JP2006061808A - Ventilation filter medium for masks - Google Patents

Ventilation filter medium for masks Download PDF

Info

Publication number
JP2006061808A
JP2006061808A JP2004246446A JP2004246446A JP2006061808A JP 2006061808 A JP2006061808 A JP 2006061808A JP 2004246446 A JP2004246446 A JP 2004246446A JP 2004246446 A JP2004246446 A JP 2004246446A JP 2006061808 A JP2006061808 A JP 2006061808A
Authority
JP
Japan
Prior art keywords
air
filter medium
support material
ventilation filter
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004246446A
Other languages
Japanese (ja)
Inventor
Ei Sawa
映 佐波
Michitoshi Suzuki
理利 鈴木
Eizo Kawano
栄三 川野
Hiroko Niijima
裕子 新島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004246446A priority Critical patent/JP2006061808A/en
Publication of JP2006061808A publication Critical patent/JP2006061808A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ventilation filter medium for masks suppressing an increase in pressure loss and enabling a use for a long term. <P>SOLUTION: The ventilation filter medium for masks 10 is formed by stacking a polytetrafluoroethylene (PTFE) porous film 11, and an air-permeable support material 12 formed by fibers of ≥0.2 μm and ≤15 μm fiber dia. The filter medium 10 is so arranged for use that the air-permeable support material 12 may position at the upstream side of the air flow (arrow) from the PTFE porous film 11, by which the increase in pressure loss of the ventilation filter medium for masks 10 is suppressed to enable the use for a long term. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、マスク用通気フィルタ濾材に関する。   The present invention relates to a ventilation filter medium for a mask.

近年、SARSを始めとする新種の空気感染性伝染病の世界的な蔓延や、花粉症の被害の深刻化に伴い、高い塵挨阻止性を持つマスクの重要性が増大している。また、特に鉱山や原子力施設等で用いられる従来型の防塵マスクの場合でも、環境安全基準の普及に伴い、これまで以上に高い塵埃阻止性が求められるようになっている。これらのマスクには、通気フィルタ濾材が平面のまま、あるいは蛇腹状、菊花状に織り込まれて固定され、通気性を維持しつつ大気中の塵埃を捕集するようになっている。これらの通気フィルタ濾材としては、ポリプロピレン(PP)、ポリエステル等の合成繊維を用いたもの、ガラス繊維を用いたもの等が挙げられる。また、濾過機構についても、微細繊維の交絡を用いたメカニカルフィルタ、繊維に荷電することによって捕集性能を高めたエレクトレットフィルタ等がある。しかし、これらの素材は、通気抵抗(圧力損失)と塵埃の捕集効率のバランスが満足できるものではない。すなわち、通気性を高めると捕集効率が満足できないレベルまで低下し、捕集効率を高めると圧力損失が呼吸困難を感じるレベルまで上昇する。   In recent years, with the global spread of new airborne infectious diseases such as SARS and the seriousness of damage caused by hay fever, the importance of masks having high dust prevention properties has increased. In addition, even in the case of conventional dust masks used in mines, nuclear facilities, and the like, with the spread of environmental safety standards, higher dust prevention is required than ever. In these masks, the air filter medium is fixed in a flat or woven bellows or chrysanthemum shape so as to collect dust in the air while maintaining air permeability. Examples of these air filter media include those using synthetic fibers such as polypropylene (PP) and polyester, and those using glass fibers. As for the filtration mechanism, there are a mechanical filter using entanglement of fine fibers, an electret filter whose collection performance is enhanced by charging the fibers, and the like. However, these materials do not satisfy the balance between ventilation resistance (pressure loss) and dust collection efficiency. That is, if the air permeability is increased, the collection efficiency is lowered to an unsatisfactory level, and if the collection efficiency is increased, the pressure loss is raised to a level where dyspnea is felt.

そこで、マスク用通気フィルタ濾材として、近年、ポリテトラフルオロエチレン(PTFE)多孔質膜を用いたものが注目を集めている(特許文献1および2参照。)。これは、微細なPTFE繊維からなる極めて多数の細孔を持ったメンブレン(多孔質膜)であり、低圧力損失(高通気量)と高捕集効率を併せ持つものである。PTFE多孔質膜を用いた通気フィルタ濾材は、各種防塵マスクに適合する優れた特性を持っている。
特開2000−140587号公報 特開2000−153122号公報
Therefore, in recent years, a filter using a polytetrafluoroethylene (PTFE) porous membrane has attracted attention as a ventilation filter medium for a mask (see Patent Documents 1 and 2). This is a membrane (porous membrane) made of fine PTFE fibers and having a very large number of pores, and has both low pressure loss (high air flow rate) and high collection efficiency. The ventilation filter medium using a PTFE porous membrane has excellent characteristics suitable for various dust masks.
JP 2000-140587 A JP 2000-153122 A

前述のとおり、PTFE多孔質膜を用いた通気フィルタ濾材は、防塵マスク用途に好適な低圧力損失(高通気量)と高捕集効率を併せ持っている。しかし、長期間にわたってマスクを使用した場合に、圧力損失が上昇し、円滑な通気に不都合をきたす場合がある。これは、PTFE多孔質膜の捕集効率の高さからくる問題である。PTFE多孔質膜はきわめて薄い(<10μm)にもかかわらず、高い捕集効率を持っている。そのため、長期間使用するとPTFE多孔質膜の細孔が捕集した塵埃によって閉塞し、圧力損失の上昇を招く。これは、いかなる種類の高性能フィルタ濾材についても起きるものであるが、PTFE多孔質膜について特に顕著な現象であり、この濾材の普及を妨げている。   As described above, the ventilation filter medium using the PTFE porous membrane has both a low pressure loss (high ventilation) suitable for dustproof mask applications and a high collection efficiency. However, when the mask is used for a long period of time, pressure loss increases, which may cause inconvenience in smooth ventilation. This is a problem due to the high collection efficiency of the PTFE porous membrane. Although the PTFE porous membrane is very thin (<10 μm), it has a high collection efficiency. Therefore, when used for a long period of time, the pores of the PTFE porous membrane are blocked by the collected dust, resulting in an increase in pressure loss. This occurs with any type of high performance filter media, but is a particularly significant phenomenon with respect to PTFE porous membranes, preventing the spread of this filter media.

