JPH02170368A - Power generating system of fuel battery - Google Patents

Power generating system of fuel battery

Info

Publication number
JPH02170368A
JPH02170368A JP63322202A JP32220288A JPH02170368A JP H02170368 A JPH02170368 A JP H02170368A JP 63322202 A JP63322202 A JP 63322202A JP 32220288 A JP32220288 A JP 32220288A JP H02170368 A JPH02170368 A JP H02170368A
Authority
JP
Japan
Prior art keywords
fuel
steam
fuel cell
gas
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63322202A
Other languages
Japanese (ja)
Other versions
JP2791568B2 (en
Inventor
Tsutomu Toida
戸井田 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP63322202A priority Critical patent/JP2791568B2/en
Publication of JPH02170368A publication Critical patent/JPH02170368A/en
Application granted granted Critical
Publication of JP2791568B2 publication Critical patent/JP2791568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To lessen steam supply from outside and enhance the economy by utilizing steam produced at power generating reaction, and securing steam in the amount necessary and sufficient for modifying hydrocarbons. CONSTITUTION:Fuel batteries 1, 2 of internal modification type are furnished in two steps or more, wherein steam necessary for modification of the fuel gas is supplied to the first step for supplying the steam generated in a boiler, and partially part of the fuel chamber 2a outlet gas of fuel battery 2 after the second step or layer is used upon recycle. The crude gas is divided into the first and second steps and supplied, and steam and carbon dioxide gas flowing out of the fuel chamber 1a of an upstream fuel battery 1 are used as material for modification reaction in the fuel battery 2 downstream, and thus power generation is performed. This lessens the amount of steam to be supplied from outside, which enhances the economy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃料電池の発電システムに関し、さらに詳しく
は燃料ガスの改質反応に使用する水蒸気使用量を低く抑
えて経済性を向上させた燃料電池の発電システムに関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel cell power generation system, and more specifically to a fuel cell that improves economic efficiency by suppressing the amount of water vapor used in the reforming reaction of fuel gas. Regarding battery power generation systems.

[従来技術] 燃料電池は、電解質を挾んで正、負の電極を置き、それ
ぞれの電極に酸素および水素を供給し、電気分解の逆の
プロセスを人為的に行わせる事によって電気を発生させ
るもので、使われる電解質の種類によって、アルカリ型
、リン酸型、溶融炭酸塩型、固体電解質型などに大別さ
れている。
[Prior art] A fuel cell is a device that generates electricity by placing positive and negative electrodes sandwiching an electrolyte, supplying oxygen and hydrogen to each electrode, and artificially performing the reverse process of electrolysis. Depending on the type of electrolyte used, it is broadly classified into alkaline type, phosphoric acid type, molten carbonate type, solid electrolyte type, etc.

このうち、溶融炭酸塩型および固体電解質型は高温動作
であり、燃料ガス組成の制約はほとんどなく、より発電
効率の高い燃料電池にできるのでその開発が期待されて
いる。
Among these, the molten carbonate type and solid electrolyte type operate at high temperatures, have almost no restrictions on fuel gas composition, and are expected to be developed because they can produce fuel cells with higher power generation efficiency.

これらの燃料電池には水素および一酸化炭素ガスが燃料
ガスとして使用されるが、この燃料ガスは天然ガス、メ
タノール、石炭ガス等を水蒸気改質して使用する。改質
には、天然ガスなどを燃料電池内部で水蒸気改質する内
部改質型および燃料電池外部で水蒸気改質する外部改質
型とがある。
Hydrogen and carbon monoxide gas are used as fuel gas in these fuel cells, and this fuel gas is used by steam reforming natural gas, methanol, coal gas, or the like. There are two types of reforming: an internal reforming type in which natural gas or the like is reformed with steam inside the fuel cell, and an external reforming type in which steam reforming is performed outside the fuel cell.

従来の固体電解質型の内部改質型燃料電池では、第4図
に示されるような構造において、陰極(水素極)で以下
のような改質反応および電極反応が起っている。
In a conventional solid electrolyte internal reforming fuel cell, the following reforming reaction and electrode reaction occur at the cathode (hydrogen electrode) in the structure shown in FIG.

