JPS62274560A - Composite type fuel cell power generating system - Google Patents
Composite type fuel cell power generating systemInfo
- Publication number
- JPS62274560A JPS62274560A JP61117446A JP11744686A JPS62274560A JP S62274560 A JPS62274560 A JP S62274560A JP 61117446 A JP61117446 A JP 61117446A JP 11744686 A JP11744686 A JP 11744686A JP S62274560 A JPS62274560 A JP S62274560A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- fuel cell
- gas
- power generation
- generation device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 187
- 239000002131 composite material Substances 0.000 title claims description 12
- 239000002737 fuel gas Substances 0.000 claims abstract description 61
- 239000007789 gas Substances 0.000 claims abstract description 58
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 33
- 239000001257 hydrogen Substances 0.000 claims abstract description 33
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000004064 recycling Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 9
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 5
- 239000011593 sulfur Substances 0.000 claims abstract description 5
- 238000010248 power generation Methods 0.000 claims description 27
- 238000002407 reforming Methods 0.000 claims description 27
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 12
- 150000002430 hydrocarbons Chemical class 0.000 claims description 9
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 6
- 150000001298 alcohols Chemical class 0.000 claims description 6
- 238000003487 electrochemical reaction Methods 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 150000003464 sulfur compounds Chemical class 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 18
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 14
- 239000000203 mixture Substances 0.000 abstract description 12
- 210000004027 cell Anatomy 0.000 description 82
- 239000003054 catalyst Substances 0.000 description 28
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 19
- 230000000694 effects Effects 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 210000005056 cell body Anatomy 0.000 description 13
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 239000001569 carbon dioxide Substances 0.000 description 8
- 229910001868 water Inorganic materials 0.000 description 8
- 239000011149 active material Substances 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 4
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000006057 reforming reaction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- -1 H2+ sulfur compound Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010763 heavy fuel oil Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/249—Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔産業上の利用分野〕
この発明は、燃料電池発電装置、特に、複数の燃料電池
をバランスよく運転できる複合型燃料電池発電装置に関
するものである。[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a fuel cell power generation device, and particularly to a composite fuel cell power generation device that can operate a plurality of fuel cells in a well-balanced manner. be.
第4図は、例えば「ナショナル−ツユエル鳴セルa セ
ミナー(NAT工0NAI、 FUEL CF!LL
SEM工NAR) J(1983年)の概要第26頁に
掲載され、燃料ガス排出系の排出ガスの一部を燃料ガス
供給系へ供給するアノードリサイクル方式を用いた従来
の燃料電池発電装置のガスの流れ図である。図において
、(1)は燃料電池本体、(1a)はこの燃料電池本体
(1)のカソード(酸化剤極)側ガス流路および電極(
以下単にカソード側という> s (1b)は燃料電
池本体(1)のアノード(燃料極)側ガス流路および電
極(以下単にアノード側という) 、 (10)は燃料
電池本体(1)のカソード側(1a)とアノード側(1
b)の間に在る電解質層、(2)は炭化水素またはアル
コール類を主成分とする原燃料、(3)はこの原燃料(
2)を供給する原燃料供給系、(4)は原燃料(2)を
脱硫する脱硫器、(5)はアノード側(1b)の入口に
燃料ガスを供給する燃料ガス供給系、(6)はアノ−、
ド側(1b)の出口から燃料ガスが排出される燃料ガス
排出系であり、この燃料ガス排出系(6)のガスの一部
はアノードリサイクル系(7)を通って再び燃料ガス供
給系(5)へ供給され、残りのガスは熱交換器(8)に
おいて原燃料(2)と熱交換された後に燃料ガス(9)
として燃焼器(10)に送られる。この燃焼器(10)
に送られた燃料ガス(9)は、燃焼器(10)によって
完全に酸化され、二酸化炭素を多量に含むガスとなる。FIG.
SEM Engineering NAR) J (1983), published on page 26 of the summary, describes the gas production of conventional fuel cell power generation equipment using an anode recycling method that supplies part of the exhaust gas from the fuel gas exhaust system to the fuel gas supply system. This is a flowchart. In the figure, (1) is the fuel cell main body, and (1a) is the cathode (oxidant electrode) side gas flow path and electrode (1) of the fuel cell main body (1).
Hereinafter, simply referred to as the cathode side > s (1b) is the anode (fuel electrode) side gas flow path and electrode (hereinafter simply referred to as the anode side) of the fuel cell main body (1), (10) is the cathode side of the fuel cell main body (1) (1a) and the anode side (1
(2) is the raw fuel mainly composed of hydrocarbons or alcohols, and (3) is the raw fuel (
(4) is a desulfurizer that desulfurizes the raw fuel (2), (5) is a fuel gas supply system that supplies fuel gas to the inlet of the anode side (1b), (6) That's it,
This is a fuel gas exhaust system in which fuel gas is discharged from the outlet on the side (1b), and a part of the gas in this fuel gas exhaust system (6) passes through the anode recycling system (7) and returns to the fuel gas supply system ( 5), and the remaining gas is heat exchanged with the raw fuel (2) in the heat exchanger (8), and then converted into fuel gas (9).
It is sent to the combustor (10) as a combustor. This combustor (10)
The fuel gas (9) sent to the combustor (10) is completely oxidized and becomes a gas containing a large amount of carbon dioxide.
その後、このガスはカソード側(1a)で酸化剤として
作用する酸素を含んだ空気(11)と−緒にカソード側
(1a)に供給される。カソード側(1a)から排出さ
れたガスは、その一部がカソードガス供給系(12)に
供給され、残りが燃料電池の外部へ放出される。This gas is then fed to the cathode side (1a) together with air (11) containing oxygen, which acts as an oxidizing agent on the cathode side (1a). A part of the gas discharged from the cathode side (1a) is supplied to the cathode gas supply system (12), and the rest is discharged to the outside of the fuel cell.