そこで、本発明は、圧力損失の上昇が抑制され、長期間使用できるマスク用通気フィルタ濾材の提供を、その目的とする。   Therefore, an object of the present invention is to provide an air filter material for a mask that can be used for a long period of time, in which an increase in pressure loss is suppressed.

上記目的を達成するために、本発明のマスク用通気フィルタ濾材は、PTFE多孔質膜と繊維から形成された通気性支持材とを含むマスク用通気フィルタ濾材であって、前記通気性支持材の少なくとも1層の繊維径が0.2μm以上15μm以下であり、前記繊維径が0.2μm以上15μm以下である通気性支持材が、前記PTFE多孔質膜より空気の流れの上流側に配置されるマスク用通気フィルタ濾材である。本発明において、前記繊維径は、例えば、後述の実施例の測定方法で測定できる。   In order to achieve the above object, a ventilation filter medium for a mask according to the present invention is a ventilation filter medium for a mask including a PTFE porous membrane and a breathable support material formed of fibers, A breathable support material having a fiber diameter of at least one layer of 0.2 μm to 15 μm and a fiber diameter of 0.2 μm to 15 μm is disposed upstream of the PTFE porous membrane in the air flow. This is a ventilation filter medium for a mask. In the present invention, the fiber diameter can be measured, for example, by the measurement method of the examples described later.

本発明によれば、圧力損失の上昇が抑制され、長期間使用できるマスク用通気フィルタ濾材を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the raise of a pressure loss is suppressed and the ventilation filter medium for masks which can be used for a long period of time can be provided.

本発明において、空気の流れの上流側とは、使用時におけるマスクの外側を意味し、空気の流れの下流側とは、使用時におけるマスクの内側を意味する。   In the present invention, the upstream side of the air flow means the outside of the mask during use, and the downstream side of the air flow means the inside of the mask during use.

本発明のマスク用通気フィルタ濾材において、前記PTFE多孔質膜より空気の流れの上流側に、第1の通気性支持材と第2の通気性支持材とを含み、前記第1の通気性支持材の繊維径が前記第2の通気性支持材の繊維径より細いことが好ましい。本発明のマスク用通気フィルタ濾材において、前記第1の通気性支持材は、前記第2の通気性支持材より空気の流れの上流側に配置される。   The air-permeable filter medium for a mask according to the present invention includes a first air-permeable support material and a second air-permeable support material on the upstream side of the air flow from the PTFE porous membrane, and the first air-permeable support material. It is preferable that the fiber diameter of the material is smaller than the fiber diameter of the second air-permeable support material. In the ventilation filter medium for a mask according to the present invention, the first air-permeable support material is disposed on the upstream side of the air flow from the second air-permeable support material.

本発明のマスク用通気フィルタ濾材において、前記通気性支持材を介して、PTFE多孔質膜が2層以上積層されていることが好ましい。   In the ventilation filter medium for a mask according to the present invention, it is preferable that two or more layers of a PTFE porous membrane are laminated via the air-permeable support material.

本発明のマスク用通気フィルタユニットは、本発明のマスク用通気フィルタ濾材を含むマスク用通気フィルタユニットであり、本発明のマスクは、本発明のマスク用通気フィルタユニットを含むマスクである。   The mask ventilation filter unit of the present invention is a mask ventilation filter unit including the mask ventilation filter medium of the present invention, and the mask of the present invention is a mask including the mask ventilation filter unit of the present invention.

以下に本発明のマスク用通気フィルタ濾材について詳しく説明する。   The ventilation filter medium for a mask of the present invention will be described in detail below.

図1の断面図に、本発明のマスク用通気フィルタ濾材の一例を示す。図示のように、この通気フィルタ濾材10は、PTFE多孔質膜11より空気の流れ(矢印)の上流側に、繊維径が0.2μm以上15μm以下である通気性支持材12が配置されている。   The cross-sectional view of FIG. 1 shows an example of the mask ventilation filter medium of the present invention. As shown in the figure, the ventilation filter medium 10 is provided with a breathable support material 12 having a fiber diameter of 0.2 μm or more and 15 μm or less upstream of the PTFE porous membrane 11 in the air flow (arrow). .

前記通気性支持材は、大気中の微細塵埃に対するプレフィルタとして機能する。前記通気性支持材は、材質、構造、形態のいずれも特に限定されないが、PTFE多孔質膜より通気性に優れた素材、例えば、フェルト、不織布、織布、メッシュ(網目状シート)、その他の多孔質材料を用いることができる。ただし、強度、捕集性、柔軟性、作業性の点からは不織布が好ましい。さらに、不織布は、これを構成する一部または全部の繊維が芯鞘構造の複合繊維であってもよく、この場合は、芯成分が鞘成分より融点が高いとよい。前記通気性支持材の材料についても特に限定は無く、ポリオレフィン(例えば、ポリエチレン、PP等)、ポリエステル、ポリアミド、芳香族ポリアミド、またはこれらの複合材等を用いることができる。   The air-permeable support material functions as a prefilter for fine dust in the atmosphere. The breathable support material is not particularly limited in material, structure, or form, but a material superior in breathability than the PTFE porous membrane, such as felt, nonwoven fabric, woven fabric, mesh (mesh-like sheet), other Porous materials can be used. However, non-woven fabric is preferred from the viewpoint of strength, catchability, flexibility, and workability. Furthermore, the nonwoven fabric may be a composite fiber having a core-sheath structure in which some or all of the fibers constituting the nonwoven fabric have a melting point higher than that of the sheath component. The material of the breathable support material is not particularly limited, and polyolefin (for example, polyethylene, PP, etc.), polyester, polyamide, aromatic polyamide, or a composite material thereof can be used.