改質反応/シフト反応 CH4+H20:  CO+3H2 CO+H20:  CO2+H2 電極反応(固体電解質型、〇−透過型)陰極 Q −−1/ 202 +e H2+1/20□  →  H20 CO+1/20□  →  CO2 陽極 1/202 4  0− −e このように、燃料電池の燃料極において、原料炭化水素
を水蒸気改質して(H2+CO)ガスを作る場合、炭化
水素に対し、一定量以上の水蒸気が必要になるが、この
全量を外部より供給するのは熱効率上好ましくない。
Reforming reaction/shift reaction CH4+H20: CO+3H2 CO+H20: CO2+H2 Electrode reaction (solid electrolyte type, 〇-transmission type) Cathode Q --1/ 202 +e H2+1/20□ → H20 CO+1/20□ → CO2 Anode 1/202 4 0 - -e In this way, when producing (H2+CO) gas by steam reforming raw material hydrocarbons at the fuel electrode of a fuel cell, more than a certain amount of water vapor is required for the hydrocarbons, but this total amount is Supplying from outside is not preferable in terms of thermal efficiency.

[発明が解決しようとする課題] このような課題を改善するために、水蒸気の有効利用方
法として外部改質型のリン酸塩型の燃料電池において、
燃料電池の発電反応に伴なって発生する廃熱を水蒸気と
して回収し、これを改質反応の原料とすることも行なわ
れている。
[Problems to be Solved by the Invention] In order to improve these problems, in an external reforming type phosphate fuel cell, as a method for effectively utilizing water vapor,
Waste heat generated in the power generation reaction of fuel cells is also recovered as steam and used as a raw material for reforming reactions.

しかしながら、このような従来から行なわれている方法
では、水蒸気の節減が充分ではない。
However, such conventional methods do not sufficiently save water vapor.

本発明は、上記従来技術の問題点に鑑みて成されたもの
で、本発明の目的は外部より供給する水蒸気の量を少な
くし、しかも炭化水素の改質に必要十分な水蒸気を確保
して経済性を向上させた燃料電池の発電システムを提供
することにある。
The present invention has been made in view of the problems of the prior art described above, and an object of the present invention is to reduce the amount of steam supplied from the outside, and to ensure sufficient steam for reforming hydrocarbons. The object of the present invention is to provide a fuel cell power generation system with improved economic efficiency.

[課題を解決するための手段および作用]本発明者は、
上記目的を達成するために鋭意検討した結果、内部改質
型の燃料電池を二段以上に分割して設置し、第一段目に
炭化水素と水蒸気を供給して改質および発電をし、第一
段目から流出する水蒸気を含むガスに炭化水素を加えて
第二段目に供給して改質および発電をすることにより、
また第二段目以降で発生する水蒸気および炭酸ガスを第
一段目にリサイクルして再利用することにより、上記課
題を解決する本発明を完成するに至った。
[Means and effects for solving the problem] The present inventors:
As a result of intensive studies to achieve the above objectives, we installed an internal reforming fuel cell divided into two or more stages, supplying hydrocarbons and steam to the first stage to reform and generate electricity. By adding hydrocarbons to the gas containing water vapor flowing out from the first stage and supplying it to the second stage for reforming and power generation,
Furthermore, by recycling and reusing the water vapor and carbon dioxide gas generated in the second and subsequent stages in the first stage, we have completed the present invention which solves the above problems.

すなわち本発明は、燃料電池を用いる発電システムにお
いて、燃料電池を二段以上に分割して設置し、燃料電池
で発生する水蒸気および炭酸ガスを改質反応に利用して
発電することを特徴とする燃料電池の発電システムであ
る。
That is, the present invention is characterized in that, in a power generation system using a fuel cell, the fuel cell is divided into two or more stages, and the water vapor and carbon dioxide gas generated in the fuel cell are used for a reforming reaction to generate power. This is a fuel cell power generation system.

