JP2791568B2 - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JP2791568B2
JP2791568B2 JP63322202A JP32220288A JP2791568B2 JP 2791568 B2 JP2791568 B2 JP 2791568B2 JP 63322202 A JP63322202 A JP 63322202A JP 32220288 A JP32220288 A JP 32220288A JP 2791568 B2 JP2791568 B2 JP 2791568B2
Authority
JP
Japan
Prior art keywords
fuel cell
power generation
steam
fuel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63322202A
Other languages
Japanese (ja)
Other versions
JPH02170368A (en
Inventor
努 戸井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKI KK
Original Assignee
NITSUKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKI KK filed Critical NITSUKI KK
Priority to JP63322202A priority Critical patent/JP2791568B2/en
Publication of JPH02170368A publication Critical patent/JPH02170368A/en
Application granted granted Critical
Publication of JP2791568B2 publication Critical patent/JP2791568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃料電池の発電システムに関し、さらに詳し
くは燃料ガスの改質反応に使用する水蒸気使用量を低く
抑えて経済性を向上させた燃料電池の発電システムに関
する。
Description: FIELD OF THE INVENTION The present invention relates to a power generation system for a fuel cell, and more particularly, to a fuel in which the amount of steam used for a reforming reaction of a fuel gas is reduced to improve the economic efficiency. The present invention relates to a battery power generation system.

[従来技術] 燃料電池は、電解質を挾んで正、負の電極を置き、そ
れぞれの電極に酸素および水素を供給し、電気分解の逆
のプロセスを人為的に行わせる事によって電気を発生さ
せるもので、使われる電解質の種類によって、アルカリ
型、リン酸型、溶融炭酸塩型、固体電解質型などに大別
されている。
[Prior Art] A fuel cell generates electricity by placing positive and negative electrodes across an electrolyte, supplying oxygen and hydrogen to each electrode, and artificially performing the reverse process of electrolysis. Depending on the type of electrolyte used, the electrolyte is roughly classified into an alkaline type, a phosphoric acid type, a molten carbonate type, a solid electrolyte type, and the like.

このうち、溶融炭酸塩型および固体電解質型は高温動
作であり、燃料ガス組成の制約はほとんどなく、より発
電効率の高い燃料電池にできるのでその開発が期待され
ている。
Among them, the molten carbonate type and the solid electrolyte type are operated at a high temperature, and there are almost no restrictions on the fuel gas composition, so that a fuel cell having higher power generation efficiency can be obtained.

これらの燃料電池には水素および一酸化炭素ガスが燃
料ガスとして使用されるが、この燃料ガスは天然ガス、
メタノール、石炭ガス等を水蒸気改質して使用する。改
質には、天然ガスなどを燃料電池内部で水蒸気改質する
内部改質型および燃料電池外部で水蒸気改質する外部改
質型とがある。
These fuel cells use hydrogen and carbon monoxide gas as fuel gas.
Methanol, coal gas, etc. are used after steam reforming. The reforming includes an internal reforming type in which natural gas or the like is steam reformed inside the fuel cell and an external reforming type in which steam is reformed outside the fuel cell.

従来の固体電解質型の内部改質型燃料電池では、第4
図に示されるような構造において、陰極(水素極)で以
下のような改質反応および電極反応が起っている。
In a conventional solid electrolyte type internal reforming fuel cell,
In the structure shown in the figure, the following reforming reaction and electrode reaction occur at the cathode (hydrogen electrode).

改質反応/シフト反応 CH4+H2OCO+3H2 CO+H2OCO2+H2 電極反応(固体電解質型、O-透過型) 陰極 O-→1/2O2+e H2+1/2O2→H2O CO+1/2O2→CO2 陽極 1/2O2→O-−e このように、燃料電池の燃料極において、原料炭化水
素を水蒸気改質して(H2+CO)ガスを作る場合、炭化水
素に対し、一定量以上の水蒸気が必要になるが、この全
量を外部より供給するのは熱効率上好ましくない。
Reforming reaction / shift reaction CH 4 + H 2 OCO + 3H 2 CO + H 2 OCO 2 + H 2 electrode reaction (solid electrolyte type, O transmission type) Cathode O → 1 / 2O 2 + e H 2 + 1 / 2O 2 → H 2 O CO + 1 / 2O 2 → CO 2 anode 1 / 2O 2 → O −e Thus, at the fuel electrode of the fuel cell, when producing (H 2 + CO) gas by steam reforming of raw material hydrocarbons, Although a certain amount or more of steam is required, it is not preferable to supply the whole amount from the outside in terms of thermal efficiency.