前記通気性支持材は、ある程度の厚みがあり、それ自体の閉塞による圧力損失の上昇が低いことが好ましい。捕集効率は、最終的にはPTFE多孔質膜によって決定されるため、低いレベルで十分である。ここで最も重要になるのは通気性支持材の繊維径である。繊維径が0.2μm以下になるとその捕集効率がPTFE多孔質膜に匹敵するほど高くなり、圧力損失の上昇率もPTFE多孔質膜に近くなるため、プレフィルタとして機能しなくなる。一方、繊維径が15μmを超えると捕集効率が低くなりすぎる。この繊維径は、0.2〜0.8μmの範囲であることがより好ましい。   It is preferable that the air-permeable support material has a certain thickness and has a low increase in pressure loss due to its own blockage. The collection efficiency is ultimately determined by the PTFE porous membrane, so a low level is sufficient. What is most important here is the fiber diameter of the breathable support material. When the fiber diameter is 0.2 μm or less, the collection efficiency becomes higher than that of the PTFE porous membrane, and the rate of increase in pressure loss is also close to that of the PTFE porous membrane, so that it does not function as a prefilter. On the other hand, when the fiber diameter exceeds 15 μm, the collection efficiency becomes too low. The fiber diameter is more preferably in the range of 0.2 to 0.8 μm.

前記PTFE多孔質膜において、その厚さは、特に制限されないが、例えば、2〜100μmの範囲であり、その平均孔径は、特に制限されないが、例えば、0.5〜50μmの範囲であり、その平均繊維径は、特に制限されないが、例えば、0.02〜0.2μmの範囲であり、その圧力損失は、特に制限されないが、例えば、10〜500Paの範囲であり、その捕集効率は、特に制限されないが、例えば、90〜100%の範囲である。本発明において、前記圧力損失および捕集効率は、例えば、後述の実施例の測定方法で測定できる。   In the PTFE porous membrane, the thickness is not particularly limited, but is, for example, in the range of 2 to 100 μm, and the average pore diameter is not particularly limited, for example, in the range of 0.5 to 50 μm. The average fiber diameter is not particularly limited, but is, for example, in the range of 0.02 to 0.2 μm, and the pressure loss is not particularly limited, but is, for example, in the range of 10 to 500 Pa, and the collection efficiency is Although it does not restrict | limit in particular, For example, it is 90 to 100% of range. In the present invention, the pressure loss and the collection efficiency can be measured, for example, by the measurement method of the examples described later.

前記PTFE多孔質膜の製造方法の一例を以下に示す。まず、PTFEファインパウダーに液状潤滑剤を加えたペースト状の混和物を予備成形する。前記PTFEファインパウダーとしては、特に制限されず、市販のものが使用できる。前記液状潤滑剤としては、前記PTFEファインパウダーの表面を濡らすことができて、後に抽出や加熱により除去できるものであれば特に制限されず、例えば、流動パラフィン、ナフサ、ホワイトオイル等の炭化水素等を使用することができる。また、これらは、単独で使用しても良く、若しくは二種類以上併用してもよい。前記PTFEファインパウダーに対する液状潤滑剤の添加割合は、前記PTFEファインパウダーの種類、液状潤滑剤の種類および後述するシート成形の条件等により適宜決定されるが、例えば、PTFEファインパウダー100重量部に対して、液状潤滑剤5〜50重量部の範囲である。前記予備成形は、液状潤滑剤が絞り出されない程度の圧力で行う。   An example of a method for producing the PTFE porous membrane is shown below. First, a paste-like mixture obtained by adding a liquid lubricant to PTFE fine powder is preformed. The PTFE fine powder is not particularly limited, and a commercially available product can be used. The liquid lubricant is not particularly limited as long as it can wet the surface of the PTFE fine powder and can be removed later by extraction or heating. For example, hydrocarbons such as liquid paraffin, naphtha, white oil, etc. Can be used. These may be used singly or in combination of two or more. The addition ratio of the liquid lubricant to the PTFE fine powder is appropriately determined according to the type of the PTFE fine powder, the type of the liquid lubricant, and the conditions of sheet molding described later. For example, for 100 parts by weight of the PTFE fine powder The liquid lubricant is in the range of 5 to 50 parts by weight. The preforming is performed at a pressure that does not squeeze out the liquid lubricant.

つぎに、前記予備成形物を、ペースト押出や圧延によってシート状に成形し、このPTFE成形体を少なくとも一軸方向に延伸してPTFE多孔質膜を得る。なお、PTFE成形体の延伸は、液状潤滑剤を除去してから行ってもよい。また、延伸条件は、適宜設定することができ、例えば、縦方向延伸、横方向延伸共に、温度30〜320℃、延伸倍率2〜30倍である。延伸後にPTFEの融点以上に加熱して焼成してもよい。   Next, the preform is formed into a sheet by paste extrusion or rolling, and the PTFE molded body is stretched at least in a uniaxial direction to obtain a PTFE porous film. In addition, you may perform extending | stretching of a PTFE molded object after removing a liquid lubricant. Moreover, extending | stretching conditions can be set suitably, for example, the temperature of 30-320 degreeC and the draw ratio of 2-30 times are both longitudinal direction extending | stretching and horizontal direction extending | stretching. After stretching, it may be baked by heating above the melting point of PTFE.

なお、本発明におけるPTFE多孔質膜は、前述の製造方法に制限されず、他の製造方法で製造されてもよい。   In addition, the PTFE porous membrane in this invention is not restrict | limited to the above-mentioned manufacturing method, You may manufacture with another manufacturing method.

前記通気性支持材とPTFE多孔質膜との積層方法は、特に制限されず、ただ単に重ね合わせるだけでもよいし、例えば、接着剤ラミネート、熱ラミネート等の方法を適用してもよい。熱ラミネートにより積層する場合は、加熱により通気性支持材の一部を溶融させて接着積層してもよく、ホットメルトパウダーのような融着剤を介在させて接着積層してもよい。   The method for laminating the air-permeable support material and the PTFE porous membrane is not particularly limited, and may be simply superposed, for example, a method such as adhesive laminating or heat laminating may be applied. In the case of laminating by heat lamination, a part of the breathable support material may be melted by heating to be adhesively laminated, or may be adhesively laminated by interposing a fusing agent such as hot melt powder.

このようにして得られた濾材は、例えば、連続したW字状に折り曲げられ(プリーツ加工され)、対向する濾材表面が接触しないようにホットメルト等でビードが形成され、さらに金属枠等で枠付けされてマスク用通気フィルタユニットとなる。   The filter medium obtained in this way is, for example, bent into a continuous W shape (pleated), and a bead is formed by hot melt or the like so that the opposing filter medium surfaces do not come into contact with each other. Attached is a mask ventilation filter unit.