以下、本発明を図面を参照してさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図は、本発明の内部改質型の燃料電池発電システム
を示す概略図である。
FIG. 1 is a schematic diagram showing an internal reforming type fuel cell power generation system of the present invention.

第1図において、1および2は燃料電池、1as2aは
燃料室、1b、2bは空気室、3は燃料ガス供給ライン
、4は水蒸気供給ライン、5はコンプレッサー 6は冷
却器、7は気液分離器、8a、8bは燃焼器、9a、9
bは空気供給ライン、10a、tabは排気ガスライン
をそれぞれ示す。
In Fig. 1, 1 and 2 are fuel cells, 1as2a is a fuel chamber, 1b and 2b are air chambers, 3 is a fuel gas supply line, 4 is a steam supply line, 5 is a compressor, 6 is a cooler, and 7 is a gas-liquid separator. 8a, 8b are combustors, 9a, 9
b indicates an air supply line, and 10a and tab indicate exhaust gas lines.

本発明においてはまず、第1図に示すように、内部改質
型の燃料電池を二段以上設ける。燃料ガスの改質に必要
な水蒸気は一段目に供給する。水蒸気の供給方法は、ボ
イラーで発生した水蒸気を供給するが、その一部は二段
目以後の燃料電池の燃料室出口ガスの一部をリサイクル
して使用する。
In the present invention, first, as shown in FIG. 1, two or more stages of internal reforming fuel cells are provided. The steam necessary for reforming the fuel gas is supplied to the first stage. The method of supplying steam is to supply steam generated in a boiler, and part of it is recycled and used as part of the gas at the outlet of the fuel chamber of the fuel cell in the second and subsequent stages.

燃料電池の燃料室での改質反応で過剰の水蒸気を添加す
ることは、水素分圧PH2を低下させ、起7u力が落ち
るので好ましくない。ボイラー給水により水蒸気を発生
させて用いる水蒸気量を削減するため、電極反応で発生
した水蒸気を利用する。
Adding excessive water vapor during the reforming reaction in the fuel chamber of the fuel cell is undesirable because it lowers the hydrogen partial pressure PH2 and lowers the motive force. In order to reduce the amount of steam used by generating steam from the boiler feed water, the steam generated by the electrode reaction is used.

原料ガス(CH4)は、−段、二段の各段に分割して供
給する。原料が、液化石油ガスまたはナフサの場合でも
低温水蒸気改質工程を付設すればCH4、H2、C01
C02に改質されたガスがi−1られるので本発明に適
用することができる。各燃料室・\のCH4の分割注入
は、各燃料室で発生する水蒸気を使うことを目的として
いるが、このことは燃料電池内の水素分圧の平均化を図
ることができ、起電力を一定に維持できる効果がある。
The raw material gas (CH4) is divided and supplied to each of the - stage and the second stage. Even if the raw material is liquefied petroleum gas or naphtha, if a low-temperature steam reforming process is added, CH4, H2, C01
Since the gas reformed to C02 is i-1, it can be applied to the present invention. The purpose of split injection of CH4 into each fuel chamber is to use the water vapor generated in each fuel chamber, which can average the hydrogen partial pressure within the fuel cell and reduce the electromotive force. It has an effect that can be maintained constant.

燃料電池出口ガスの一部は、冷却してH20を凝縮除去
したのち、空気を混合して接触燃焼させ、空気室に送入
するか、または冷却せず、空気を混合して燃焼させて空
気質に送入し、改質反応/発電反応の温度を維持する。
A portion of the fuel cell outlet gas is cooled to condense and remove H20, and then mixed with air for catalytic combustion and sent to the air chamber, or is not cooled and is mixed with air and combusted to produce air. The temperature of the reforming reaction/power generation reaction is maintained.

このように本発明では、上流の燃料電池の燃料室から流
出する水蒸気および炭酸ガスを下流の燃料電池の改質反
応の原料として利用して発電する。
As described above, in the present invention, water vapor and carbon dioxide flowing out from the fuel chamber of the upstream fuel cell are used as raw materials for the reforming reaction of the downstream fuel cell to generate electricity.

