22 Nitto Denko Corp Filter material for air filter and method for producing the same
JP6392412B2 (en) * 2013-03-29 2018-09-19 富士フイルム株式会社 Acid gas separation composite membrane manufacturing method and acid gas separation module
JP2014198313A (en) * 2013-03-29 2014-10-23 日東電工株式会社 Filter medium and method of manufacturing filter medium
KR101433774B1 (en) * 2013-10-04 2014-08-27 한국생산기술연구원 A triple layers filter media for dust collection
CN105794031B (en) 2013-11-29 2019-01-29 旭化成株式会社 Polyelectrolyte membrane
TW201533125A (en) 2013-11-29 2015-09-01 Daikin Ind Ltd Modified polytetrafluoroethylene fine powder and uniaxially oriented porous body
US20170002156A1 (en) 2013-11-29 2017-01-05 Daikin Industries, Ltd. Biaxially-stretched porous membrane
EP3075767A4 (en) * 2013-11-29 2017-07-05 Daikin Industries, Ltd. Porous body, polymer electrolyte membrane, filter material for filter, and filter unit
CA2932014C (en) 2013-11-29 2019-03-12 Asahi Kasei Kabushiki Kaisha Polymer electrolyte film
JP6861493B2 (en) 2016-09-30 2021-04-21 日東電工株式会社 Air filter filter media, air filter pack and air filter unit
WO2019163693A1 (en) * 2018-02-20 2019-08-29 ダイキン工業株式会社 Composite rubber molded article
JP7256375B2 (en) * 2019-03-29 2023-04-12 ダイキン工業株式会社 Method for manufacturing air filter media

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119493A1 (en) 2008-05-12 2009-11-18 Nitto Denko Corporation Porous polytetrafluoroethylene membrane and method of producing the same, and filter medium
US8123839B2 (en) 2008-05-12 2012-02-28 Nitto Denko Corporation Porous polytetrafluoroethylene membrane and method of producing the same, and filter medium
CN106863860A (en) * 2017-01-12 2017-06-20 浙江国泰萧星密封材料股份有限公司 A kind of preparation method of high intensity EPTFE bands
CN106863860B (en) * 2017-01-12 2019-10-01 浙江国泰萧星密封材料股份有限公司 A kind of preparation method of high intensity EPTFE band

Also Published As

Publication number Publication date
JPH05202217A (en) 1993-08-10

Similar Documents

Publication Publication Date Title
JP2792354B2 (en) Polytetrafluoroethylene porous membrane
US5234739A (en) Polytetrafluoroethylene porous film and preparation and use thereof
JP3003500B2 (en) Polytetrafluoroethylene composite porous membrane
JP3467779B2 (en) Filter media and air filter unit using the same
WO1994016802A1 (en) Polytetrafluoroethylene porous film and method for manufacturing the same
KR101353726B1 (en) Process for production of polytetrafluoroethylene porous membrane, filter medium and filter unit
TWI503163B (en) Teflon porous film and air filter filter
JP2000079332A (en) Filter medium for air filter
EP1291060A2 (en) Porous polytetrafluoroethylene Membrane and air filter medium
JP2001170461A (en) Air filter medium, air filter pack and air filter unit using the same, and method for manufacturing air filter medium
KR20030088124A (en) Fitering Material, Filter Pack and Air Filter Unit Using the Same and Method of Manufacturing Fitering Material
JP2002273126A (en) Filter medium for air filter and method for manufacturing the same
JP2000300921A (en) Air filter material and air filter unit using the same
TW201446323A (en) Manufacturing method for air filter medium, air filter medium, and air filter pack
JP2008055407A (en) Method for manufacturing polytetrafluoroethylene porous film and air filter filtering medium
JPH09206568A (en) Material for air filter
JP2002301321A (en) Filter medium, filter pack and filter unit which use the same, and method for manufacturing filter medium
JP3302606B2 (en) Polytetrafluoroethylene porous membrane and method for producing the same
JP2002346319A (en) Suction filter medium for turbine
JP2005205305A (en) Air filter medium
JP3082764B2 (en) Air filter material
JP2006061808A (en) Ventilation filter medium for masks
JP2007111697A (en) Air filter medium
JP2940166B2 (en) Polytetrafluoroethylene porous membrane and method for producing the same
CA2435405A1 (en) Reinforcing material for a filter material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090619

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100619

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110619

LAPS Cancellation because of no payment of annual fees