JPH10334930A - Method of preventing fused carbonate type fuel cell from internally short-circuiting by cathode elusion - Google Patents

Method of preventing fused carbonate type fuel cell from internally short-circuiting by cathode elusion

Info

Publication number
JPH10334930A
JPH10334930A JP9153112A JP15311297A JPH10334930A JP H10334930 A JPH10334930 A JP H10334930A JP 9153112 A JP9153112 A JP 9153112A JP 15311297 A JP15311297 A JP 15311297A JP H10334930 A JPH10334930 A JP H10334930A
Authority
JP
Japan
Prior art keywords
cathode
anode
pressure
fuel cell
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9153112A
Other languages
Japanese (ja)
Inventor
Shinji Mukai
新治 向井
Hidekazu Kasai
英一 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOYU TANSANENGATA NENRYO DENCH
YOYU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Original Assignee
YOYU TANSANENGATA NENRYO DENCH
YOYU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOYU TANSANENGATA NENRYO DENCH, YOYU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI filed Critical YOYU TANSANENGATA NENRYO DENCH
Priority to JP9153112A priority Critical patent/JPH10334930A/en
Publication of JPH10334930A publication Critical patent/JPH10334930A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To prevent internal short circuit from being caused between a cathode and an anode by deposited nickel. SOLUTION: An anode exhaust gas line 4 connected to the outlet side of an anode 3 is connected to the inlet side of a cathode 2. A recycling blower 5 is arranged in the midway of the anode exhaust gas line 4. By recycling anode exhaust gas for supplying to the cathode 2 to control an electrodes deferential pressure so that a pressure of the anode 3 is higher than that of the anode 2, eluted nickel in an electrolyte plate is prevented from spreading to the anode side for preventing internal short circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃料の有する化学エ
ネルギーを直接電気エネルギーに変換するエネルギー部
門で用いる燃料電池のうち、特に溶融炭酸塩型燃料電池
のカソードから電解質板中へ溶出するNiによるカソー
ドとアノード間の内部短絡を防止するための方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell used in the energy sector which directly converts chemical energy of a fuel into electric energy, in particular, a cathode made of Ni eluted from a cathode of a molten carbonate fuel cell into an electrolyte plate. And a method for preventing an internal short circuit between the anode and the anode.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は、電解質として
の溶融炭酸塩を多孔質物質にしみ込ませてなる電解質板
を、カソード(酸素極)とアノード(燃料極)の両電極
で両面から挟んで、カソード側に酸化ガスを供給すると
共にアノード側に燃料ガスを供給するようにしたものを
1セルとして、各セルをセパレータを介し多層に積層し
てスタックとするようにしてあるが、上記カソード材料
としては、一般に酸化ニッケルNiOが用いられてい
る。
2. Description of the Related Art In a molten carbonate fuel cell, an electrolyte plate in which a molten carbonate as an electrolyte is impregnated into a porous material is sandwiched from both sides by a cathode (oxygen electrode) and an anode (fuel electrode). A cell in which an oxidizing gas is supplied to the cathode side and a fuel gas is supplied to the anode side is defined as one cell, and the cells are stacked in multiple layers via a separator. As a material, nickel oxide NiO is generally used.

【0003】上記溶融炭酸塩型燃料電池においては、カ
ソード材であるニッケルNiが電解質板中に溶出して析
出して行く性質がある。この溶出の主な反応は、 NiO+CO2 →Ni2++CO3 2- であり、溶出したNi2+イオンがアノード側から拡散し
て来た水素によって還元され電解質板中にNiの金属粒
子の形で析出する。このようなカソードから電解質板中
へのNiの析出は、長期発電の際にカソードとアノード
間の短絡を引き起す原因となる。すなわち、一般的な運
転条件の下、安定した状態においては、Niの析出は、
図6(イ)に示す如く電解質板1のカソード2側に寄っ
た位置(×印で示す)というように比較的限られた範囲
に限定されるが、図6(ロ)に示す如く、電解質板1に
小さな欠損aがある場合等不安定な状態になると、電解
質板1中のガス雰囲気の分布が変化するため、図6
(ロ)、更には図6(ハ)のように析出位置(×印)の
範囲が厚さ方向に広くなり、析出したNiがアノード3
側まで達してカソード2とアノード3間で短絡を引き起
す確率が高くなる。
[0003] The molten carbonate fuel cell has a property that nickel Ni as a cathode material elutes and precipitates in an electrolyte plate. The main reaction of this elution is NiO + CO 2 → Ni 2+ + CO 3 2- , and the eluted Ni 2+ ions are reduced by hydrogen diffused from the anode side and form Ni metal particles in the electrolyte plate. Precipitates out. Such precipitation of Ni from the cathode into the electrolyte plate causes a short circuit between the cathode and the anode during long-term power generation. That is, in a stable state under general operating conditions, the precipitation of Ni is
As shown in FIG. 6 (a), the position is limited to a relatively limited range such as a position (indicated by a cross) near the cathode 2 side of the electrolyte plate 1. However, as shown in FIG. When the plate 1 is in an unstable state such as when there is a small defect a, the distribution of the gas atmosphere in the electrolyte plate 1 changes.
(B) Further, as shown in FIG. 6 (c), the range of the deposition position (marked by x) becomes wider in the thickness direction, and the deposited Ni
Side, and the probability of causing a short circuit between the cathode 2 and the anode 3 increases.