濾材のプリーツ加工は、例えば、以下の方法で行えばよい。
(1)外周にブレードを配置した一対の回転ドラムを回転させながら濾材をひだ折りしていくロータリー方式と呼ばれる方法。
(2)濾材移送方向に所定の間隔をおいて配置した一対のブレードを移動させながら濾材を両面から交互に折り畳んでいくレジプロ式と呼ばれる方法。
The filter medium may be pleated by the following method, for example.
(1) A method called a rotary method in which a filter medium is folded while rotating a pair of rotating drums having blades arranged on the outer periphery.
(2) A method called a regipro type in which the filter medium is alternately folded from both sides while moving a pair of blades arranged at a predetermined interval in the filter medium transfer direction.

本発明の通気フィルタ濾材の構造は、前述のようにPTFE多孔質膜と通気性支持材とが各1層含まれていればよく、その他の構成は特に制限されない。例えば、図1に示すように、PTFE多孔質膜11より空気の流れ(矢印)の上流側のみに通気性支持材12を配置した構造でもよいし、図2に示すように、第1の通気性支持材22と第2の通気性支持材23によりPTFE多孔質膜21をサンドイッチする構造としてもよい。前記第1の通気性支持材22において、その材質、構造、形態は、前述のとおり、特に限定されず、その繊維径も前述のとおりである。前記第2の通気性支持材23は、マスク用通気フィルタ濾材20に剛性を付加するものである。前記第2の通気性支持材23において、その材質、構造、形態は、前記第1の通気性支持材22と同様、特に限定されないが、その繊維径は、第1の通気性支持材22の最大値である15μm以上であることが好ましい。前記第2の通気性支持材22の繊維径の上限は、特に制限されないが、例えば、25μmである。   The structure of the ventilation filter medium of the present invention is not particularly limited as long as the porous PTFE membrane and the breathable support material are included in each layer as described above. For example, as shown in FIG. 1, the structure may be such that the air-permeable support material 12 is disposed only upstream of the air flow (arrow) from the PTFE porous membrane 11, or as shown in FIG. The porous PTFE membrane 21 may be sandwiched between the porous support material 22 and the second air-permeable support material 23. The material, structure, and form of the first air-permeable support material 22 are not particularly limited as described above, and the fiber diameter is also as described above. The second air-permeable support material 23 adds rigidity to the mask air-permeable filter medium 20. The material, structure, and form of the second breathable support member 23 are not particularly limited as in the case of the first breathable support member 22, but the fiber diameter is the same as that of the first breathable support member 22. The maximum value is preferably 15 μm or more. The upper limit of the fiber diameter of the second air-permeable support material 22 is not particularly limited, and is, for example, 25 μm.

また、例えば、図3に示すように、PTFE多孔質膜31より空気の流れの上流側に第1の通気性支持材32と第2の通気性支持材33とを含んでいてもよい。PTFE多孔質膜より空気の流れの上流側に位置する第2の通気性支持材33は、マスク用通気フィルタ濾材30の剛性をあげ、各種加工を容易にするのに有効であり、またPTFE多孔質膜31への機械的ダメージを抑制する機能もある。前記通気性支持材同士を積層する場合の方法も、ただ単に重ね合わせるだけでもよいし、前述のように、接着剤ラミネート、熱ラミネート等の方法を適用してもよい。なお、図3では、マスク用通気フィルタ濾材30に剛性を付加するために、前記PTFE多孔質膜31の空気の流れ(矢印)の下流側に、さらに第2の通気性支持材33を設けた4層構造としている。   For example, as shown in FIG. 3, the 1st air permeable support material 32 and the 2nd air permeable support material 33 may be included in the upstream of the air flow from the PTFE porous membrane 31. The second air-permeable support member 33 located on the upstream side of the air flow from the PTFE porous membrane is effective for increasing the rigidity of the air-permeable filter medium 30 for masks and facilitating various processes. There is also a function of suppressing mechanical damage to the membrane 31. In the case of laminating the air-permeable support materials, the method may be merely superimposing them, or as described above, a method such as adhesive laminating or heat laminating may be applied. In FIG. 3, a second air-permeable support member 33 is further provided on the downstream side of the air flow (arrow) of the PTFE porous membrane 31 in order to add rigidity to the mask air-pass filter medium 30. It has a four-layer structure.

そして、圧力損失の上昇を抑えるもうひとつの手段として、通気性支持材を介して、PTFE多孔質膜を2層以上積層させると、さらに好適である。同じ捕集効率を得る場合、PTFE多孔質膜を単層で使用する場合と、より圧力損失の低いPTFE多孔質膜を2層以上積層して使用する場合がある。この際、PTFE多孔質膜を2層以上用いると、単層の場合に比べて圧力損失の上昇率が低くなる。これは、空気の流れの上流側のPTFE多孔質膜がプレフィルタとして機能するためである。この際、各層のPTFE多孔質膜が接触しないように、通気性支持材を間に挟むことが好ましい。この場合の通気性支持材としては、上流側にPTFE多孔質膜がくるため、プレフィルタとしての機能は必要なく、PTFE多孔質膜の各層に十分な間隔を取れるよう、繊維径の太い前記第2の通気性支持材が好ましい。さらに、前記の積層したPTFE多孔質膜の空気の流れの上流側に前記第1の通気性支持体をプレフィルタとして設けることにより、圧力損失の上昇値をさらに低くすることが可能となる。例えば、図4に示すように、第2の通気性支持材43を介して、2層のPTFE多孔質膜41を積層し、前記の積層したPTFE多孔質膜41の空気の流れ(矢印)の上流側に第1の通気性支持材42を設ける。なお、図4では、マスク用通気フィルタ濾材40に剛性を付加するために、前記の積層したPTFE多孔質膜41の空気の流れ(矢印)の下流側に、さらに第2の通気性支持材43を設けた5層構造としている。   As another means for suppressing an increase in pressure loss, it is more preferable to laminate two or more PTFE porous membranes through a breathable support material. When obtaining the same collection efficiency, there are a case where a PTFE porous membrane is used as a single layer and a case where two or more layers of PTFE porous membrane having a lower pressure loss are laminated and used. At this time, when two or more layers of the PTFE porous membrane are used, the rate of increase in pressure loss is lower than that in the case of a single layer. This is because the PTFE porous membrane on the upstream side of the air flow functions as a prefilter. At this time, it is preferable to sandwich a breathable support material so that the PTFE porous membrane of each layer does not contact. As the breathable support material in this case, since the PTFE porous membrane is formed on the upstream side, the function as a pre-filter is not necessary, and the first fiber having a large fiber diameter is provided so that sufficient spacing can be provided for each layer of the PTFE porous membrane. Two breathable supports are preferred. Further, by providing the first air-permeable support as a pre-filter on the upstream side of the air flow of the laminated PTFE porous membrane, it is possible to further reduce the pressure loss increase value. For example, as shown in FIG. 4, two layers of the PTFE porous membrane 41 are laminated via the second air-permeable support material 43, and the air flow (arrow) of the laminated PTFE porous membrane 41 is changed. A first air-permeable support member 42 is provided on the upstream side. In FIG. 4, in order to add rigidity to the ventilation filter medium 40 for the mask, the second breathable support material 43 is further provided on the downstream side of the air flow (arrow) of the laminated PTFE porous membrane 41. A five-layer structure is provided.