また、燃料室から流出する水蒸気および炭酸ガスをリサ
イクルして各燃料電池の改質反応の原料として利用して
発電する。
Additionally, water vapor and carbon dioxide gas flowing out of the fuel chamber are recycled and used as raw materials for reforming reactions in each fuel cell to generate electricity.

燃料電池における電極反応は以下の通りである。The electrode reactions in the fuel cell are as follows.

■空気極(陽極) 1/202 → 0 −e ■燃料極(陰極) 0 → 1 / 202  + C H2→ 1/20□+H20 改質反応では、 (CH4+2H20→ CO2+4H2,4H2+20
□ → 4H20) であるので、結局、燃料極では、 CH,+202 → CO2+2H20、の反応が起っ
ている。
■Air electrode (anode) 1/202 → 0 -e ■Fuel electrode (cathode) 0 → 1/202 + C H2→ 1/20□+H20 In the reforming reaction, (CH4+2H20→ CO2+4H2,4H2+20
□ → 4H20) Therefore, in the end, the following reaction occurs at the fuel electrode: CH, +202 → CO2+2H20.

このように燃料極で発生する水蒸気を改質反応に利用し
ても、CH,1モルにつき2モルのH20が発生するの
で、H20/CH4−2は維持できる。
Even if the water vapor generated at the fuel electrode is used for the reforming reaction in this way, 2 moles of H20 are generated per 1 mole of CH, so H20/CH4-2 can be maintained.

本発明は、前記燃料電池として溶融炭酸塩型でも固体電
解質型のいずれでも好しく適用できる。
The present invention can be preferably applied to either a molten carbonate type fuel cell or a solid electrolyte type fuel cell.

溶融炭酸塩型では、500℃以上の湿度で液体の炭酸カ
リウム、炭酸リチウムなどの炭酸塩を電解質として用い
る。また、固体電解質型の燃料電池では酸化カルシウム
、酸化トリウム、酸化セリウムまたは酸化イツトリウム
などで安定化したジルコニアなどが好ましく用いられる
In the molten carbonate type, a carbonate such as potassium carbonate or lithium carbonate, which is liquid at a humidity of 500° C. or higher, is used as an electrolyte. In solid electrolyte fuel cells, zirconia stabilized with calcium oxide, thorium oxide, cerium oxide, yttrium oxide, or the like is preferably used.

また、燃料電池として、燃料室内部で燃料ガスを水蒸気
改質する内部改質型はもちろんのこと、各燃料電池の直
前に外部改質器を設ければ、外部改質型の燃料電池でも
本発明が好適に適用できる。
In addition to internal reforming type fuel cells that reform fuel gas with steam inside the fuel chamber, external reforming type fuel cells can also be used if an external reformer is installed just before each fuel cell. The invention can be suitably applied.

[実施例] 以下、本発明を実施例および比較例によりさらに詳しく
説明する。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 第2図に示される内部改質型の多段で構成される固体電
解質型の燃料電池発電装置により、メタンガスを100
.000 N J / hr、水蒸気を200.000
 Nj/hrでS / C−2,0として第1段目の供
給ライン1に導入した。
Example 1 Methane gas was converted into
.. 000 NJ/hr, water vapor 200.000
It was introduced into the first stage supply line 1 as S/C-2,0 at a rate of Nj/hr.

各改質器の温度を900℃、圧力を1.5気圧として水
蒸気改質反応を行ない、第1段目の排出口ライン2にお
けるガス組成は以下の通りであった。
A steam reforming reaction was carried out at a temperature of 900° C. and a pressure of 1.5 atmospheres in each reformer, and the gas composition in the first stage discharge port line 2 was as follows.

CH40,02NJ/hr H2125,257N J / br CO37,749N J / hr C0、62,249N J / hr H20274,746N J / hrこのような燃料
電池の運転状態での、各番号を付した第2段目以降の各
段の供給口および排出口におけるガス成分を測定し、そ
れらの結果をそれぞれ第1表に示した。
CH40,02NJ/hr H2125,257NJ/br CO37,749NJ/hr C0,62,249NJ/hr H20274,746NJ/hr Under these operating conditions of the fuel cell, the numbered second stage The gas components at the supply port and discharge port of each stage after the second stage were measured, and the results are shown in Table 1.