【0004】更に、一般的には、溶融炭酸塩型燃料電池
では極間差圧を少なくする条件で発電試験が行われてお
り、カソード側の差圧PCとアノード側の差圧PAは通
常電池反応によりセル内部でガス流れ方向に減少する
が、上記カソード差圧PCとアノード差圧PAの大小関
係はセル内部でガス流れ方向に沿い図7に示す如く上下
してPA<PCとなる領域が必ず存在するため、セル全
体を通じては電解質板中のガス雰囲気分布が変化し、図
6(ニ)に示す如く電解質板1に貫通するような欠陥b
がある場合には、PC>PAになると、図6(ニ)に示
す如く析出Niの範囲がよりアノード3側へ移行し易
く、内部短絡を招き易くなる。
Further, in general, in a molten carbonate fuel cell, a power generation test is performed under the condition of reducing the pressure difference between the electrodes. The reaction decreases in the gas flow direction inside the cell, but the magnitude relationship between the cathode differential pressure PC and the anode differential pressure PA in the cell flows along the gas flow direction as shown in FIG. Since the gas is always present, the gas atmosphere distribution in the electrolyte plate changes throughout the cell, and the defect b penetrates through the electrolyte plate 1 as shown in FIG.
In some cases, when PC> PA, as shown in FIG. 6 (d), the range of the deposited Ni is more likely to shift to the anode 3 side, and an internal short circuit is more likely to occur.

【0005】[0005]

【発明が解決しようとする課題】ところが、現在までの
ところでは、上記した内部短絡を防ぐための運転条件は
特に取り上げられて検討されていないのが実情であり、
又、上述したように電池発電において安定した運転時及
び不安定な運転時(何らかの異常時)でも、差圧制御や
運転条件(ガス供給の条件)は極間差圧が小さくなるよ
うに決めているのが一般的であるため、カソードとアノ
ード間での内部短絡の防止は図られていない。
However, at present, the operating conditions for preventing the internal short circuit described above have not been particularly taken up and studied.
Also, as described above, even during stable operation and unstable operation (when there is some abnormality) in battery power generation, the differential pressure control and the operating conditions (gas supply conditions) are determined so that the gap pressure between electrodes becomes small. However, it is not attempted to prevent an internal short circuit between the cathode and the anode.

【0006】そこで、本発明は、カソード溶出により析
出したニッケル位置を或る範囲に抑えることによって内
部短絡を防止するようにしようとするものである。
Accordingly, the present invention is intended to prevent an internal short circuit by suppressing the position of nickel precipitated by cathode elution within a certain range.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために、電解質板の両側にカソードとアノードの
両電極を配し、カソード側に酸化ガスを供給すると共に
アノード側に燃料ガスを供給するようにしてあるセルを
積層してなる溶融炭酸塩型燃料電池の上記アノードから
排出されるアノード排ガスをカソード入口側にリサイク
ルさせてカソード側に供給するようにし、アノード側の
圧力をカソード側の圧力よりも高くするよう差圧制御を
行うようにする方法とする。
According to the present invention, in order to solve the above-mentioned problems, a cathode and an anode are arranged on both sides of an electrolyte plate, an oxidizing gas is supplied to the cathode and a fuel gas is supplied to the anode. The anode exhaust gas discharged from the anode of the molten carbonate fuel cell formed by stacking certain cells is supplied to the cathode inlet side and supplied to the cathode side, and the pressure on the anode side is reduced to the cathode side. The differential pressure control is performed so as to be higher than the side pressure.