つぎに、本発明の実施例について、比較例と併せて説明するが、本発明は以下の実施例に制限されない。なお、実施例および比較例における各特性の測定方法は、以下に示すとおりである。   Next, examples of the present invention will be described together with comparative examples, but the present invention is not limited to the following examples. In addition, the measuring method of each characteristic in an Example and a comparative example is as showing below.

(1)繊維径
通気性支持材の表面を撮影した走査顕微鏡(SEM)写真により測定した。
(1) Fiber diameter It measured with the scanning microscope (SEM) photograph which image | photographed the surface of the air-permeable support material.

(2)圧力損失
サンプル(PTFE多孔質膜およびマスク用通気フィルタ濾材、以下同じ)を有効面積100cm2の円形ホルダーにセットし、入口側から大気塵を供給しつつ、前記入口側と出口側に圧力差を与え、空気の透過速度を流量計で5.3cm/秒に調製して前記大気塵を透過させ、圧力損失(単位:Pa)を圧力計(マノメーター)で測定した。なお、前記大気塵とは、雰囲気中に浮遊している塵埃をいう。
(2) Pressure loss A sample (PTFE porous membrane and mask ventilation filter medium, hereinafter the same) is set in a circular holder having an effective area of 100 cm 2 , and atmospheric dust is supplied from the inlet side to the inlet side and outlet side. A pressure difference was applied, the air permeation rate was adjusted to 5.3 cm / sec with a flow meter to allow the atmospheric dust to permeate, and the pressure loss (unit: Pa) was measured with a pressure meter (manometer). The atmospheric dust refers to dust floating in the atmosphere.

(3)捕集効率
圧力損失の測定と同一の装置を用い、空気の透過速度を5.3cm/秒に調節して前記サンプルの空気の流れの上流側に多分散ジオクチルフタレート(DOP)を、粒子径0.1〜0.2μmの粒子が4×108個/リットル、粒子径0.3〜0.5μmの粒子が6×107個/リットルとなるように供給し、上流側の粒子濃度とサンプルを透過してきた下流側の粒子濃度とをパーティクルカウンター(リオン社製KC−18)で測定し、粒子径0.3〜0.5μmの粒子について、下記式(1)に基づいて捕集効率を求めた。
(3) Collection efficiency Using the same apparatus as the pressure loss measurement, the air permeation rate was adjusted to 5.3 cm / sec, and polydisperse dioctyl phthalate (DOP) was added upstream of the air flow of the sample. Particles with a particle size of 0.1-0.2 μm are supplied at 4 × 10 8 particles / liter and particles with a particle size of 0.3-0.5 μm are supplied at 6 × 10 7 particles / liter. The concentration and the downstream particle concentration that has passed through the sample are measured with a particle counter (KC-18, manufactured by Lion Co., Ltd.), and particles having a particle diameter of 0.3 to 0.5 μm are captured based on the following formula (1) The collection efficiency was sought.

捕集効率(%)=(1−下流側の粒子濃度/上流側の粒子濃度)×100 (1)
下流側の粒子濃度の単位:個/リットル
上流側の粒子濃度の単位:個/リットル
Collection efficiency (%) = (1−downstream particle concentration / upstream particle concentration) × 100 (1)
Unit of particle concentration on the downstream side: pieces / liter Unit of particle concentration on the upstream side: pieces / liter

(4)DOP負荷量と圧力損失の関係
圧力損失の測定と同一の装置を用い、空気の透過速度を5.3cm/秒に調節してマスク用通気フィルタ濾材の空気の流れの上流側に多分散ジオクチルフタレート(DOP)を、粒子径0.1〜0.2μmの粒子が4×108/リットル、粒子径0.3〜0.5μmの粒子が6×107個/リットルとなるように供給し、3時間にわたってDOPを負荷した。途中15分おきにDOPの負荷量と圧力損失を測定した。DOP負荷量は、測定前後のマスク用通気フィルタ濾材の重量差を測定し、100cm2あたりのDOP負荷量(mg)として求めた。
(4) Relationship between DOP load and pressure loss Using the same equipment as the pressure loss measurement, the air permeation rate is adjusted to 5.3 cm / sec. Dispersed dioctyl phthalate (DOP) is 4 × 10 8 / liter of particles having a particle size of 0.1 to 0.2 μm and 6 × 10 7 particles / liter of particles having a particle size of 0.3 to 0.5 μm. Feeded and loaded with DOP for 3 hours. DOP load and pressure loss were measured every 15 minutes. The DOP load was determined as the DOP load (mg) per 100 cm 2 by measuring the weight difference between the filter air filter material before and after the measurement.