従来の燃料電池発電装置は上記のように構成され、熱交
換器(8)で昇温された原燃料(2)は、脱硫器(4)
でイオウ分が除去された後、アノードリサイクル系(7
)から供給された排出燃料ガスと混合される。The conventional fuel cell power generation device is configured as described above, and the raw fuel (2) heated in the heat exchanger (8) is sent to the desulfurizer (4).
After the sulfur content is removed in the anode recycling system (7
) is mixed with exhaust fuel gas supplied from
この混合されたガスは、加湿、昇温され、燃料ガス供給
系(5)を通り、アノード側(vb)へ供給される。This mixed gas is humidified, heated, and supplied to the anode side (vb) through the fuel gas supply system (5).
一方、空気(11)は、燃焼器(10)の出ロ排ガス右
よびカソード側(1a)の出口排ガスの一部と混合され
。On the other hand, the air (11) is mixed with part of the outlet exhaust gas on the right side of the combustor (10) and on the cathode side (1a).
所定の温度に昇温された後カソード側(1a)に供給さ
れる。After being heated to a predetermined temperature, it is supplied to the cathode side (1a).
ここで、燃料電池本体(1)は、炭化水素またはアルコ
ール類を主成分とする原燃料(2)を燃料とし。Here, the fuel cell main body (1) uses raw fuel (2) containing hydrocarbons or alcohols as its main component.
例えば650°C付近の温度で動作する。燃料電池本体
(1)のアノード側(1b)においては、炭化水素また
はアルコール類を分解して水素を生成する化学反応〔下
記の式(1) −(4) )および水素を消費して電気
を発生する電気化学反応〔下記の式(5)〕が起こる。For example, it operates at a temperature around 650°C. On the anode side (1b) of the fuel cell main body (1), a chemical reaction occurs in which hydrocarbons or alcohols are decomposed to generate hydrogen [Equations (1) to (4) below)] and hydrogen is consumed to generate electricity. An electrochemical reaction [formula (5) below] occurs.
また、カソード側(1a)においては、電気化学反応〔
下記の式(6)〕が起こる。これらの反応の全体として
、燃料ガスのもつ化学エネルギを電気エネルギとそれに
伴う熱エネルギとに交換する。Moreover, on the cathode side (1a), an electrochemical reaction [
The following equation (6)] occurs. Collectively, these reactions exchange the chemical energy of the fuel gas for electrical energy and associated thermal energy.
〔アノード側(1b)における化学反応〕炭化水素+H
20→H2、Co 、 002 、 OH4(1)アル
コール+H20→ H2、C!0 、002 、 OH
a (2)OHa + H2O”:+ 31i
2 + Co (りCo +H20#
H2+CO2(4)H2−)−Cox 4
H2O+ 002 + 28 (
5)〔カソード側(1a)における化学反応〕一02
+ (!02 + 26 →CO32−例えば650
℃付近の温度で式(1〜(4)に従い。[Chemical reaction on the anode side (1b)] Hydrocarbon + H
20→H2, Co, 002, OH4 (1) Alcohol + H20→ H2, C! 0,002,OH
a (2) OHa + H2O”: + 31i
2 + Co (RiCo +H20#
H2+CO2(4)H2-)-Cox 4
H2O+ 002 + 28 (
5) [Chemical reaction on the cathode side (1a)] 102
+ (!02 + 26 → CO32 - e.g. 650
According to equations (1 to (4)) at a temperature around °C.
炭化水素またはアルコール類を定常的に分解して水素を
生成するためには、反応を促進させるための触媒例えば
改質触媒、および式(1)〜(4)に必要な反応熱を供
給することが必要である。従って、通常の内部改質形の
溶融炭酸塩形燃料電池においては1例えば燃料極側ガス
流路内に、電極に隣接して改質触媒を設置し、また、式
(5) 、(6)の電気化学反応において副生ずる熱エ
ネルギを式(1)〜(4)の反応熱として供給すること
により、その定常的な運転を可能にしている。式(5)
、 (6)の反応熱が式(1)〜(4)の反応熱に満
たない場合は、燃焼器(10)の出口の熱を用いるなど
1発電装置内の熱を利用することで十分賄える。従って
、内部改質形の溶融炭酸塩形燃料電池を定常的に動作さ
せるためには、触媒の活性を維持することが肝要である
。In order to regularly decompose hydrocarbons or alcohols to generate hydrogen, it is necessary to supply a catalyst for promoting the reaction, such as a reforming catalyst, and the reaction heat necessary for formulas (1) to (4). is necessary. Therefore, in a normal internal reforming type molten carbonate fuel cell, a reforming catalyst is installed adjacent to the electrode, for example, in the gas flow path on the fuel electrode side, and formulas (5) and (6) are used. By supplying thermal energy by-produced in the electrochemical reaction as the reaction heat of equations (1) to (4), steady operation is possible. Formula (5)
, If the reaction heat in (6) is less than the reaction heat in equations (1) to (4), it can be sufficiently covered by using the heat within the power generator, such as by using the heat at the outlet of the combustor (10). . Therefore, in order to operate an internal reforming molten carbonate fuel cell steadily, it is important to maintain the activity of the catalyst.
上記の触媒例えば改質触媒は、アルミナ、マグネシアを
主成分とする担体上にニッケルなどの活物質を担持させ
たものであり、この触媒の活性を維持するためには、ニ
ッケルなどの活物質の下記の式(7)で示す酸化を防ぐ
必要がある。The above catalysts, such as reforming catalysts, have an active material such as nickel supported on a carrier mainly composed of alumina or magnesia.In order to maintain the activity of this catalyst, the active material such as nickel must be It is necessary to prevent the oxidation represented by the following formula (7).
Ni + H2O# NiO+ H2(7)一般的な改
質触媒を用いた炭化水素またはアルコール類の分解・水
素生成には1式(1)〜(4)に示すようにスチームを
添加して行うが、生成した水素によりニッケルなどの活
物質の酸化が防がれるため、触媒の活性は維持される。Ni + H2O # NiO + H2 (7) Decomposition of hydrocarbons or alcohols and hydrogen generation using a general reforming catalyst are carried out by adding steam as shown in equations (1) to (4). The generated hydrogen prevents oxidation of active materials such as nickel, so the activity of the catalyst is maintained.