[発明が解決しようとする課題] このような課題を改善するために、水蒸気の有効利用
方法として外部改質型のリン酸塩型の燃料電池におい
て、燃料電池の発電反応に伴なって発生する廃熱を水蒸
気として回収し、これを改質反応の原料とすることも行
なわれている。
[Problem to be Solved by the Invention] In order to improve such a problem, in an external reforming type phosphate type fuel cell as an effective use method of steam, it is generated along with the power generation reaction of the fuel cell. Waste heat is recovered as steam, and this is used as a raw material for the reforming reaction.

しかしながら、このような従来から行なわれている方
法では、水蒸気の節減が充分ではない。
However, in such a conventional method, the saving of water vapor is not sufficient.

本発明は、上記従来技術の問題点に鑑みて成されたも
ので、本発明の目的は外部より供給する水蒸気の量を少
なくし、しかも炭化水素の改質に必要十分な水蒸気を確
保して経済性を向上させた燃料電池の発電システムを提
供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to reduce the amount of steam supplied from the outside and secure sufficient and necessary steam for reforming hydrocarbons. An object of the present invention is to provide a fuel cell power generation system with improved economy.

[課題を解決するための手段および作用] 本発明者は、上記目的を達成するために鋭意検討した
結果、内部改質型の燃料電池を二段以上に分割して設置
し、第一段目に炭化水素と水蒸気を供給して改質および
発電をし、第一段目から流出する水蒸気を含むガスに炭
化水素を加えて第二段目に供給して改質および発電をす
ることにより、また第二段目以降で発生する水蒸気およ
び炭酸ガスを第一段目にリサイクルして再利用すること
により、上記課題を解決する本発明を完成するに至っ
た。
[Means and Actions for Solving the Problems] As a result of intensive studies to achieve the above object, the present inventor has found that an internal reforming type fuel cell is divided into two or more stages and installed in the first stage. By supplying hydrocarbons and steam to reforming and power generation, by adding hydrocarbons to the gas containing steam flowing out of the first stage and supplying it to the second stage to reform and generate power, In addition, the present invention that solves the above-mentioned problem has been completed by recycling and reusing steam and carbon dioxide gas generated in the second stage and thereafter.

すなわち本発明は、燃料電池を用いる発電システムに
おいて、燃料電池を二段以上に分割して設置し、上流の
燃料電池の燃料室から流出する水蒸気および炭酸ガスを
含むガスに炭化水素を加えて下流の燃料電池の改質反応
の原料として利用し発電することを特徴とする燃料電池
の発電システムである。
That is, the present invention relates to a power generation system using a fuel cell, in which the fuel cell is divided into two or more stages and installed, and hydrocarbons are added to a gas containing water vapor and carbon dioxide flowing out of the fuel chamber of the upstream fuel cell to add a hydrocarbon to the downstream. A fuel cell power generation system characterized in that it is used as a raw material for a fuel cell reforming reaction to generate power.

以下、本発明を図面を参照してさらに詳しく説明す
る。
Hereinafter, the present invention will be described in more detail with reference to the drawings.

第1図は、本発明の内部改質型の燃料電池発電システ
ムを示す概略図である。
FIG. 1 is a schematic diagram showing an internal reforming type fuel cell power generation system of the present invention.

第1図において、1および2は燃料電池、1a、2aは燃
料室、1b、2bは空気質、3は燃料ガス供給ライン、4は
水蒸気供給ライン、5はコンプレッサー、6は冷却器、
7は気液分離器、8a、8bは燃料器、9a、9bは空気供給ラ
イン、10a、10bは排気ガスラインをそれぞれ示す。
In FIG. 1, 1 and 2 are fuel cells, 1a and 2a are fuel chambers, 1b and 2b are air quality, 3 is a fuel gas supply line, 4 is a steam supply line, 5 is a compressor, 6 is a cooler,
7 denotes a gas-liquid separator, 8a and 8b denote fuel units, 9a and 9b denote air supply lines, and 10a and 10b denote exhaust gas lines.