図1に示す構造のマスク用通気フィルタ濾材を作製した。すなわち、まず、PTFEファインパウダー(旭・ICIフロロポリマーズ社製商品名フルオンCD−123)100重量部に対して液状潤滑剤(ナフサ)17重量部を均一に配合し、この配合物を20kg/cm2の条件で予備成形した。次いで、これをロッド状にペースト押出成形し、さらにこのロッド状成形体を1対の金属圧延ロール間に通し、厚さ250μmの長尺シートを得た。このシートを290℃の延伸温度でシート長手方向に10倍延伸し、さらにテンター法により80℃の延伸温度でシート幅方向に30倍延伸し、未焼成PTFE多孔質膜を得た。この未焼成PTFE多孔質膜を、熱風発生炉を用いて400℃で3秒間焼成し、焼成されたPTFE多孔質膜11を得た。得られたPTFE多孔質膜11の厚さは、10μm、圧力損失は、150Pa、捕集効率は、99.99%であった。 A mask ventilation filter medium having the structure shown in FIG. 1 was prepared. That is, first, 17 parts by weight of a liquid lubricant (naphtha) is uniformly blended with 100 parts by weight of PTFE fine powder (trade name Fullon CD-123 manufactured by Asahi ICI Fluoropolymers Co., Ltd.), and this blend is 20 kg / cm. Pre-molded under the conditions of 2 . Then, this was paste-extruded into a rod shape, and this rod-shaped formed body was passed between a pair of metal rolling rolls to obtain a long sheet having a thickness of 250 μm. This sheet was stretched 10 times in the longitudinal direction of the sheet at a stretching temperature of 290 ° C., and further stretched 30 times in the sheet width direction at a stretching temperature of 80 ° C. by a tenter method to obtain an unsintered porous PTFE membrane. This unsintered PTFE porous membrane was baked at 400 ° C. for 3 seconds using a hot air generator to obtain a baked PTFE porous membrane 11. The obtained porous PTFE membrane 11 had a thickness of 10 μm, a pressure loss of 150 Pa, and a collection efficiency of 99.99%.

つぎに、通気性支持材12として、PPメルトブローン不織布(タピルス社製商品名P020SW、目付量20g/m2、厚さ230μm、繊維径3.5μm)を用意した。PTFE多孔質膜11と通気性支持材12とを積層し、135℃に加熱した熱ロールでPTFE多孔質膜11側から連続的に熱ラミネートすることにより接着し、マスク用フィルタ濾材10を得た。 Next, a PP melt blown nonwoven fabric (trade name P020SW, manufactured by Tapirs Co., Ltd., basis weight 20 g / m 2 , thickness 230 μm, fiber diameter 3.5 μm) was prepared as the breathable support material 12. The PTFE porous membrane 11 and the air-permeable support material 12 were laminated, and bonded by thermally laminating continuously from the PTFE porous membrane 11 side with a hot roll heated to 135 ° C. to obtain a filter filter material 10 for mask. .

通気性支持材として、割織ポリエチレンテレフタレート(PET)芯鞘構造の不織布(ユニチカ社商品名製スーパーアルシーマ、目付量40g/m2、厚さ180μm、繊維径7.0μm)を用いたこと、熱ロールの温度を200℃としたこと以外は、実施例1と同様にして、マスク用通気フィルタ濾材を得た。 As a breathable support material, a non-woven fabric with a split-woven polyethylene terephthalate (PET) core-sheath structure (Unitika's trade name Super Alcima, basis weight 40 g / m 2 , thickness 180 μm, fiber diameter 7.0 μm) was used. A ventilation filter medium for a mask was obtained in the same manner as in Example 1 except that the temperature of the hot roll was 200 ° C.

図4に示す構造のマスク用通気フィルタ濾材を作製した。すなわち、まず、実施例1と同様にして、長尺シートを作製した。この長尺シートを290℃の延伸温度でシート長手方向に15倍延伸し、さらにテンター法により80℃の延伸温度でシート幅方向に30倍延伸し、未焼成PTFE多孔質膜を得た。この未焼成PTFE多孔質膜を、熱風発生炉を用いて400℃で3秒間焼成し、焼成されたPTFE多孔質膜41を得た。得られたPTFE多孔質膜41の厚さは、8μm、圧力損失は、80Pa、捕集効率は、99.5%であった。   A ventilation filter medium for a mask having the structure shown in FIG. 4 was produced. That is, first, a long sheet was produced in the same manner as in Example 1. This long sheet was stretched 15 times in the longitudinal direction of the sheet at a stretching temperature of 290 ° C., and further stretched 30 times in the width direction of the sheet at a stretching temperature of 80 ° C. by a tenter method to obtain an unsintered porous PTFE membrane. This unsintered PTFE porous membrane was fired at 400 ° C. for 3 seconds using a hot air generator to obtain a fired PTFE porous membrane 41. The obtained porous PTFE membrane 41 had a thickness of 8 μm, a pressure loss of 80 Pa, and a collection efficiency of 99.5%.

つぎに、第2の通気性支持材43としてポリエチレンテレフタレート(PET)/ポリエチレン(PE)芯鞘構造の不織布(ユニチカ社製商品名エルベスTO303WDO、目付量30g/m2、厚さ140μm、繊維径25.0μm)を用意した。PTFE多孔質膜41と第2の通気性支持材43とを積層し、150℃に加熱した熱ロールでPTFE多孔質膜41側から連続的に熱ラミネートすることにより接着した。ついで、この材料2層と、さらに実施例1の通気性支持材と同様の第1の通気性支持材41(PPメルトブローン不織布)を135℃に加熱した熱ロールでPTFE多孔質膜41側から連続的に熱ラミネートすることにより接着し、マスク用通気フィルタ濾材40を得た。この際、5層構造がPPメルトブローン不織布42、PTFE多孔質膜41、PET/PE芯鞘構造の不織布43、PTFE多孔質膜41、PET/PE芯鞘構造の不織布43となるように接着した。
(比較例1)
通気性支持材として、PET/PE芯鞘構造の不織布(ユニチカ社製商品名エルベスTO303WDO、目付量30g/m2、厚さ140μm、繊維径25.0μm)を用いたこと以外は、実施例1と同様にして、マスク用通気フィルタ濾材を得た。
Next, as a second breathable support material 43, a polyethylene terephthalate (PET) / polyethylene (PE) core-sheath nonwoven fabric (trade name Elves TO303WDO, manufactured by Unitika Ltd., basis weight 30 g / m 2 , thickness 140 μm, fiber diameter 25 0.0 μm) was prepared. The PTFE porous membrane 41 and the second air-permeable support material 43 were laminated, and bonded by continuous thermal lamination from the PTFE porous membrane 41 side with a hot roll heated to 150 ° C. Next, the two layers of the material and the first air-permeable support material 41 (PP melt blown nonwoven fabric) similar to the air-permeable support material of Example 1 were continuously applied from the PTFE porous membrane 41 side with a hot roll heated to 135 ° C. The film was bonded by thermally laminating to obtain a ventilation filter medium 40 for a mask. At this time, the five-layer structure was bonded so as to become a PP melt blown nonwoven fabric 42, a PTFE porous membrane 41, a PET / PE core-sheath nonwoven fabric 43, a PTFE porous membrane 41, and a PET / PE core-sheath nonwoven fabric 43.
(Comparative Example 1)
Example 1 except that a non-woven fabric of PET / PE core-sheath structure (trade name Elves TO303WDO, unit weight 30 g / m 2 , thickness 140 μm, fiber diameter 25.0 μm, manufactured by Unitika Ltd.) was used as the breathable support material. In the same manner as above, a ventilation filter medium for a mask was obtained.