本実施例に用いた内部改質型の多段の燃料電池発電装置
における発電反応で消費した水素ガスの総量は、229
7.815N j / hrであった。
The total amount of hydrogen gas consumed in the power generation reaction in the internal reforming multi-stage fuel cell power generation device used in this example was 229
It was 7.815Nj/hr.

この時、CHlの供給量は828.248 N i/ 
11r、H,Oの供給量は200.000 N J /
 hrであるから、H,O/CH4−200,000/
828.248−0.242であった。但し、各段では
、H20/CH4−2,0を維持しているのは前述した
通りである。
At this time, the supply amount of CHl is 828.248 N i/
The supply amount of 11r, H, and O is 200.000 N J /
Since it is hr, H,O/CH4-200,000/
It was 828.248-0.242. However, as described above, H20/CH4-2,0 is maintained at each stage.

このようにして第1段目の排出口ライン2におけるガス
組成中に含まれる水蒸気を利用して、第2段目以降から
は、上段からの流出ガス中の水蒸気に対してS / C
−2,0を維持するようにメタンガスのみを各段の入口
に供給した。
In this way, by utilizing the water vapor contained in the gas composition in the discharge port line 2 of the first stage, from the second stage onwards, S/C is applied to the water vapor in the gas flowing out from the upper stage.
Only methane gas was supplied to the inlet of each stage so as to maintain -2.0.

比較例1 第3図に示されるような、従来からの内部改質型の一段
で構成される溶融炭酸塩型の燃料電池発電装置で、改質
および発電反応を行なった。
Comparative Example 1 Reforming and power generation reactions were carried out in a conventional internal reforming type molten carbonate fuel cell power generation device consisting of one stage as shown in FIG.

改質反応に導入したメタンガスおよび水蒸気は、発電反
応で消費される水素ガス量が実施例1と同しになるよう
に以下に示されるようにそれぞれメタンガスおよび水蒸
気を導入した。
Methane gas and water vapor were introduced into the reforming reaction as shown below so that the amount of hydrogen gas consumed in the power generation reaction was the same as in Example 1.

CH4989,587N l / hrH201939
,174N J / hrこのガス組成で改質反応を行
ない、実施例1と同様に水素ガスの75%を利用して発
電を行なった。
CH4989,587N l / hrH201939
, 174 NJ/hr A reforming reaction was carried out with this gas composition, and as in Example 1, power generation was carried out using 75% of the hydrogen gas.

電極反応終了後の燃料電池の排出口でのガス組成は以下
の通りであった。
The gas composition at the exhaust port of the fuel cell after the electrode reaction was completed was as follows.

CH40,019N ! / hr H21214,478N j / hrC03G(i、
009N j / hrCO2GO3,558N J 
/ hrH2026[i3.844N i / hr本
比較例に用いた内部改質型の一段の燃料電池発電装置の
発電反応で消費した水素ガスの総量も2297.815
N J / hrであった。
CH40,019N! / hr H21214,478N j / hrC03G (i,
009N j / hrCO2GO3,558N J
/ hrH2026 [i3.844N i / hrThe total amount of hydrogen gas consumed in the power generation reaction of the internal reforming type one-stage fuel cell power generation device used in this comparative example is also 2297.815
It was NJ/hr.

この時、CH4の供給量は969.587N J / 
hr、H7Oの供給量は1939.174N J / 
hrであるから、H20/ CH4−1939,174
/ 989.587 = 2.0であった。
At this time, the supply amount of CH4 is 969.587N J /
hr, the supply amount of H7O is 1939.174N J /
Since it is hr, H20/CH4-1939,174
/989.587 = 2.0.

以上のように、実施例および比較例ともに同じ水素消費
量として同じ発電量で燃料電池を運転した場合、発電量
は同じでも上段で生成した水蒸気を利用する本発明によ
れば、水蒸気使用量が極めて節減されることがわかる。
As described above, when the fuel cell is operated with the same amount of hydrogen consumption and the same amount of power generation in both the example and the comparative example, the amount of power generation is the same, but according to the present invention, which utilizes the water vapor generated in the upper stage, the amount of water vapor used is It can be seen that the savings are extremely significant.