しかし、この種の燃料電池においては、式(5)で示し
たように1式(1)〜(4)で生成した水素を消費して
水蒸気を生成するため、水素濃度が低下し、触媒の活物
質例えばニッケルの酸化が起こり、触媒の活性の低下を
呈し易くなる。このような活物質の酸化のし易さは。However, in this type of fuel cell, as shown in equation (5), the hydrogen produced in equations (1) to (4) is consumed to produce water vapor, so the hydrogen concentration decreases and the catalyst Oxidation of the active material, such as nickel, occurs and the catalyst is likely to exhibit a decrease in activity. How easy is this active material to oxidize?
活物質の種類によって異なる。例えば活物質としてニッ
ケルを用いた触媒では、一つの目安として、水蒸気の水
素に対する濃度が10〜20倍以上になるとニッケルの
酸化が起こり、触媒の活性が低下することが知られてい
る。従って、触媒の活性を保つためには、水蒸気濃度の
水素濃度に対する比を10〜20以下にする必要がある
。上記のアノードサイクル方式を用いた内部改質形の溶
融炭酸塩形燃料電池では、燃料ガス供給系(5)lこ供
給されない燃料排ガスは、燃焼器(10)で二酸化炭素
主成分のガスに酸化されてカソード側(1a)へと導か
れるため、燃料電池本体(1)で高燃料利用率(燃料電
池に供給される燃料に対する、その燃料電池で消費され
る燃料の割合)、高負荷運転を行い、発電効率を上げる
ことが行われてきた。しかし、高燃料利用率、高負荷で
電池を運転すると、燃料電池本体(1)の入口付近にお
ける水蒸気の水素に対する濃度比が、部分的にまた過渡
的に極端に高くなり、燃料ガス流路に置かれた触媒の活
性が低下し、連続的に運転を行えないことになる。Varies depending on the type of active material. For example, in a catalyst using nickel as an active material, it is known that when the concentration of water vapor to hydrogen becomes 10 to 20 times or more, oxidation of nickel occurs and the activity of the catalyst decreases. Therefore, in order to maintain the activity of the catalyst, the ratio of water vapor concentration to hydrogen concentration must be 10 to 20 or less. In the internal reforming type molten carbonate fuel cell using the above-mentioned anode cycle method, the fuel exhaust gas that is not supplied to the fuel gas supply system (5) is oxidized to a gas mainly composed of carbon dioxide in the combustor (10). As a result, the fuel cell main body (1) has a high fuel utilization rate (ratio of fuel consumed by the fuel cell to the fuel supplied to the fuel cell) and high load operation. This has been done to increase power generation efficiency. However, when the battery is operated at a high fuel utilization rate and high load, the concentration ratio of water vapor to hydrogen near the inlet of the fuel cell main body (1) becomes extremely high partially or transiently, causing the fuel gas flow path to become extremely high. The activity of the placed catalyst decreases, making continuous operation impossible.
また、一般に内部改質形の溶融炭酸塩形燃料電池では、
例えば天然ガスを原燃料(2)として供給する場合、天
然ガスを、水素、二酸化炭素を主成分とする燃料に変換
するために必要な水蒸気を、供給する天然ガスに対する
モル比が例えば1.5〜4.0になるようにして燃料ガ
ス供給系(5)に供給する。Additionally, in general, internal reforming type molten carbonate fuel cells:
For example, when natural gas is supplied as the raw fuel (2), the molar ratio of the water vapor required to convert the natural gas into a fuel whose main components are hydrogen and carbon dioxide to the supplied natural gas is, for example, 1.5. ~4.0, and is supplied to the fuel gas supply system (5).
この水蒸気の供給方法として、例えば水蒸気を多量に含
む燃料ガス排出系(6)の一部を燃料ガス供給系(5)
に供給するアノードリサイクル方式があった。As a method of supplying this water vapor, for example, a part of the fuel gas exhaust system (6) containing a large amount of water vapor may be connected to the fuel gas supply system (5).
There was an anode recycling method to supply the
上記のような内部改質形の溶融炭酸塩形燃料電池による
発電装置では、燃料電池本体(1)における燃料利用率
を例えば80〜90チとすると、燃料ガス排出系(6)
における残余燃料成分が少なくなる。In a power generation device using an internal reforming type molten carbonate fuel cell as described above, if the fuel utilization rate in the fuel cell body (1) is, for example, 80 to 90 inches, the fuel gas exhaust system (6)
The residual fuel components in the fuel will be reduced.
上記アノードリサイクルによって燃料ガス供給系(5)
へ供給された排出燃料ガスを含むアノード側(1b)へ
の入口ガスは、燃料利用率を例えば80チとすると第1
表に示すような組成となる。Fuel gas supply system (5) by the above anode recycling
If the fuel utilization rate is, for example, 80, the inlet gas to the anode side (1b) containing the exhaust fuel gas supplied to the
The composition is as shown in the table.
第 1 表
原燃料としてメタンを供給し、燃料利用率を80チとし
た時の燃料電池本体(1)の入口ガス組成(内部改質形
燃料電池の場合)2.0とした場合
また、一般に単電池の起電力は次の式(8)で求められ
るで、アノード側(1″0)の二酸化炭素の分圧が大き
いと、単電池の起電力は低下することになる。Table 1 When methane is supplied as the raw fuel and the fuel utilization rate is 80 cm, the inlet gas composition of the fuel cell main body (1) (in the case of an internal reforming fuel cell) is 2.0. The electromotive force of a unit cell is determined by the following equation (8), and if the partial pressure of carbon dioxide on the anode side (1″0) is large, the electromotive force of the unit cell will decrease.
・CPco2 、Po2′A)
。 (8)
式中、 ΔG:ギブスの自由エネルギ、R:気体定数
711ファラデ一定数、n:2、T:温度(ケルビン)
、Px:ガス成分Xの分圧である。また。・CPco2, Po2'A). (8) In the formula, ΔG: Gibbs free energy, R: gas constant
711 Faraday constant, n: 2, T: temperature (Kelvin)
, Px: Partial pressure of gas component X. Also.