実施例1〜3および比較例1のマスク用通気フィルタ濾材の構成および初期物性を、下記表1に示す。   Table 1 below shows the structures and initial physical properties of the air-permeable filter media for masks of Examples 1 to 3 and Comparative Example 1.

Figure 2006061808
Figure 2006061808

実施例1〜3および比較例1のマスク用通気フィルタ濾材のDOP負荷量と圧力損失の関係を図5に、DOP負荷量0mg/100cm2に対するDOP負荷量50mg/100cm2での圧力損失の上昇率を下記表2に示す。 5 the relationship of DOP load and pressure loss in the mask for ventilation filter medium of Examples 1 to 3 and Comparative Example 1, the increase in pressure loss in the DOP loading 50 mg / 100 cm 2 for the DOP loading 0 mg / 100 cm 2 The rates are shown in Table 2 below.

Figure 2006061808
Figure 2006061808

前述の図5および上記表2に示すとおり、比較例1では圧力損失が大きく上昇したのに対して、実施例1〜3では圧力損失の上昇を抑えることができた。また、PTFE多孔質膜を2層設けた実施例3では、圧力損失の上昇をさらに抑えることができた。   As shown in FIG. 5 and Table 2 described above, the pressure loss greatly increased in Comparative Example 1, whereas the increase in pressure loss could be suppressed in Examples 1 to 3. Further, in Example 3 in which two layers of the PTFE porous membrane were provided, an increase in pressure loss could be further suppressed.

本発明のマスク用通気フィルタ濾材は、マスク用通気フィルタユニットとして利用可能である。   The ventilation filter medium for a mask of the present invention can be used as a ventilation filter unit for a mask.

本発明のマスク用通気フィルタ濾材の一例の構成を示す断面図である。It is sectional drawing which shows the structure of an example of the ventilation filter medium for masks of this invention. 本発明のマスク用通気フィルタ濾材のその他の例の構成を示す断面図である。It is sectional drawing which shows the structure of the other example of the ventilation filter medium for masks of this invention. 本発明のマスク用通気フィルタ濾材のさらにその他の例の構成を示す断面図である。It is sectional drawing which shows the structure of the further another example of the ventilation filter medium for masks of this invention. 本発明のマスク用通気フィルタ濾材のさらにその他の例の構成を示す断面図である。It is sectional drawing which shows the structure of the further another example of the ventilation filter medium for masks of this invention. 本発明のマスク用通気フィルタ濾材の一例におけるDOP負荷量と圧力損失との関係を示すグラフである。It is a graph which shows the relationship between DOP load amount and pressure loss in an example of the ventilation filter medium for masks of this invention.

符号の説明Explanation of symbols

10、20、30、40 マスク用通気フィルタ濾材
11、21、31、41 PTFE多孔質膜
12、22、32、42 第1の通気性支持材
23、33、43 第2の通気性支持材
10, 20, 30, 40 Aeration filter medium for mask 11, 21, 31, 41 PTFE porous membrane 12, 22, 32, 42 First breathable support material 23, 33, 43 Second breathable support material

Claims (5)

ポリテトラフルオロエチレン(PTFE)多孔質膜と繊維から形成された通気性支持材とを含むマスク用通気フィルタ濾材であって、前記通気性支持材の少なくとも1層の繊維径が0.2μm以上15μm以下であり、前記繊維径が0.2μm以上15μm以下である通気性支持材が、前記PTFE多孔質膜より空気の流れの上流側に配置されるマスク用通気フィルタ濾材。 A ventilation filter medium for a mask comprising a polytetrafluoroethylene (PTFE) porous membrane and a breathable support material formed from fibers, wherein a fiber diameter of at least one layer of the breathable support material is 0.2 μm or more and 15 μm. An air-permeable filter medium for a mask, wherein the air-permeable support material having a fiber diameter of 0.2 μm or more and 15 μm or less is disposed on the upstream side of the air flow from the PTFE porous membrane. 前記PTFE多孔質膜より空気の流れの上流側に、第1の通気性支持材と第2の通気性支持材とを含み、前記第1の通気性支持材の繊維径が前記第2の通気性支持材の繊維径より細いことを特徴とする請求項1記載のマスク用通気フィルタ濾材。 A first air-permeable support material and a second air-permeable support material are included on the upstream side of the air flow from the PTFE porous membrane, and the fiber diameter of the first air-permeable support material is the second air-permeable material. The ventilation filter medium for a mask according to claim 1, which is thinner than the fiber diameter of the conductive support material. 前記通気性支持材を介して、PTFE多孔質膜が2層以上積層されている請求項1記載のマスク用通気フィルタ濾材。 The ventilation filter medium for a mask according to claim 1, wherein two or more PTFE porous membranes are laminated via the breathable support material. 請求項1から3のいずれかに記載のマスク用通気フィルタ濾材を含むマスク用通気フィルタユニット。 The ventilation filter unit for masks containing the ventilation filter medium for masks in any one of Claim 1 to 3. 請求項4記載のマスク用通気フィルタユニットを含むマスク。 A mask comprising the ventilation filter unit for a mask according to claim 4.
JP2004246446A 2004-08-26 2004-08-26 Ventilation filter medium for masks Pending JP2006061808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246446A JP2006061808A (en) 2004-08-26 2004-08-26 Ventilation filter medium for masks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246446A JP2006061808A (en) 2004-08-26 2004-08-26 Ventilation filter medium for masks