【0008】セルのガス流れ方向に対し、どこの個所で
もアノード側とカソード側の差圧がアノード側>カソー
ド側となるので、電解質板中のニッケル析出位置をカソ
ード側に抑えてアノード側へ広がることを防止できて、
内部短絡を防止できる。
[0008] Since the pressure difference between the anode side and the cathode side is greater than the anode side and the cathode side at any point in the gas flow direction of the cell, the nickel deposition position in the electrolyte plate is suppressed to the cathode side and spreads to the anode side. Can be prevented
Internal short circuit can be prevented.

【0009】又、アノード排ガスラインとカソード排ガ
スラインに圧力調整機構を設けて差圧制御を行わせた
り、アノード排ガスラインにオリフィスを設けて、圧力
損失による差圧制御を行わせるようにしても同様に内部
短絡を防止できる。
The same applies to the case where a pressure adjustment mechanism is provided in the anode exhaust gas line and the cathode exhaust gas line to perform the differential pressure control, or an orifice is provided in the anode exhaust gas line to perform the differential pressure control by the pressure loss. Internal short circuit can be prevented.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】本発明のカソード溶出による内部短絡防止
方法は、基本的にはセル内部でガス流れ方向のどの個所
においてもアノード差圧PA>カソード差圧PCとなる
ように差圧制御を行って、電解質板中のニッケル析出位
置をカソード側の限られた範囲に限定させることによ
り、内部短絡を防止するようにするものである。
The method of preventing internal short-circuiting due to cathode elution according to the present invention basically controls the pressure difference so that the anode pressure difference PA> cathode pressure difference PC at any point in the gas flow direction inside the cell. By limiting the nickel deposition position in the electrolyte plate to a limited range on the cathode side, an internal short circuit is prevented.

【0012】図1は具体的な一実施の形態を原理的に示
すもので、電解質板1の両側にカソード2とアノード3
の両電極を配置して、カソード2側に酸化ガスOGを供
給すると共にアノード3側に燃料ガスFGを供給するよ
うにしたセルにおいて、アノード3から排出されたアノ
ード排ガスAGのライン4をカソード2の入口側に接続
し、リサイクルブロワ5によりアノード排ガスAGをカ
ソード2の入口側に導いてカソード2へ供給させるよう
にする。
FIG. 1 shows a specific embodiment in principle. A cathode 2 and an anode 3 are provided on both sides of an electrolyte plate 1.
In the cell in which the oxidizing gas OG is supplied to the cathode 2 and the fuel gas FG is supplied to the anode 3, a line 4 of the anode exhaust gas AG discharged from the anode 3 is connected to the cathode 2. The exhaust gas AG is guided to the inlet side of the cathode 2 by the recycle blower 5 and supplied to the cathode 2.

【0013】なお、図1は本発明の原理を示すもので、
アノード排ガスAG中の水を気水分離器で除去する機構
や、リサイクルしたアノード排ガスを燃焼する燃焼器や
カソードの冷却部等は省略してある。
FIG. 1 shows the principle of the present invention.
A mechanism for removing water in the anode exhaust gas AG with a steam separator, a combustor for burning the recycled anode exhaust gas, and a cooling unit for the cathode are omitted.

【0014】アノード3に供給された燃料ガスFGは、
アノード3で H2 +CO3 2-→CO2 +H2 O+2e の反応が行われてCO2 が生成される。このCO2 ガス
をカソード2の入口側へリサイクルブロワ5の運転によ
りライン4を経てリサイクルさせることにより、アノー
ド3側の圧力PAをカソード2側の圧力PCよりもやや
高くなるようにする。これにより図2に示す如く、セル
内のガス流れ方向に対してアノード3側とカソード2側
の差圧をどの時点においてもPA>PCとなるようにす
ることができ、電解質板中のニッケル析出位置を、アノ
ード3とカソード2間の厚さ方向に対しアノード3側へ
幅広くならないようにカソード側に寄ったところに限定
させることができる。
The fuel gas FG supplied to the anode 3 is
The reaction of H 2 + CO 3 2- → CO 2 + H 2 O + 2e is performed at the anode 3 to generate CO 2 . The CO 2 gas is recycled to the inlet side of the cathode 2 through the line 4 by operating the recycle blower 5 so that the pressure PA on the anode 3 side is slightly higher than the pressure PC on the cathode 2 side. As a result, as shown in FIG. 2, the pressure difference between the anode 3 side and the cathode 2 side with respect to the gas flow direction in the cell can be set to PA> PC at any time, and nickel deposition in the electrolyte plate can be achieved. The position can be limited to a position closer to the cathode side so as not to be wider toward the anode 3 in the thickness direction between the anode 3 and the cathode 2.