本発明においてはまず、第1図に示すように、内部改
質型の燃料電池を二段以上設ける。燃料ガスの改質に必
要な水蒸気は一段目に供給する。水蒸気の供給方法は、
ボイラーで発生した水蒸気を供給するが、その一部は二
段目以後の燃料電池の燃料室出口ガスの一部をリサイク
ルして使用する。燃料電池の燃料質での改質反応で過剰
の水蒸気を添加することは、水素分圧PH2を低下させ、
起電力が落ちるので好ましくない。ボイラー給水により
水蒸気を発生させて用いる水蒸気量を削減するため、電
極反応で発生した水蒸気を利用する。
In the present invention, first, as shown in FIG. 1, two or more internal reforming fuel cells are provided. Steam required for reforming the fuel gas is supplied to the first stage. The method of supplying steam is
The steam generated in the boiler is supplied, and a part of the steam is used by recycling a part of the outlet gas of the fuel chamber of the second and subsequent fuel cells. Adding an excess of water vapor reforming reaction of the fuel quality of the fuel cell reduces the hydrogen partial pressure PH 2,
It is not preferable because the electromotive force drops. In order to reduce the amount of steam used by generating steam by boiler water supply, the steam generated by the electrode reaction is used.

原料ガス(CH4)は、一段、二段の各段に分割して供
給する。原料が、液化石油ガスまたはナフサの場合でも
低温水蒸気改質工程を付設すればCH4、H2、CO、CO2に改
質されたガスが得られるので本発明に適用することがで
きる。各燃料室へのCH4の分割注入は、各燃料室で発生
する水蒸気を使うことを目的としているが、このことは
燃料電池内の水素分圧の平均化を図ることができ、起電
力を一定に維持できる効果がある。
The raw material gas (CH 4 ) is supplied by being divided into one stage and two stages. Even if the raw material is liquefied petroleum gas or naphtha, a gas reformed into CH 4 , H 2 , CO, and CO 2 can be obtained if a low-temperature steam reforming step is added, so that the present invention can be applied to the present invention. Split injection of CH 4 to each fuel chamber, it is an object to use the steam generated in the fuel chamber, which can be made averaged partial pressure of hydrogen in the fuel cell, the electromotive force There is an effect that can be kept constant.

燃料電池出口ガスの一部は、冷却してH2Oを凝縮除去
したのち、空気を混合して接触燃焼させ、空気室に送入
するか、または冷却せず、空気を混合して燃焼させて空
気室に送入し、改室反応/発電反応の温度を維持する。
A part of the fuel cell outlet gas is cooled to condense and remove H 2 O, then mixed with air and burned in contact, and then sent to the air chamber or mixed and burned without cooling. Into the air chamber to maintain the temperature of the room change reaction / power generation reaction.

このように本発明では、上流の燃料電池の燃料室から
流出する水蒸気および炭酸ガスを下流の燃料電池の改室
反応の原料として利用して発電する。また、燃料室から
流出する水蒸気および炭酸ガスをリサイクルして各燃料
電池の改室反応の原料として利用して発電する。
As described above, in the present invention, power is generated by using the steam and the carbon dioxide gas flowing out of the fuel chamber of the upstream fuel cell as a raw material for the reaction of the downstream fuel cell. In addition, the steam and carbon dioxide gas flowing out of the fuel chamber are recycled and used as a raw material for a room change reaction of each fuel cell to generate power.

燃料電池における電極反応は以下の通りである。 The electrode reaction in the fuel cell is as follows.