添字Aは〔へ内がアノード側(1す)でのガス組成で構
成されることを示し、添字Cは〔〕 内がカソード側(
1a)でのガス組成で構成されることを示す。The subscript A indicates that the gas composition is on the anode side (1), and the subscript C indicates that the gas composition is on the cathode side (1).
1a).
従って、起電力Eを大きくするためには、アノード側(
1b)においては例えば水素分圧を上げ、水蒸気および
二酸化炭素の分圧を下げることが必要となる。内部改質
形の燃料電池の場合、上記した式(1) 、 (2)
、 (り 、 (4)の反応により水素を生成するが、
一般には反応を促進させるために例えば改質触媒を用い
ることが多い。この改質触媒を用いて水素生成反応を促
進させる場合、改質触媒の活性を連続的に長期間維持す
る必要がある。しかし、アノード側(1b)では、式(
5)の電池反応により水素は連続的に消費され、従って
、アノード側(1b)の入口付近では、改質反応により
水素が十分生成される前に消費されるため、上記改質触
媒の負荷が大きくなり、酸化などによる触媒の劣化が早
期に起こるという問題点があった。Therefore, in order to increase the electromotive force E, the anode side (
In 1b), for example, it is necessary to increase the hydrogen partial pressure and to decrease the water vapor and carbon dioxide partial pressures. In the case of an internal reforming type fuel cell, the above equations (1) and (2) are used.
, (ri) Hydrogen is produced by the reaction (4), but
In general, a reforming catalyst, for example, is often used to accelerate the reaction. When promoting the hydrogen production reaction using this reforming catalyst, it is necessary to maintain the activity of the reforming catalyst continuously for a long period of time. However, on the anode side (1b), the formula (
Hydrogen is continuously consumed by the cell reaction in 5). Therefore, near the inlet of the anode side (1b), hydrogen is consumed before it is sufficiently produced by the reforming reaction, so the load on the reforming catalyst is increased. This poses a problem in that the catalyst becomes larger and the catalyst deteriorates more quickly due to oxidation.
また、燃料電池本体(りでの燃料利用率を80チ程度と
すると、アノード側(1b)の出口ガス組成は例えば第
2表のようになり、水素分圧が小さくなる。Further, if the fuel utilization rate in the fuel cell body is about 80 inches, the composition of the outlet gas on the anode side (1b) will be as shown in Table 2, for example, and the hydrogen partial pressure will be small.
第 2 表
メタンを燃料として用いた時の燃料電池本体(1)の出
口ガス組成(内部改質形燃料電池の場合)従って、燃料
ガス排出系(6)のガスの一部を燃料ガス供給系(5)
へ導くことによって水蒸気を供給する方法を採ると、燃
料として用いられる水素は約6SLか供給されないのに
対し、二酸化炭素が6゜チ以上も供給され、燃料電池の
起電力の低下を招くという問題点があった。Table 2 Composition of outlet gas from the fuel cell main body (1) when using methane as fuel (in the case of internal reforming fuel cells) Therefore, some of the gas from the fuel gas exhaust system (6) is transferred to the fuel gas supply system. (5)
If we adopt the method of supplying water vapor by introducing it into the fuel cell, hydrogen used as fuel is supplied at only about 6 SL, whereas carbon dioxide is supplied at 6 SL or more, leading to a decrease in the electromotive force of the fuel cell. There was a point.
以上のように、燃料電池本体(りにおける燃料利用率を
80〜90%の高率とすると、改質触媒の活性の低下を
招くとともに、燃料電池の起電力を低下させるという問
題点があった。As mentioned above, when the fuel utilization rate in the fuel cell body is set to a high rate of 80 to 90%, there is a problem in that the activity of the reforming catalyst decreases and the electromotive force of the fuel cell decreases. .
この発明は、かかる問題点を解決するためになされたも
ので、発電装置すなわちシステム全体で燃料利用率の高
い運転ができるととも(こ、電池の起電力を低下させる
ことなく、燃料ガス供給系に水蒸気を供給することがで
き、同時に、改質触媒の活性を長期間維持することがで
きる複合型燃料電池発電装置を得ることを目的とする。This invention was made to solve these problems, and it is possible to operate the power generation device, that is, the entire system, with a high fuel utilization rate (this invention also enables the fuel gas supply system to be operated without reducing the electromotive force of the battery). The object of the present invention is to obtain a composite fuel cell power generation device that can supply steam to the fuel cells and maintain the activity of the reforming catalyst for a long period of time.
この発明に係る複合型燃料電池発電装置は、燃料ガスの
流れに対して直列に複数の燃料電池を配置し、それぞれ
の燃料電池の燃料利用率を調整することによって1発電
装置全体として燃料利用率の高い運転を長期間行えるよ
うにしたものである。The composite fuel cell power generation device according to the present invention arranges a plurality of fuel cells in series with respect to the flow of fuel gas, and adjusts the fuel utilization rate of each fuel cell to achieve a fuel utilization rate of one power generation device as a whole. This allows for high-speed operation for long periods of time.
この発明においては、燃料ガス供給系に対して最も上流
に位置する第1段目の燃料電池の燃料利用率を従来の場
合より下げることにより、水素分圧が高く、二酸化炭素
および水蒸気分圧の低い燃料ガスを第2段目の燃料電池
の燃料ガス供給系へ供給するので、第2段目以降の燃料
電池本体入口においても予め改質触媒が酸化されない様
に十分な水素を供給できる。また、第1段目の燃料電池
では、水素の消費率が減少し、改質触媒の負荷が軽減さ
れ、改質反応の反応速度に余裕ができることになり、改
質触媒の活性が維持できるだけでなく、電極面の水素濃
度分布も従来より小さいため、電極面内における電流密
度分布も小さく、平均水素分圧も従来より高いため、起
電力が高くなり。In this invention, by lowering the fuel utilization rate of the first-stage fuel cell located most upstream with respect to the fuel gas supply system than in the conventional case, the hydrogen partial pressure is high and the carbon dioxide and water vapor partial pressures are low. Since a low-temperature fuel gas is supplied to the fuel gas supply system of the second-stage fuel cell, sufficient hydrogen can be supplied in advance to prevent the reforming catalyst from being oxidized at the inlet of the fuel cell main body of the second and subsequent stages. In addition, in the first stage fuel cell, the hydrogen consumption rate is reduced, the load on the reforming catalyst is reduced, and the reaction rate of the reforming reaction has a margin, allowing the activity of the reforming catalyst to be maintained. Since the hydrogen concentration distribution on the electrode surface is smaller than before, the current density distribution within the electrode surface is also smaller, and the average hydrogen partial pressure is also higher than before, resulting in a higher electromotive force.