【0015】図3は図1におけるカソード排ガスライン
6の途中に圧力調整機構として圧力調整器7と圧力調整
弁8を設け、カソード2の出口側の圧力を調整すること
によって、カソード2側とアノード3側の差圧を或る範
囲内でPA>PCが実現できるようにしたものである。
FIG. 3 shows that a pressure regulator 7 and a pressure regulating valve 8 are provided as a pressure regulating mechanism in the middle of the cathode exhaust gas line 6 in FIG. The differential pressure on the third side is such that PA> PC can be realized within a certain range.

【0016】次に、図4は本発明の他の実施の形態を示
すもので、図1に示すものと同様な構成のセルにおい
て、アノード3出口側のアノード排ガスライン4とカソ
ード2出口側のカソード排ガスライン6の各途中位置
に、圧力調整機構としての圧力調整器7と圧力調整弁8
をそれぞれ設置し、セル内のガス流れ方向に対しアノー
ド3側とカソード2側の差圧が常に図2に示す関係にあ
るようにアノード3側の圧力がカソード2側の圧力より
僅かに高く設定されるようにしたものである。
FIG. 4 shows another embodiment of the present invention. In a cell having the same structure as that shown in FIG. 1, an anode exhaust gas line 4 at the anode 3 outlet side and a cathode exhaust line 4 at the cathode 2 outlet side are shown. At each intermediate position of the cathode exhaust gas line 6, a pressure regulator 7 as a pressure regulating mechanism and a pressure regulating valve 8
The pressure on the anode 3 side is set slightly higher than the pressure on the cathode 2 side so that the differential pressure between the anode 3 side and the cathode 2 side always has the relationship shown in FIG. 2 with respect to the gas flow direction in the cell. It is made to be done.

【0017】この実施の形態によれば、アノード排ガス
ライン4上の圧力調整弁8による値を、たとえば、3.
1〜3.2kg/cm2 とするとき、カソード排ガスライン
6上の圧力調整弁8による値を、たとえば、3kg/cm2
とする如く、アノード側圧力PAとカソード側圧力PC
が、PA>PCとなるようにする。これによりカソード
2から溶出して電解質板1中のカソード2寄りに析出し
たニッケル析出位置を、アノード3側へ広げることなく
カソード2側に抑えることができ、内部短絡を防止する
ことができる。
According to this embodiment, the value of the pressure regulating valve 8 on the anode exhaust gas line 4 is, for example, 3.
When the 1~3.2kg / cm 2, the value by the pressure control valve 8 on the cathode exhaust gas line 6, for example, 3 kg / cm 2
So that the anode pressure PA and the cathode pressure PC
Is set so that PA> PC. As a result, the nickel deposition position eluted from the cathode 2 and deposited near the cathode 2 in the electrolyte plate 1 can be suppressed to the cathode 2 side without expanding to the anode 3 side, and an internal short circuit can be prevented.

【0018】なお、図4において、二点鎖線の如くアノ
ード排ガスライン4を、図1に示す如くカソード2の入
口側に接続して、リサイクルブロワ5によりアノード排
ガスAGをリサイクルさせるようにすることもできる。
In FIG. 4, the anode exhaust gas line 4 may be connected to the inlet side of the cathode 2 as shown by the two-dot chain line, and the anode exhaust gas AG may be recycled by the recycle blower 5 as shown in FIG. it can.