空気極(陽極) 1/2O2→O-−e 燃料極(陰極) O-→1/2O2+e H2→1/2O2+H2O 改質反応では、 (CH4+2H2O→CO2+4H2、 4H2+2O2→4H2O) であるので、結局、燃料極では、 CH4+2O2→CO2+2H2O、 の反応が起っている。Air electrode (anode) 1 / 2O 2 → O - -e anode (cathode) O - → 1 / 2O 2 + e The H 2 → 1 / 2O 2 + H 2 O reforming reactions, (CH 4 + 2H 2 O → CO 2 + since 4H 2, a 4H 2 + 2O 2 → 4H 2 O), eventually, the fuel electrode, CH 4 + 2O 2 → CO 2 + 2H 2 O, the reaction of which occurred.

このように燃料極で発生する水蒸気を改室反応に利用
しても、CH4 1モルにつき2モルのH2Oが発生するので、
H2O/CH4=2は維持できる。
Thus, even if the steam generated at the fuel electrode is used for the re-rooming reaction, 2 moles of H 2 O are generated per mole of CH 4 ,
H 2 O / CH 4 = 2 can be maintained.

本発明は、前記燃料電池として溶融炭酸塩型でも固体
電解質型のいずれでも好しく適用できる。溶融炭酸塩型
では、500℃以上の温度で液体の炭酸カリウム、炭酸リ
チウムなどの炭酸塩を電解質として用いる。また、固体
電解質型の燃料電池では酸化カルシウム、酸化トリウ
ム、酸化セリウムまたは酸化イットリウムなどで安定化
したジルコニウムなどが好ましく用いられる。
The present invention can be preferably applied to either the molten carbonate type or the solid electrolyte type as the fuel cell. In the molten carbonate type, a liquid carbonate such as potassium carbonate and lithium carbonate is used as an electrolyte at a temperature of 500 ° C. or higher. In a solid electrolyte fuel cell, zirconium stabilized with calcium oxide, thorium oxide, cerium oxide, yttrium oxide, or the like is preferably used.

また、燃料電池として、燃料室内部で燃料ガスを水蒸
気改質する内部改質型はもちろんのこと、各燃料電池の
直前に外部改質器を設ければ、外部改質型の燃料電池で
も本発明が好適に適用できる。
In addition to the internal reforming type in which the fuel gas is steam reformed inside the fuel chamber as well as the external reforming type fuel cell provided that an external reformer is provided immediately before each fuel cell, the fuel cell is not limited to the internal reforming type. The invention can be suitably applied.

[実施例] 以下、本発明を実施例および比較例によりさらに詳し
く説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1 第2図に示される内部改質型の多段で構成される固体
電解質型の燃料電池発電装置により、メタンガスを100.
000Nl/hr、水蒸気を200.000Nl/hrでS/C=2.0として第1
段目の供給ライン1に導入した。
Example 1 100 g of methane gas was discharged from a solid electrolyte type fuel cell power generation device composed of multiple stages of an internal reforming type shown in FIG.
000Nl / hr, water vapor 200.000Nl / hr and S / C = 2.0
It was introduced into the supply line 1 of the stage.

各改質器の温度を900℃、圧力を1.5気圧として水蒸気
改質反応を行ない、第1段目の排出口ライン2における
ガス組成は以下の通りであった。
A steam reforming reaction was performed at a temperature of each reformer of 900 ° C. and a pressure of 1.5 atm. The gas composition in the first-stage outlet line 2 was as follows.

CH4 0.02 Nl/hr H2 125.257Nl/hr CO 37.749Nl/hr CO2 62.249Nl/hr H2O 274.746Nl/hr このようにして第1段目の排出ライン2におけるガス
組成中に含まれる水蒸気を利用して、第2段目以降から
は、上段からの流出ガス中の水蒸気に対してS/C=2.0を
維持するようにメタンガスのみを各段の入口に供給し
た。
CH 4 0.02 Nl / hr H 2 125.257 Nl / hr CO 37.749 Nl / hr CO 2 62.249 Nl / hr H 2 O 274.746 Nl / hr Thus, the water vapor contained in the gas composition in the first stage discharge line 2 From the second stage onward, only methane gas was supplied to the inlet of each stage so as to maintain S / C = 2.0 with respect to the water vapor in the effluent gas from the upper stage.