逆に熱となって無駄に消費される燃料の割合が小さくな
るため、発電効率も向上する。On the other hand, since the proportion of fuel that is wasted as heat is reduced, power generation efficiency is also improved.
また、第2段目以降の燃料電池では、上流の燃料電池の
燃料ガス排出系から導れる残余水素、−酸化炭素などを
含むガスを燃料として利用するので、発電装置全体とし
て燃料利用率の高い運転を行うことができる。In addition, the fuel cells in the second and subsequent stages use gas containing residual hydrogen, carbon oxide, etc. led from the fuel gas exhaust system of the upstream fuel cell as fuel, so the overall fuel utilization rate of the power generation device is high. Able to drive.
〔実施例〕
第1図はこの発明の一実施例を示すガスの流れ図であり
、(1)、(21、(4)〜(12)は上記従来装置に
おけるものと全く同一である。(13)は燃料電池本体
(1)の下流側に設けられた第2段目の溶融炭酸塩形の
燃料電池本体であり、ここでは上流側の燃料電池本体(
1)を第1段目の燃料電池本体(1)とする。(13a
)は第2段目の燃料電池本体(16)のカソード側ガス
流路および電極(以下単にカソード側という)、(13
1))は第2段目の燃料電池本体(13)のアノード側
ガス流路および電極(以下単にアノード側という)、(
130)は2段目の燃料電池本体(13)の電解質層で
ある。なお、脱硫器(4)はアノードリサイクル系(7
)によって戻された燃料排ガスと供給された原燃料(2
)の混合位置より下流側に設けられ、熱交換器(8−1
)および(8−2)はそれぞれ燃料電池本体(1)およ
び(13)を所定の温度に保つためのものである。また
、(12−1)および(12−2)はそれぞれ第1段目
および第2段目の燃料電池におけるカソードガス供給系
である。[Embodiment] Fig. 1 is a gas flow diagram showing an embodiment of the present invention, and (1), (21, (4) to (12)) are completely the same as those in the conventional device described above. (13) ) is the second stage molten carbonate fuel cell body provided downstream of the fuel cell body (1), and here the upstream fuel cell body (
1) is the first stage fuel cell main body (1). (13a
) is the cathode side gas flow path and electrode (hereinafter simply referred to as the cathode side) of the second stage fuel cell main body (16), (13
1)) is the anode side gas flow path and electrode (hereinafter simply referred to as the anode side) of the second stage fuel cell main body (13), (
130) is an electrolyte layer of the second stage fuel cell main body (13). The desulfurizer (4) is an anode recycling system (7).
) and the raw fuel supplied (2
) is installed downstream from the mixing position of the heat exchanger (8-1
) and (8-2) are for maintaining the fuel cell bodies (1) and (13) at a predetermined temperature, respectively. Further, (12-1) and (12-2) are cathode gas supply systems in the first stage and second stage fuel cells, respectively.
上記のように構成された複合型燃料電池発電装置におい
ては、原燃料(2)は、アノードリサイクル系(7)を
通して戻されたガスと混合され、脱硫器(4)でイオウ
成分が除去された後、燃料ガス供給系(5)より第1段
目の燃料電池本体(1)に燃料として供給される。第1
段目の燃料電池本体(1)では、燃料利用率を30チと
し、水蒸気のメタンに対する比が2となるように、アノ
ードリサイクル系(ア)で再循環される燃料の量を定め
ておく。この結果、アノードリサイクル系(7)で再循
環される燃料の量が燃料ガス排出系(6)からの排ガス
の景に対して85%と高くなるにもかかわらず、燃料電
池本体(1)の入口、出口ともに水素の分圧が約50%
となる。第3表に燃料電池本体(1)および(13)の
入口、出口の燃料ガス組成を示す。In the composite fuel cell power generation device configured as described above, the raw fuel (2) is mixed with the gas returned through the anode recycling system (7), and the sulfur component is removed in the desulfurizer (4). Thereafter, it is supplied as fuel from the fuel gas supply system (5) to the first stage fuel cell body (1). 1st
In the stage fuel cell main body (1), the fuel utilization rate is set to 30, and the amount of fuel to be recirculated in the anode recycling system (A) is determined so that the ratio of water vapor to methane is 2. As a result, even though the amount of fuel recirculated in the anode recycling system (7) is as high as 85% of the amount of exhaust gas from the fuel gas exhaust system (6), the fuel cell body (1) Partial pressure of hydrogen at both inlet and outlet is approximately 50%
becomes. Table 3 shows the fuel gas composition at the inlet and outlet of the fuel cell bodies (1) and (13).
第3表 燃料ガス組成
注)燃料電池本体(13)の入口組成は、燃料電池本体
(1)の出口組成と同じである。Table 3 Fuel gas composition Note: The inlet composition of the fuel cell main body (13) is the same as the outlet composition of the fuel cell main body (1).
燃料利用率は燃料電池本体(1)では30チ、燃料電池
本体(15)では71チ、発電装置全体では80チであ
る。The fuel utilization rate is 30 cm for the fuel cell main body (1), 71 cm for the fuel cell main body (15), and 80 cm for the entire power generation device.