【0019】更に、図5は本発明の更に他の実施の形態
を示すもので、図1に示すものと同様な構成のセルにお
いて、アノード排ガスライン4の途中に、オリフィス9
を設け、該オリフィス9による圧力損失を利用してアノ
ード3側の圧力をカソード2側の圧力よりも高くしてお
くようにし、且つアノード排ガスAGとカソード排ガス
CGを燃焼器10に導入して燃焼させた後、カソード2
の入口側へライン11を接続して、リサイクルブロワ1
2により燃焼器10で生成されたCO2 ガスをカソード
2へリサイクルさせるようにすると共に、カソード排ガ
スライン6の途中よりカソード排ガスCGの一部をライ
ン13により取り出すようにしたものである。
FIG. 5 shows still another embodiment of the present invention. In a cell having the same structure as that shown in FIG.
The pressure on the anode 3 is made higher than the pressure on the cathode 2 by utilizing the pressure loss caused by the orifice 9, and the anode exhaust gas AG and the cathode exhaust gas CG are introduced into the combustor 10 for combustion. After that, cathode 2
Line 11 is connected to the inlet side of the
2, the CO 2 gas generated in the combustor 10 is recycled to the cathode 2, and a part of the cathode exhaust gas CG is taken out of the cathode exhaust line 6 through a line 13.

【0020】この実施の形態においては、オリフィス9
により圧力損失を与えるようにすることによりアノード
3側とカソード2側の差圧をPA>PCとすることがで
き、上記各実施の形態の場合と同様に電解質板1中のニ
ッケル析出位置をカソード2側に抑えておくことができ
て、内部短絡を防止することができる。
In this embodiment, the orifice 9
The pressure difference between the anode 3 side and the cathode 2 side can be set to PA> PC by applying a pressure loss, and the nickel deposition position in the electrolyte plate 1 is set to the cathode as in each of the above embodiments. Therefore, the internal short circuit can be prevented.

【0021】[0021]

【発明の効果】以上述べた如く、本発明の溶融炭酸塩型
燃料電池のカソード溶出による内部短絡防止方法によれ
ば、セル内部でガス流れ方向に対してどこの個所でもア
ノード側の圧力がカソード側の圧力より高くなるように
極間差圧を制御することによって、電解質板中のニッケ
ル析出位置をカソード側からアノード側へ広がることが
ないようにするので、カソードから溶出して電解質板中
に析出するニッケルの分布範囲がカソード側近傍からア
ノード側へ広がることがなくて、カソードとアノード間
の内部短絡を防止できる、という優れた効果を奏し得
る。
As described above, according to the method for preventing internal short-circuiting by elution of the cathode of the molten carbonate fuel cell of the present invention, the pressure on the anode side can be reduced at any point in the gas flow direction inside the cell. By controlling the pressure difference between the electrodes so as to be higher than the pressure on the negative electrode side, the nickel deposition position in the electrolyte plate is prevented from spreading from the cathode side to the anode side. There is an excellent effect that the distribution range of the deposited nickel does not spread from the vicinity of the cathode side to the anode side, and an internal short circuit between the cathode and the anode can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の溶融炭酸塩型燃料電池のカソード溶出
による内部短絡防止方法を実施する一形態を原理的に示
す概要図である。
FIG. 1 is a schematic diagram showing in principle an embodiment of a method for preventing an internal short circuit due to cathode elution of a molten carbonate fuel cell according to the present invention.

【図2】本発明によるセル内ガス流れ方向の極間差圧を
示す図である。
FIG. 2 is a diagram showing a differential pressure between electrodes in a gas flow direction in a cell according to the present invention.

【図3】図1の応用例を示す概要図である。FIG. 3 is a schematic diagram showing an application example of FIG. 1;

【図4】本発明の他の実施の形態を示す概要図である。FIG. 4 is a schematic diagram showing another embodiment of the present invention.

【図5】本発明の更に他の実施の形態を示す概要図であ
る。
FIG. 5 is a schematic diagram showing still another embodiment of the present invention.

【図6】析出ニッケルが電解質板中をアノード側へ広が
って内部短絡に至る状況を示すもので、(イ)は通常の
場合の析出ニッケル位置を示す図、(ロ)は電解質板に
欠陥がある場合に析出範囲が広がる状態を示す図、
(ハ)は(ロ)の状態よりも更に析出範囲が広がった状
態を示す図、(ニ)は電解質板に貫通した欠陥がある状
態においてカソード側の圧力が高い時に内部短絡になる
状態を示す図である。
FIGS. 6A and 6B show a situation in which precipitated nickel spreads in the electrolyte plate to the anode side and leads to an internal short circuit. FIG. 6A shows a position of the deposited nickel in a normal case, and FIG. Diagram showing a state where the precipitation range is expanded in some cases,
(C) shows a state where the precipitation range is further expanded than the state of (B), and (D) shows a state where an internal short circuit occurs when the pressure on the cathode side is high in a state where there is a defect penetrating the electrolyte plate. FIG.