このような燃料電池の運転状態での、各番号を付した
第2段目以降の各段の供給口および排出口におけるガス
成分を測定し、それらの結果をそれぞれ第1表に示し
た。
In such an operating state of the fuel cell, gas components at the supply port and the discharge port of each stage from the second stage onward with each number were measured, and the results are shown in Table 1, respectively.

本実施例に用いた内部改質型の多段の燃料電池発電装
置における発電反応で消費した水素ガスの総量は、229
7.815Nl/hrであった。
The total amount of hydrogen gas consumed in the power generation reaction in the internal reforming type multi-stage fuel cell power generator used in the present example was 229
It was 7.815 Nl / hr.

この時、CH4の供給量は826.248Nl/hr、H2Oの供給量は
200.000Nl/hrであるから、H2O/CH4=200.000/826.248=
0.242であった。但し、各段では、H2O/CH4=2.0を維持
しているのは前述した通りである。
At this time, the supply amount of CH 4 was 826.248 Nl / hr, and the supply amount of H 2 O was
Since it is 200.000Nl / hr, H 2 O / CH 4 = 200.000 / 826.248 =
It was 0.242. However, in each stage, H 2 O / CH 4 = 2.0 is maintained as described above.

比較例1 第3図に示されるような、従来からの内部改質型の一
段で構成される溶融炭酸塩型の燃料電池発電装置で、改
質および発電反応を行なった。
Comparative Example 1 As shown in FIG. 3, a reforming and power generation reaction were performed in a conventional molten carbonate type fuel cell power generation device composed of one stage of an internal reforming type.

改質反応に導入したメタンガスおよび水蒸気は、発電
反応で消費される水素ガス量が実施例1と同じになるよ
うに以下に示されるようにそれぞれメタンガスおよび水
蒸気を導入した。
The methane gas and water vapor introduced into the reforming reaction were methane gas and water vapor, respectively, as shown below so that the amount of hydrogen gas consumed in the power generation reaction was the same as in Example 1.

CH4 969.587 Nl/hr H2O 1939.174Nl/hr このガス組成で改質反応を行ない、実施例1と同様に
水素ガスの75%を利用して発電を行なった。電極反応終
了後の燃料電池の排出口でなガス組成は以下の通りであ
った。
CH 4 969.587 Nl / hr H 2 O 1939.174 Nl / hr A reforming reaction was performed with this gas composition, and power generation was performed using 75% of hydrogen gas as in Example 1. The gas composition at the outlet of the fuel cell after the completion of the electrode reaction was as follows.

CH4 0.019Nl/hr H2 1214.478Nl/hr CO 366.009Nl/hr CO2 603.558Nl/hr H2O 2663.844Nl/hr 本比較例に用いた内部改質型の一段の燃料電池発電装
置の発電反応で消費した水素ガスの総量も2297.815Nl/h
rであった。
CH 4 0.019Nl / hr H 2 1214.478Nl / hr CO 366.009Nl / hr CO 2 603.558Nl / hr H 2 O 2663.844Nl / hr Power generation reaction of the internal reforming type single-stage fuel cell power generator used in this comparative example The total amount of hydrogen gas consumed in 2297.815Nl / h
r.

この時、CH4の供給量は969.587Nl/hr、H2Oの供給量は
1939.174Nl/hrであるから、H2O/CH4=1939.174/969.587
=2.0であった。
At this time, the supply amount of CH 4 is 969.587 Nl / hr, and the supply amount of H 2 O is
Since it is 1939.174 Nl / hr, H 2 O / CH 4 = 1939.174 / 969.587
= 2.0.

以上のように、実施例および比較例ともに同じ水素消
費量として同じ発電量で燃料電池を運転した場合、発電
量は同じでも上段で生成した水蒸気を利用する本発明に
よれば、水蒸気使用量が極めて節減されることがわか
る。このように本発明による燃料電池の発電システム
は、発電反応により生成するスチームを利用し、炭化水
素の改質に必要十分な水蒸気量を確保することにより、
外部より供給するスチームを著しく少なくすることがで
きる。
As described above, when the fuel cell is operated with the same hydrogen consumption and the same power generation amount in both the example and the comparative example, according to the present invention that uses the steam generated in the upper stage even if the power generation amount is the same, the steam usage amount is reduced. It can be seen that the savings are extremely high. As described above, the fuel cell power generation system according to the present invention utilizes steam generated by the power generation reaction, and secures a sufficient amount of steam necessary for reforming hydrocarbons.
Steam supplied from outside can be significantly reduced.