従って、燃料電池本体(1)内の改質触媒は、酸化およ
び炭素析出などによる活性の低下を起こすことなく、長
期に亘り安定した性能を発揮する。また、脱硫器(4)
では、例えば水添脱硫方式を用いた場合、次の式(9)
、(1のに示す反応により化学吸着によって燃料中に含
まれるイオウ成分を除去するため、供給ガス中の水素分
圧が高いほど脱硫性能は向上する。Therefore, the reforming catalyst within the fuel cell main body (1) exhibits stable performance over a long period of time without any reduction in activity due to oxidation, carbon deposition, or the like. Also, desulfurizer (4)
For example, when using the hydrodesulfurization method, the following equation (9)
, (Since the sulfur component contained in the fuel is removed by chemisorption through the reaction shown in 1), the desulfurization performance improves as the hydrogen partial pressure in the supplied gas increases.
H2+イオウ化合物→H2S+炭化水素 (9)
125 + ZnO4H2O−1−ZnS
(10)水素を30%以上含んだ燃料ガス(
9)は、第2段目の燃料電池本体(13)の燃料として
用いられる。H2+ sulfur compound → H2S+ hydrocarbon (9)
125 + ZnO4H2O-1-ZnS
(10) Fuel gas containing 30% or more hydrogen (
9) is used as fuel for the second stage fuel cell main body (13).
この燃料電池本体(16)での燃料利用率を71%とす
ると、第1段目および第2段目の燃料電池本体(1)お
よび(13)を合計して、投入した原燃料(2)の80
チを利用したことになる。第2段目の燃料電池本体(1
3)から出た燃料排ガスは、燃焼器(10)で二酸化炭
素を主成分とするガスに変成され、空気(11)ととも
に熱交換器(8−1)および(8−2)で昇温された後
、第1段目および第2段目の燃料電池本体(1)および
(13)のカソード側(1a)および(15a)へ供給
される。Assuming that the fuel utilization rate in this fuel cell main body (16) is 71%, the input raw fuel (2) is the sum of the first and second stage fuel cell main bodies (1) and (13). 80 of
This means that you have used Chi. Second stage fuel cell body (1
The fuel exhaust gas emitted from 3) is converted into a gas mainly composed of carbon dioxide in the combustor (10), and then heated together with air (11) in heat exchangers (8-1) and (8-2). After that, it is supplied to the cathode sides (1a) and (15a) of the first and second stage fuel cell bodies (1) and (13).
なお、上記実施例では、第1段目の燃料電池本体(1)
における燃料利用率を60チとしたが、好適には20チ
〜60%の範囲とすることができる。In addition, in the above embodiment, the first stage fuel cell main body (1)
Although the fuel utilization rate was set at 60%, it can preferably range from 20% to 60%.
第2段目の燃料電池本体(13)における燃料利用率は
71チとしたが、好適には第2段目以降の燃料電池につ
いて60%〜70%とすることができる。Although the fuel utilization rate in the second stage fuel cell main body (13) was set to 71%, it can preferably be set at 60% to 70% for the fuel cells in the second and subsequent stages.
また、発電装置全体の燃料利用率は80%としたが、好
適には従来と同様に80チ〜90%とすることができる
。Further, although the fuel utilization rate of the entire power generation device was set to 80%, it can preferably be set to 80% to 90% as in the conventional case.
また、上記実施例では2段の積層型燃料電池を直列に配
置したものを示したが、3段以上の積層型燃料電池を直
列に配置してもよく、また、各段で複数の燃料電池を並
列に設置してもよい。Further, in the above embodiment, two stages of stacked fuel cells are arranged in series, but three or more stages of stacked fuel cells may be arranged in series, and each stage has a plurality of fuel cells. may be installed in parallel.
また、上記実施例では、燃料ガス排出系(6)のガスの
一部を、アノードリサイクル系(7)により燃料ガス供
給系(5)の脱硫器(4)の上流側に導いたものを示し
たが、第2図に示すように、脱硫器(4)の上流および
下流の2ケ所に分配して供給してもよい。Furthermore, in the above embodiment, a part of the gas in the fuel gas exhaust system (6) is guided to the upstream side of the desulfurizer (4) in the fuel gas supply system (5) through the anode recycling system (7). However, as shown in FIG. 2, it may be distributed and supplied to two locations, upstream and downstream of the desulfurizer (4).
脱硫器(4)の上流まで導くガスは、その途中に、熱交
換器(8−5)および水分凝縮器(14)などを用いて
もよく、この場合、脱硫器(4)は除湿されたガスが供
給されるため、ガス中の水素濃度が高くなり、脱硫効果
が増す。さらに、脱硫に必要な量の水素を含むガスのみ
を冷却、水分凝縮することができるため、水分凝縮器(
14)および熱交換器(8−5)の容量が小さくてすむ
というメリットがある。A heat exchanger (8-5), a moisture condenser (14), etc. may be used for the gas to be led upstream of the desulfurizer (4), and in this case, the desulfurizer (4) is a dehumidified gas. Since gas is supplied, the hydrogen concentration in the gas increases, increasing the desulfurization effect. Furthermore, since only the gas containing the amount of hydrogen required for desulfurization can be cooled and water condensed, the water condenser (
14) and the heat exchanger (8-5) have a small capacity.
また、上記実施例などに、水分凝縮器(1りや加湿器を
併用してもよく、他の実施例として第6図に示すような
場合、アノードリサイクル系(7)の中正こ水分凝縮器
(14)を設置したので、脱硫器(4)には除湿した水
素濃度の高いガスが供給され、また、脱硫器(4)の下
流側に水蒸気供給器(図示しない)を設けたので、燃料
電池本体(1)および(13)には加湿量を調整した燃
料ガスを供給できる。In addition, a moisture condenser (1) or a humidifier may be used in combination with the above embodiments, and in another embodiment as shown in FIG. 14) was installed, dehumidified gas with high hydrogen concentration was supplied to the desulfurizer (4), and a steam supply device (not shown) was installed downstream of the desulfurizer (4), so the fuel cell Fuel gas with an adjusted amount of humidification can be supplied to the main bodies (1) and (13).