Publications (1)

Publication Number Publication Date
JP2006061808A true JP2006061808A (en) 2006-03-09

Family

ID=36108731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246446A Pending JP2006061808A (en) 2004-08-26 2004-08-26 Ventilation filter medium for masks

Country Status (1)

Country Link
JP (1) JP2006061808A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120969A (en) * 2010-12-07 2012-06-28 Sumitomo Electric Fine Polymer Inc Porous multi-layer filter
JP2016077944A (en) * 2014-10-10 2016-05-16 住友電気工業株式会社 Porous laminate, and manufacturing method of porous laminate
JP2017523036A (en) * 2014-07-21 2017-08-17 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Fluoropolymer articles for bacterial filtration
JP2017528308A (en) * 2014-07-21 2017-09-28 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Fluoropolymer articles for mycoplasma filtration
CN111907085A (en) * 2020-07-28 2020-11-10 江苏康隆迪超净科技有限公司 Novel melt-blown fabric coated PTFE composite material and preparation process thereof
JP2021095649A (en) * 2019-12-15 2021-06-24 しづゑ 桑原 mask
CN113169413A (en) * 2018-11-26 2021-07-23 日本戈尔合同会社 Catalyst device for lead-acid battery and lead-acid battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267234A (en) * 1998-03-25 1999-10-05 Nitto Denko Corp Cloth for mask
JP2000061280A (en) * 1998-06-11 2000-02-29 Nitto Denko Corp Filter medium for air filter and its production
JP2000140587A (en) * 1998-11-16 2000-05-23 Tonen Tapirusu Kk Filter unit and dust-proof mask using filter unit
JP2001170461A (en) * 1999-10-07 2001-06-26 Daikin Ind Ltd Air filter medium, air filter pack and air filter unit using the same, and method for manufacturing air filter medium
JP2002172316A (en) * 2000-12-06 2002-06-18 Nitto Denko Corp Porous polytetrafluoroethylene film, and air-permeable laminate and filter unit prepared by using the same
JP2002370009A (en) * 2001-06-13 2002-12-24 Nitto Denko Corp Suction filter medium for turbine and use method therefor
JP2002370020A (en) * 2001-06-13 2002-12-24 Nitto Denko Corp Suction filter medium for turbine, its using method and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267234A (en) * 1998-03-25 1999-10-05 Nitto Denko Corp Cloth for mask
JP2000061280A (en) * 1998-06-11 2000-02-29 Nitto Denko Corp Filter medium for air filter and its production
JP2000140587A (en) * 1998-11-16 2000-05-23 Tonen Tapirusu Kk Filter unit and dust-proof mask using filter unit
JP2001170461A (en) * 1999-10-07 2001-06-26 Daikin Ind Ltd Air filter medium, air filter pack and air filter unit using the same, and method for manufacturing air filter medium
JP2002172316A (en) * 2000-12-06 2002-06-18 Nitto Denko Corp Porous polytetrafluoroethylene film, and air-permeable laminate and filter unit prepared by using the same
JP2002370009A (en) * 2001-06-13 2002-12-24 Nitto Denko Corp Suction filter medium for turbine and use method therefor
JP2002370020A (en) * 2001-06-13 2002-12-24 Nitto Denko Corp Suction filter medium for turbine, its using method and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120969A (en) * 2010-12-07 2012-06-28 Sumitomo Electric Fine Polymer Inc Porous multi-layer filter
JP2017523036A (en) * 2014-07-21 2017-08-17 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Fluoropolymer articles for bacterial filtration
JP2017528308A (en) * 2014-07-21 2017-09-28 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Fluoropolymer articles for mycoplasma filtration
JP2016077944A (en) * 2014-10-10 2016-05-16 住友電気工業株式会社 Porous laminate, and manufacturing method of porous laminate
CN113169413A (en) * 2018-11-26 2021-07-23 日本戈尔合同会社 Catalyst device for lead-acid battery and lead-acid battery
CN113169413B (en) * 2018-11-26 2024-03-22 日本戈尔合同会社 Catalyst device for lead-acid battery and lead-acid battery
JP2021095649A (en) * 2019-12-15 2021-06-24 しづゑ 桑原 mask
CN111907085A (en) * 2020-07-28 2020-11-10 江苏康隆迪超净科技有限公司 Novel melt-blown fabric coated PTFE composite material and preparation process thereof

Similar Documents

Publication Publication Date Title
CA2999397C (en) Air filter medium, air filter pack, and air filter unit
KR101353726B1 (en) Process for production of polytetrafluoroethylene porous membrane, filter medium and filter unit
EP3520874B1 (en) Air filter medium, air filter pack, and air filter unit
JP5784458B2 (en) Air filter media
EP3520873B1 (en) Air filter medium, air filter pack, and air filter unit
JP2000079332A (en) Filter medium for air filter
JPH05202217A (en) Porous polytetrafluoroethylene film
TWI618572B (en) Manufacturing method for air filter medium, air filter medium, and air filter pack
TWI750230B (en) Air filter media, air filter group and air filter unit
JP2005177641A (en) Air filter unit, its manufacturing method and its assembly
JP2000300921A (en) Air filter material and air filter unit using the same
JP2008055407A (en) Method for manufacturing polytetrafluoroethylene porous film and air filter filtering medium
JP2006289174A (en) Suction filter filtering medium and its using method
JP2002370020A (en) Suction filter medium for turbine, its using method and manufacturing method therefor
JP2001170424A (en) Filter material for air filter and air filter unit using the same
JP2006061808A (en) Ventilation filter medium for masks
JP2002346319A (en) Suction filter medium for turbine
JP2005205305A (en) Air filter medium
JP2007111697A (en) Air filter medium
JP2008279359A (en) Filter medium and filter unit using this filter medium
JP2002370009A (en) Suction filter medium for turbine and use method therefor
JP5094610B2 (en) Air filter medium and air filter unit using the same
JP2006075757A (en) Filter unit
KR20000011539A (en) Filter medium for air filters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803