このように本発明による燃料電池の発電システムは、発
電反応により生成するスチームを利用し、炭化水素の改
質に必要十分な水蒸気量を確保することにより、外部よ
り供給するスチームを著しく少なくすることができる。
In this way, the fuel cell power generation system according to the present invention utilizes the steam generated by the power generation reaction and secures the amount of steam necessary and sufficient for reforming hydrocarbons, thereby significantly reducing the amount of steam supplied from the outside. Can be done.

[発明の効果コ 以上説明したように、本発明の燃料電池の発電システム
は以下のような効果を有する。
[Effects of the Invention] As explained above, the fuel cell power generation system of the present invention has the following effects.

■ 炭化水素の改質に必要な水蒸気は、燃料電池の燃料
極で発生したものを利用するので水蒸気使用量を削減で
きる。
■ The steam necessary for reforming hydrocarbons is generated from the fuel electrode of the fuel cell, so the amount of steam used can be reduced.

■ 水素分圧が平均化されるので、一定の起電力が得ら
れる。
■ Since the hydrogen partial pressure is averaged, a constant electromotive force can be obtained.

■ 固体電解質型の燃料電池だけでなく溶融炭酸塩型の
燃料電池にも好適に適用できる。
- Applicable not only to solid electrolyte fuel cells but also to molten carbonate fuel cells.

■ また、内部改質型の燃料電池に限らず、燃料電池と
燃料電池との間に改質装置を設ける外部改質型でも同等
の効果が得られる。
(2) Furthermore, the same effect can be obtained not only with an internal reforming type fuel cell but also with an external reforming type in which a reforming device is provided between the fuel cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の発電システムを示す内部改質型の溶
融炭酸塩型燃料電池の概略図、第2図は、実施例で用い
た内部改質型の多段で構成される溶融炭酸塩型の燃料電
池発電装置の概略図、 第3図は、従来の一段で構成される内部改質型の溶融炭
酸塩型燃料電池の概略図、 第4図は、従来技術の溶融炭酸塩型燃料電池の構造を示
す断面図である。 図中: 1.2:燃料電池、 1 a s 2 a :燃料室、 lb、2b:空気室、 3:燃料ガス供給口ライン、 4:水蒸気供給口ライン、 5:コンプレッサー 6:冷却器、 7:気液分離器 8 a s 8 b :燃焼器、 9 as 9 b :空気供給口ライン、10a、lO
bは排気ガスライン。 特許出願人  日 揮 株 式 会 社代理人    
弁理士 伊 東 辰 雄代理人    弁理士 伊 東
 哲 也第1図 第 2図 第 図 第 図
FIG. 1 is a schematic diagram of an internal reforming type molten carbonate fuel cell showing the power generation system of the present invention. FIG. Figure 3 is a schematic diagram of a conventional single-stage internal reforming type molten carbonate fuel cell; Figure 4 is a schematic diagram of a conventional molten carbonate fuel cell. FIG. 2 is a cross-sectional view showing the structure of a battery. In the figure: 1.2: fuel cell, 1 as 2 a: fuel chamber, lb, 2b: air chamber, 3: fuel gas supply port line, 4: steam supply port line, 5: compressor 6: cooler, 7 : Gas-liquid separator 8 a s 8 b : Combustor, 9 as 9 b : Air supply port line, 10 a, lO
b is the exhaust gas line. Patent applicant: JGC Co., Ltd. Company agent
Patent Attorney Tatsuo Ito Agent Patent Attorney Tetsuya Ito Figure 1 Figure 2 Figure Figure

Claims (1)