なお、上記実施例では、第2段目の燃料電池として溶融
炭酸塩形燃料電池を使用したが、第2段目以降の燃料電
池としては、内部改質形または外部改質形の溶融炭酸塩
形燃料電池、才たはリン酸形燃料電池を使用できる。In the above example, a molten carbonate fuel cell was used as the second-stage fuel cell, but the second-stage fuel cell and subsequent stages may use an internally reformed or externally reformed molten carbonate fuel cell. A type fuel cell, a phosphoric acid type fuel cell, or a phosphoric acid type fuel cell can be used.
〔発明の効果〕
この発明は以上説明したとおり、燃料ガス系について燃
料電池を少なくとも2段直列に配置し、上流側の燃料電
池の燃料排出ガスの一部を同燃料電池の燃料ガス供給系
へ導くアノードリサイクル方式を採用し、さらに発電装
置全体として燃料利用率が高くなるように各段の燃料電
池の燃料利用率を調整したので、燃料電池に使用されて
いる改質触媒の高活性が長期間に亘り維持され、燃料電
池の起電力を低下させることなく長寿命化が図れる効果
がある。[Effects of the Invention] As explained above, this invention arranges at least two stages of fuel cells in series in the fuel gas system, and directs a portion of the fuel exhaust gas from the upstream fuel cell to the fuel gas supply system of the fuel cell. In addition, the fuel utilization rate of each stage of fuel cells was adjusted to increase the fuel utilization rate of the entire power generation device, so the high activity of the reforming catalyst used in the fuel cell can be maintained for a long time. It is maintained over a period of time and has the effect of extending the life of the fuel cell without reducing the electromotive force of the fuel cell.
第1図はこの発明の一実施例を示すガスの流れ図、第2
図はこの発明の他の実施例を示すガスの流れ図、第3図
はこの発明のさらに他の実施例を示すガスの流れ図、第
4図は従来の燃料電池発電装置のガスの流れ図である。
図番こおいて、(1)は燃料電池本体、(1a)はカソ
ード側ガス流路および電極、(1b)はアノード側ガス
流路および電極、(1C)は電解質層、(2)は原燃料
、(6)は原燃料供給系、(4)は脱硫器、(5)は燃
料ガス供給系、(6)は燃料ガス排出系、(7)はアノ
ードリサイクル系、(81,(8−1) 、(8−2)
、(8−5)は熱交換器、(9)は燃料ガス、(10
)は燃焼器、(11)は空気、(12)、(12−1)
、(12−2)はカソードガス供給系、(13)は第2
段目の燃料電池本体、(15a)はカソード側ガス流路
および電極、(131))はアノード側ガス流路および
電極、(1っけ水分凝縮器である。
なお、各図中、同一符号は同一または相当部分を示す。
Q ボ
尾4図
手続補正書「自発」
昭和61yち、ツOE3Fig. 1 is a gas flow diagram showing an embodiment of the present invention;
FIG. 3 is a gas flow chart showing another embodiment of the invention, FIG. 3 is a gas flow chart showing still another embodiment of the invention, and FIG. 4 is a gas flow chart of a conventional fuel cell power generation device. In the figure numbers, (1) is the fuel cell body, (1a) is the cathode side gas flow path and electrode, (1b) is the anode side gas flow path and electrode, (1C) is the electrolyte layer, and (2) is the raw material. Fuel, (6) is raw fuel supply system, (4) is desulfurizer, (5) is fuel gas supply system, (6) is fuel gas discharge system, (7) is anode recycling system, (81, (8- 1) , (8-2)
, (8-5) is a heat exchanger, (9) is a fuel gas, (10
) is the combustor, (11) is air, (12), (12-1)
, (12-2) is the cathode gas supply system, (13) is the second
The fuel cell main body in the third stage, (15a) is the cathode side gas flow path and electrode, (131) is the anode side gas flow path and electrode, and (1) water condenser. Note that the same reference numerals are used in each figure. indicates the same or equivalent part.
Claims (8)
ガス供給系から供給された酸化ガスとで電気化学反応を
起こす燃料電池を、燃料ガス供給系および燃料ガス排出
系からなる燃料ガス系について少なくとも2段直列に配
置し、上流側の燃料電池から排出された燃料ガスのうち
、下流側燃料電池の燃料ガス供給系に供給されなかった
前記排出燃料ガスの少なくとも一部を前記上流側の燃料
電池の燃料ガス供給系に再循環させるアノードリサイク
ル方式を採用するとともに、発電装置全体として燃料利
用率が高くなるように各段の燃料電池の燃料利用率を調
整したことを特徴とする複合型燃料電池発電装置。(1) A fuel gas system consisting of a fuel gas supply system and a fuel gas exhaust system is used to operate a fuel cell that causes an electrochemical reaction between the fuel gas supplied from the fuel gas supply system and the oxidizing gas supplied from the oxidizing gas supply system. are arranged in series in at least two stages, and out of the fuel gas discharged from the upstream fuel cell, at least a portion of the discharged fuel gas that was not supplied to the fuel gas supply system of the downstream fuel cell is transferred to the upstream fuel cell. A composite type that uses an anode recycling method that recirculates the fuel gas to the fuel gas supply system of the fuel cell, and also adjusts the fuel utilization rate of each stage of fuel cells so that the fuel utilization rate of the entire power generation device is high. Fuel cell power generation device.
燃料電池であることを特徴とする特許請求の範囲第1項
記載の複合型燃料電池発電装置。(2) The composite fuel cell power generation device according to claim 1, wherein the upstream fuel cell is an internal reforming type molten carbonate fuel cell.
するガスに改質された改質ガスが燃料ガスとして用いら
れる溶融炭酸塩形燃料電池であることを特徴とする特許
請求の範囲第1項記載の複合型燃料電池発電装置。(3) A patent claim characterized in that the upstream fuel cell is a molten carbonate fuel cell in which raw fuel is reformed into a gas containing hydrogen as a main component and the reformed gas is used as the fuel gas. The combined fuel cell power generation device according to item 1.