[発明の効果] 以上説明したように、本発明の燃料電池の発電システ
ムは以下のような効果を有する。
[Effects of the Invention] As described above, the fuel cell power generation system of the present invention has the following effects.

炭化水素の改質に必要な水蒸気は、燃料電池の燃料
極で発生したものを利用するので水蒸気使用量を削減で
きる。
As the steam required for the reforming of hydrocarbons is generated at the fuel electrode of the fuel cell, the amount of steam used can be reduced.

水素分圧が平均化されるので、一定の起電力が得ら
れる。
Since the hydrogen partial pressure is averaged, a constant electromotive force is obtained.

固体電解質型の燃料電池だけでなく溶融炭酸塩型の
燃料電池にも好適に適用できる。
The present invention can be suitably applied to not only a solid electrolyte fuel cell but also a molten carbonate fuel cell.

また、内部改質型の燃料電池に限らず、燃料電池と
燃料電池との間に改質装置を設ける外部改質型でも同等
の効果が得られる。
The same effect can be obtained not only with the internal reforming type fuel cell but also with the external reforming type in which a reforming device is provided between the fuel cells.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の発電システムを示す内部改質型の溶
融炭酸塩型燃料電池の概略図、 第2図は、実施例で用いた内部改質型の多段で構成され
る溶融炭酸塩型の燃料電池発電装置の概略図、 第3図は、従来の一段で構成される内部改質型の溶融炭
酸塩型燃料電池の概略図、 第4図は、従来技術の溶融炭酸塩型燃料電池の構造を示
す断面図である。 図中: 1、2:燃料電池、 1a、2a:燃料室、 1b、2b:空気室、 3:燃料ガス供給口ライン、 4:水蒸気供給口ライン、 5:コンプレッサー、 6:冷却器、 7:気液分離器 8a、8b:燃焼器、 9a、9b:空気供給口ライン、 10a、10bは排気ガスライン。
FIG. 1 is a schematic view of an internal reforming type molten carbonate fuel cell showing a power generation system according to the present invention, and FIG. 2 is a multistage internal reforming type molten carbonate used in Examples. FIG. 3 is a schematic view of a conventional internal reforming type molten carbonate fuel cell composed of one stage, and FIG. 4 is a conventional molten carbonate type fuel cell. It is sectional drawing which shows the structure of a battery. In the figure: 1, 2: fuel cell, 1a, 2a: fuel chamber, 1b, 2b: air chamber, 3: fuel gas supply line, 4: steam supply line, 5: compressor, 6: cooler, 7: Gas-liquid separator 8a, 8b: combustor, 9a, 9b: air supply line, 10a, 10b are exhaust gas lines.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料電池を用いる発電システムにおいて、
燃料電池を二段以上に分割して設置し、上流の燃料電池
の燃料室から流出する水蒸気および炭酸ガスを含むガス
に炭化水素を加えて下流の燃料電池の改質反応の原料と
して利用し発電することを特徴とする燃料電池の発電シ
ステム。
1. A power generation system using a fuel cell,
The fuel cell is divided into two or more stages and installed, and hydrocarbons are added to a gas containing steam and carbon dioxide gas flowing out of the fuel chamber of the upstream fuel cell, and used as a raw material for the reforming reaction of the downstream fuel cell to generate power. A power generation system for a fuel cell.
【請求項2】燃料室から流出する水蒸気および炭酸ガス
を含むガスをリサイクルして各燃料電池の改質反応の原
料として利用することを特徴とする請求項1に記載の発
電システム。
2. The power generation system according to claim 1, wherein a gas containing water vapor and carbon dioxide flowing out of the fuel chamber is recycled and used as a raw material for a reforming reaction of each fuel cell.
JP63322202A 1988-12-22 1988-12-22 Fuel cell power generation system Expired - Lifetime JP2791568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63322202A JP2791568B2 (en) 1988-12-22 1988-12-22 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63322202A JP2791568B2 (en) 1988-12-22 1988-12-22 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH02170368A JPH02170368A (en) 1990-07-02
JP2791568B2 true JP2791568B2 (en) 1998-08-27