【特許請求の範囲】 1、燃料電池を用いる発電システムにおいて、燃料電池
を二段以上に分割して設置し、燃料電池で発生する水蒸
気および炭酸ガスを改質反応に利用して発電することを
特徴とする燃料電池の発電システム。 2、上流の燃料電池の燃料室から流出する水蒸気および
炭酸ガスを下流の燃料電池の改質反応の原料として利用
する請求項1に記載の発電システム。 3、燃料室から流出する水蒸気および炭酸ガスをリサイ
クルして各燃料電池の改質反応の原料として利用する請
求項1に記載の発電システム。
[Claims] 1. In a power generation system using a fuel cell, the fuel cell is divided into two or more stages, and the water vapor and carbon dioxide gas generated in the fuel cell are used for a reforming reaction to generate power. Features a fuel cell power generation system. 2. The power generation system according to claim 1, wherein water vapor and carbon dioxide flowing out from the fuel chamber of the upstream fuel cell are used as raw materials for a reforming reaction in the downstream fuel cell. 3. The power generation system according to claim 1, wherein the water vapor and carbon dioxide gas flowing out from the fuel chamber are recycled and used as raw materials for the reforming reaction of each fuel cell.
JP63322202A 1988-12-22 1988-12-22 Fuel cell power generation system Expired - Lifetime JP2791568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63322202A JP2791568B2 (en) 1988-12-22 1988-12-22 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63322202A JP2791568B2 (en) 1988-12-22 1988-12-22 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH02170368A true JPH02170368A (en) 1990-07-02
JP2791568B2 JP2791568B2 (en) 1998-08-27

Family

ID=18141094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63322202A Expired - Lifetime JP2791568B2 (en) 1988-12-22 1988-12-22 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2791568B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129174A (en) * 1990-09-19 1992-04-30 Ishikawajima Harima Heavy Ind Co Ltd Power generation device for fused carbonate fuel cell
JPH06104000A (en) * 1992-09-18 1994-04-15 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell power generator
WO1998021771A1 (en) * 1996-11-13 1998-05-22 Stichting Energieonderzoek Centrum Nederland Reactant flow arrangement of a power system of several internal reforming fuel cell stacks
JPH10334930A (en) * 1997-05-28 1998-12-18 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Method of preventing fused carbonate type fuel cell from internally short-circuiting by cathode elusion
JP2003100333A (en) * 2001-09-21 2003-04-04 Mitsubishi Heavy Ind Ltd Fuel cell power generation equipment and turbine power generation equipment
JP2003123818A (en) * 2001-10-12 2003-04-25 Mitsubishi Heavy Ind Ltd Fuel cell system and complex power generating system
JP2007200809A (en) * 2006-01-30 2007-08-09 Hitachi Ltd Fuel-cell power generation system and power generation method
WO2011000499A1 (en) * 2009-06-30 2011-01-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High-temperature fuel cell system
JP2011525295A (en) * 2008-07-21 2011-09-15 スタクセラ・ゲーエムベーハー Fuel cell system having two fuel cell stacks connected in series
JP2014041804A (en) * 2012-08-24 2014-03-06 Tokyo Gas Co Ltd High temperature type fuel cell system
JP2019079803A (en) * 2017-10-26 2019-05-23 エルジー フューエル セル システムズ インクLg Fuel Cell Systems Inc. Fuel cell system with in-block reforming