【図7】従来の燃料電池セル内でのガス流れ方向と極間
差圧の関係を示す図である。
FIG. 7 is a diagram showing a relationship between a gas flow direction and a pressure difference between electrodes in a conventional fuel cell unit.

【符号の説明】[Explanation of symbols]

1 電解質板 2 カソード 3 アノード 4 アノード排ガスライン 5 リサイクルブロワ 6 カソード排ガスライン 7 圧力調整器(圧力調整機構) 8 圧力調整弁(圧力調整機構) 9 オリフィス FG 燃料ガス OG 酸化ガス AG アノード排ガス CG カソード排ガス DESCRIPTION OF SYMBOLS 1 Electrolyte plate 2 Cathode 3 Anode 4 Anode exhaust gas line 5 Recycle blower 6 Cathode exhaust gas line 7 Pressure regulator (pressure regulating mechanism) 8 Pressure regulating valve (pressure regulating mechanism) 9 Orifice FG Fuel gas OG Oxidizing gas AG Anode exhaust gas CG Cathode exhaust gas

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解質板の両側にカソードとアノードの
両電極を配し、カソード側に酸化ガスを供給すると共に
アノード側に燃料ガスを供給するようにしてあるセルを
積層してなる溶融炭酸塩型燃料電池の上記アノードから
排出されるアノード排ガスをカソード入口側にリサイク
ルさせてカソード側に供給するようにし、アノード側の
圧力をカソード側の圧力よりも高くするよう差圧制御を
行うようにすることを特徴とする溶融炭酸塩型燃料電池
のカソード溶出による内部短絡防止方法。
1. A molten carbonate comprising a cathode and an anode arranged on both sides of an electrolyte plate, and cells stacked to supply an oxidizing gas to the cathode and a fuel gas to the anode. The anode exhaust gas discharged from the anode of the fuel cell is recycled to the cathode inlet side and supplied to the cathode side, and the differential pressure control is performed so that the anode side pressure is higher than the cathode side pressure. A method for preventing an internal short circuit by melting a cathode of a molten carbonate fuel cell.
【請求項2】 電解質板の両側にカソードとアノードの
両電極を配し、カソード側に酸化ガスを供給すると共に
アノード側に燃料ガスを供給するようにしてあるセルを
積層してなる溶融炭酸塩型燃料電池の上記アノードの出
口側に接続されたアノード排ガスラインの途中と、上記
カソードの出口側に接続されたカソード排ガスラインの
途中に、各々圧力調整機構を備え、アノード側の圧力を
カソード側の圧力より高くするよう差圧制御を行うよう
にすることを特徴とする溶融炭酸塩型燃料電池のカソー
ド溶出による内部短絡防止方法。
2. A molten carbonate comprising a plurality of cells provided with both a cathode and an anode on both sides of an electrolyte plate and supplying an oxidizing gas to the cathode and a fuel gas to the anode. A pressure regulating mechanism is provided in each of the anode exhaust gas line connected to the outlet side of the anode and the cathode exhaust gas line connected to the outlet side of the cathode in the fuel cell. A method for preventing internal short circuit due to cathode elution of a molten carbonate fuel cell, wherein differential pressure control is performed so as to be higher than the pressure of the molten carbonate fuel cell.
【請求項3】 電解質板の両側にカソードとアノードの
両電極を配し、カソード側に酸化ガスを供給すると共に
アノード側に燃料ガスを供給するようにしてあるセルを
積層してなる溶融炭酸塩型燃料電池の上記アノード出口
側に接続されたアノード排ガスラインの途中に、オリフ
ィスを設け、該オリフィスによる圧力損失によりアノー
ド側の圧力をカソード側の圧力より高くするよう差圧制
御を行うようにすることを特徴とする溶融炭酸塩型燃料
電池のカソード溶出による内部短絡防止方法。
3. A molten carbonate in which two electrodes, a cathode and an anode, are arranged on both sides of an electrolyte plate, and cells are stacked so as to supply an oxidizing gas to the cathode side and a fuel gas to the anode side. An orifice is provided in the anode exhaust gas line connected to the above-mentioned anode outlet side of the fuel cell, and pressure difference is controlled so that the pressure on the anode side is higher than the pressure on the cathode side due to the pressure loss caused by the orifice. A method for preventing an internal short circuit by melting a cathode of a molten carbonate fuel cell.
JP9153112A 1997-05-28 1997-05-28 Method of preventing fused carbonate type fuel cell from internally short-circuiting by cathode elusion Pending JPH10334930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9153112A JPH10334930A (en) 1997-05-28 1997-05-28 Method of preventing fused carbonate type fuel cell from internally short-circuiting by cathode elusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9153112A JPH10334930A (en) 1997-05-28 1997-05-28 Method of preventing fused carbonate type fuel cell from internally short-circuiting by cathode elusion