Family

ID=18141094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63322202A Expired - Lifetime JP2791568B2 (en) 1988-12-22 1988-12-22 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2791568B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2929034B2 (en) * 1990-09-19 1999-08-03 石川島播磨重工業株式会社 Molten carbonate fuel cell power generator
JP3257604B2 (en) * 1992-09-18 2002-02-18 石川島播磨重工業株式会社 Fuel cell generator
NL1004513C2 (en) 1996-11-13 1998-05-29 Stichting Energie Series connected fuel cell system.
JPH10334930A (en) * 1997-05-28 1998-12-18 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Method of preventing fused carbonate type fuel cell from internally short-circuiting by cathode elusion
JP5123453B2 (en) * 2001-09-21 2013-01-23 三菱重工業株式会社 Turbine power generation equipment
JP3917838B2 (en) * 2001-10-12 2007-05-23 三菱重工業株式会社 Fuel cell system and combined power generation system
JP4719580B2 (en) * 2006-01-30 2011-07-06 株式会社日立製作所 Fuel cell power generation system and power generation method
DE102008033986B4 (en) * 2008-07-21 2016-07-21 Sunfire Gmbh Fuel cell system with two series-connected fuel cell stacks and method for operating such a fuel cell system
DE102009031774B4 (en) 2009-06-30 2012-02-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High-temperature fuel cell system
JP5919139B2 (en) * 2012-08-24 2016-05-18 東京瓦斯株式会社 High temperature fuel cell system
US10680261B2 (en) 2017-10-26 2020-06-09 Lg Electronics, Inc. Fuel cell systems with in-block reforming

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207254A (en) * 1984-03-30 1985-10-18 Mitsubishi Electric Corp Method of controlling flow rate of internal- reformation-type fuel cell
JPS62274560A (en) * 1986-05-23 1987-11-28 Mitsubishi Electric Corp Composite type fuel cell power generating system

Also Published As

Publication number Publication date
JPH02170368A (en) 1990-07-02

Similar Documents

Publication Publication Date Title
US6531243B2 (en) Solid oxide fuel operating with an excess of fuel
EP0423177B1 (en) Method of preparing ammonia
US4532192A (en) Fuel cell system
JP6397502B2 (en) Reformer / electrolyzer / refiner (REP) assembly for hydrogen production, system incorporating the assembly, and hydrogen production method
US4917971A (en) Internal reforming fuel cell system requiring no recirculated cooling and providing a high fuel process gas utilization
JPH09129255A (en) Power generating system for combined cycle of indirect combustion gas turbine and doubled fuel cell
CA1242241A (en) Direct use of methanol fuel in a molten carbonate fuel cell
JPH0364866A (en) Fuel cell system
US10680265B2 (en) Energy storage using an REP with an engine
JP2791568B2 (en) Fuel cell power generation system
KR20060048153A (en) Fuel processing method and system
US20230046387A1 (en) Method and plant for producing hydrogen
JP2000501227A (en) Operating method of high-temperature fuel cell equipment and high-temperature fuel cell equipment
JPH05163180A (en) Methanol synthesis using hydrocarbon gas as raw material
US20050196653A1 (en) Apparatus and method for operation of a high temperature fuel cell system using recycled anode exhaust
JPH06103629B2 (en) Combined fuel cell power generation facility
KR101978374B1 (en) Fuel cell-engine hybrid power generation system with multi-stage reformer structure
US20230352702A1 (en) Hydrogen Generation Using a Fuel Cell System with an Rep
JPH0665060B2 (en) Molten carbonate fuel cell power generation system
JPH11135140A (en) Combined power generating facilities recycling anode exhaust gas
JPH0358154B2 (en)
JPH03236166A (en) Power generating method for molten carbonate fuel cell
JPS6124171A (en) Power generating system using fused carbonate type fuel cell
JPH08162135A (en) Solid electrolytic fuel cell generating system
JP2005056735A (en) Fuel cell power generation system