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207254A (en) * 1984-03-30 1985-10-18 Mitsubishi Electric Corp Method of controlling flow rate of internal- reformation-type fuel cell
JPS62274560A (en) * 1986-05-23 1987-11-28 Mitsubishi Electric Corp Composite type fuel cell power generating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207254A (en) * 1984-03-30 1985-10-18 Mitsubishi Electric Corp Method of controlling flow rate of internal- reformation-type fuel cell
JPS62274560A (en) * 1986-05-23 1987-11-28 Mitsubishi Electric Corp Composite type fuel cell power generating system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129174A (en) * 1990-09-19 1992-04-30 Ishikawajima Harima Heavy Ind Co Ltd Power generation device for fused carbonate fuel cell
JPH06104000A (en) * 1992-09-18 1994-04-15 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell power generator
WO1998021771A1 (en) * 1996-11-13 1998-05-22 Stichting Energieonderzoek Centrum Nederland Reactant flow arrangement of a power system of several internal reforming fuel cell stacks
AU720425B2 (en) * 1996-11-13 2000-06-01 Bg Plc Reactant flow arrangement of a power system of several internal reforming fuel cell stacks
US6344289B2 (en) 1996-11-13 2002-02-05 Stichting Energieonderzoek Centrum Nederland Reactant flow arrangement of a power system of several internal reforming fuel cell stacks
JPH10334930A (en) * 1997-05-28 1998-12-18 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Method of preventing fused carbonate type fuel cell from internally short-circuiting by cathode elusion
JP2003100333A (en) * 2001-09-21 2003-04-04 Mitsubishi Heavy Ind Ltd Fuel cell power generation equipment and turbine power generation equipment
JP2003123818A (en) * 2001-10-12 2003-04-25 Mitsubishi Heavy Ind Ltd Fuel cell system and complex power generating system
JP2007200809A (en) * 2006-01-30 2007-08-09 Hitachi Ltd Fuel-cell power generation system and power generation method
JP4719580B2 (en) * 2006-01-30 2011-07-06 株式会社日立製作所 Fuel cell power generation system and power generation method
JP2011525295A (en) * 2008-07-21 2011-09-15 スタクセラ・ゲーエムベーハー Fuel cell system having two fuel cell stacks connected in series
KR101352525B1 (en) * 2008-07-21 2014-01-17 스탁세라 게엠베하 Fuel cell system having two fuel cell stacks connected in series
WO2011000499A1 (en) * 2009-06-30 2011-01-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High-temperature fuel cell system
JP2012531719A (en) * 2009-06-30 2012-12-10 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ High temperature fuel cell system
US8512901B2 (en) 2009-06-30 2013-08-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High-temperature fuel cell system
JP2014041804A (en) * 2012-08-24 2014-03-06 Tokyo Gas Co Ltd High temperature type fuel cell system
JP2019079803A (en) * 2017-10-26 2019-05-23 エルジー フューエル セル システムズ インクLg Fuel Cell Systems Inc. Fuel cell system with in-block reforming
US10680261B2 (en) 2017-10-26 2020-06-09 Lg Electronics, Inc. Fuel cell systems with in-block reforming

Also Published As

Publication number Publication date
JP2791568B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
JP6397502B2 (en) Reformer / electrolyzer / refiner (REP) assembly for hydrogen production, system incorporating the assembly, and hydrogen production method
EP0423177B1 (en) Method of preparing ammonia
US5380600A (en) Fuel cell system
JP2572905B2 (en) Internal reforming molten carbonate fuel cell power generator
US5449568A (en) Indirect-fired gas turbine bottomed with fuel cell
JPS61114478A (en) Fuel cell device
JPH0789494B2 (en) Combined power plant
CA2343740A1 (en) Solid oxide fuel cell which operates with an excess of fuel
CA1242241A (en) Direct use of methanol fuel in a molten carbonate fuel cell
US20230046387A1 (en) Method and plant for producing hydrogen
JPH0395867A (en) Solid electrolyte fuel cell
CN108400358A (en) Solid oxide fuel cell oven gas electrification technique and device
JPH05163180A (en) Methanol synthesis using hydrocarbon gas as raw material
JPH02170368A (en) Power generating system of fuel battery
US7326482B2 (en) Apparatus and method for operation of a high temperature fuel cell system using recycled anode exhaust
JPH06103629B2 (en) Combined fuel cell power generation facility
KR101978374B1 (en) Fuel cell-engine hybrid power generation system with multi-stage reformer structure
CN201402833Y (en) Battery integration generating device based on natural-gas-prepared hydrogen and proton exchange membrane fuel
JPS59224074A (en) Treating method of fuel for full cell
JPH0665060B2 (en) Molten carbonate fuel cell power generation system
JPH03208258A (en) Fuel cell power generating system and fuel gas feeding method
JPH0358154B2 (en)
KR101739583B1 (en) Fuel cell-engine hybrid power generation system with parallel reformer structure
CN215418261U (en) Power generation system of molten carbonate fuel cell
JPH07166179A (en) Production of natural gas substituent