Publications (1)

Publication Number Publication Date
JPH10334930A true JPH10334930A (en) 1998-12-18

Family

ID=15555243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9153112A Pending JPH10334930A (en) 1997-05-28 1997-05-28 Method of preventing fused carbonate type fuel cell from internally short-circuiting by cathode elusion

Country Status (1)

Country Link
JP (1) JPH10334930A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8367263B2 (en) 2006-02-02 2013-02-05 Ritsumeikan Trust Fuel cell, fuel cell apparatus, vehicle and co-generation system including the same and fuel cell operation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249363A (en) * 1986-04-21 1987-10-30 Fuji Electric Co Ltd Operating method for molten carbonate fuel cell
JPS63116373A (en) * 1986-11-05 1988-05-20 Hitachi Ltd Fuel cell operating method
JPH02170368A (en) * 1988-12-22 1990-07-02 Jgc Corp Power generating system of fuel battery
JPH03238765A (en) * 1990-02-15 1991-10-24 Ishikawajima Harima Heavy Ind Co Ltd Operation of molten carbonate fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249363A (en) * 1986-04-21 1987-10-30 Fuji Electric Co Ltd Operating method for molten carbonate fuel cell
JPS63116373A (en) * 1986-11-05 1988-05-20 Hitachi Ltd Fuel cell operating method
JPH02170368A (en) * 1988-12-22 1990-07-02 Jgc Corp Power generating system of fuel battery
JPH03238765A (en) * 1990-02-15 1991-10-24 Ishikawajima Harima Heavy Ind Co Ltd Operation of molten carbonate fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8367263B2 (en) 2006-02-02 2013-02-05 Ritsumeikan Trust Fuel cell, fuel cell apparatus, vehicle and co-generation system including the same and fuel cell operation method
JP5263868B2 (en) * 2006-02-02 2013-08-14 学校法人立命館 Fuel cell, fuel cell device, vehicle equipped with the same, and cogeneration device

Similar Documents

Publication Publication Date Title
JP3070038B2 (en) Current collector for fuel cell and method of manufacturing the same
US4555452A (en) Method for operating fuel cell
US7008709B2 (en) Fuel cell having optimized pattern of electric resistance
JP6745920B2 (en) Bipolar plate with variable width in the reaction gas channel in the inlet region of the active region, fuel cell stack, fuel cell system with such bipolar plate, and vehicle
JPH0696782A (en) Internal reforming type fuel cell device and its operating method
JP4689285B2 (en) Fuel cell system, control method and control program
JPH0451467A (en) Fuel cell power generating device
JP5057634B2 (en) Fuel cell structure
US6709782B2 (en) Fuel cell having an anode protected from high oxygen ion concentration
JP2004247289A (en) Fuel cell and its operation method
JPH10334930A (en) Method of preventing fused carbonate type fuel cell from internally short-circuiting by cathode elusion
EP0810684B1 (en) Molten carbonate fuel cell comprising electolyte plate having fine through holes
KR101281772B1 (en) Solid oxide fuel cell and method of fabricating the same
JPH06349504A (en) Solid electrolyte type fuel cell
JP4678115B2 (en) Operation method and operation system of solid oxide fuel cell
JP3363985B2 (en) Substrate tube for internal reforming of solid oxide fuel cell
JPH06267562A (en) Solid high polymer electrolyte fuel cell
JPS6010566A (en) Operation of fuel cell
JPH06251778A (en) Solid polymer electrolyte fuel cell
JPS6020473A (en) Fuel cell power generating system
JP2010140781A (en) Catalyst recovery system of fuel cell, and catalyst recovery method of fuel cell
JP2005149741A (en) Fuel battery system, fuel battery stack, operation method of fuel battery system, program, and recording media
JP2659446B2 (en) Treatment method for defective cells in fuel cells
JP2003263997A (en) Solid oxide fuel cell
JP2007018967A (en) Operation method of fuel cell