るための改質装置が上流側の燃料電池の燃料ガス供給系
に設けられたことを特徴とする特許請求の範囲第1項記
載の複合型燃料電池発電装置。(4) Claim 1, characterized in that a reformer for reforming raw fuel into fuel gas containing hydrogen as a main component is provided in the fuel gas supply system of the upstream fuel cell. The composite fuel cell power generation device described in 2.
塩形燃料電池、外部改質形の溶融炭酸塩形燃料電池、お
よびリン酸形燃料電池からなる群から選ばれた少なくと
も1種であることを特徴とする特許請求の範囲第1項記
載の複合型燃料電池発電装置。(5) The fuel cells in the second and subsequent stages are at least one selected from the group consisting of internally reforming molten carbonate fuel cells, externally reforming molten carbonate fuel cells, and phosphoric acid fuel cells. The composite fuel cell power generation device according to claim 1, characterized in that it is one type of fuel cell power generation device.
循環された排出燃料ガス中のイオウ化合物のイオウ分を
除去するための脱硫器が第1段目の燃料電池の燃料供給
系に設けられたことを特徴とする特許請求の範囲第1項
記載の複合型燃料電池発電装置。(6) A desulfurizer is installed in the fuel supply system of the first stage fuel cell to remove the sulfur content of sulfur compounds in the fuel gas and the exhaust fuel gas recirculated by the anode recycling method. A composite fuel cell power generation device according to claim 1.
特許請求の範囲第6項記載の複合型燃料電池発電装置。(7) The composite fuel cell power generation device according to claim 6, wherein the desulfurizer is a hydrodesulfurization device.
アルコール類を主成分とすることを特徴とする特許請求
の範囲第1項記載の複合型燃料電池発電装置。(8) The composite fuel cell power generation device according to claim 1, wherein the raw fuel used as the fuel gas contains hydrocarbons or alcohols as a main component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61117446A JPS62274560A (en) | 1986-05-23 | 1986-05-23 | Composite type fuel cell power generating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61117446A JPS62274560A (en) | 1986-05-23 | 1986-05-23 | Composite type fuel cell power generating system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62274560A true JPS62274560A (en) | 1987-11-28 |
Family
ID=14711853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61117446A Pending JPS62274560A (en) | 1986-05-23 | 1986-05-23 | Composite type fuel cell power generating system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62274560A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02170368A (en) * | 1988-12-22 | 1990-07-02 | Jgc Corp | Power generating system of fuel battery |
JPH03245471A (en) * | 1990-02-23 | 1991-11-01 | Ishikawajima Harima Heavy Ind Co Ltd | Molten carbonate type fuel cell generating device |
EP0459165A2 (en) * | 1990-05-01 | 1991-12-04 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Power generation system using molten carbonate type fuel cell |
WO1998021771A1 (en) * | 1996-11-13 | 1998-05-22 | Stichting Energieonderzoek Centrum Nederland | Reactant flow arrangement of a power system of several internal reforming fuel cell stacks |
JP2003100333A (en) * | 2001-09-21 | 2003-04-04 | Mitsubishi Heavy Ind Ltd | Fuel cell power generation equipment and turbine power generation equipment |
JP2003123818A (en) * | 2001-10-12 | 2003-04-25 | Mitsubishi Heavy Ind Ltd | Fuel cell system and complex power generating system |
WO2006045893A1 (en) * | 2004-10-28 | 2006-05-04 | Wärtsilä Finland Oy | Flow arrangement for fuel cell stacks |
JP2008130289A (en) * | 2006-11-17 | 2008-06-05 | Sanyo Electric Co Ltd | Direct type fuel cell |
JP2016015318A (en) * | 2014-07-01 | 2016-01-28 | ゼネラル・エレクトリック・カンパニイ | Power generation system and method using serial fuel batteries |
JP2018137209A (en) * | 2016-11-04 | 2018-08-30 | ゼネラル・エレクトリック・カンパニイ | Power generation system using cascaded fuel cell and associated method therefor |
JP2021077585A (en) * | 2019-11-13 | 2021-05-20 | 森村Sofcテクノロジー株式会社 | Fuel cell module |
-
1986
- 1986-05-23 JP JP61117446A patent/JPS62274560A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02170368A (en) * | 1988-12-22 | 1990-07-02 | Jgc Corp | Power generating system of fuel battery |
JPH03245471A (en) * | 1990-02-23 | 1991-11-01 | Ishikawajima Harima Heavy Ind Co Ltd | Molten carbonate type fuel cell generating device |
EP0459165A2 (en) * | 1990-05-01 | 1991-12-04 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Power generation system using molten carbonate type fuel cell |
US5306575A (en) * | 1990-05-01 | 1994-04-26 | Camara Elias H | Power generation system using molten carbonate type fuel cell |
WO1998021771A1 (en) * | 1996-11-13 | 1998-05-22 | Stichting Energieonderzoek Centrum Nederland | Reactant flow arrangement of a power system of several internal reforming fuel cell stacks |
NL1004513C2 (en) * | 1996-11-13 | 1998-05-29 | Stichting Energie | Series connected fuel cell system. |
US6344289B2 (en) | 1996-11-13 | 2002-02-05 | Stichting Energieonderzoek Centrum Nederland | Reactant flow arrangement of a power system of several internal reforming fuel cell stacks |
JP2003100333A (en) * | 2001-09-21 | 2003-04-04 | Mitsubishi Heavy Ind Ltd | Fuel cell power generation equipment and turbine power generation equipment |
JP2003123818A (en) * | 2001-10-12 | 2003-04-25 | Mitsubishi Heavy Ind Ltd | Fuel cell system and complex power generating system |
WO2006045893A1 (en) * | 2004-10-28 | 2006-05-04 | Wärtsilä Finland Oy | Flow arrangement for fuel cell stacks |
JP2008518415A (en) * | 2004-10-28 | 2008-05-29 | ワルトシラ フィンランド オサケユキチュア | Flow arrangement for fuel cell stack |
JP2008130289A (en) * | 2006-11-17 | 2008-06-05 | Sanyo Electric Co Ltd | Direct type fuel cell |
JP2016015318A (en) * | 2014-07-01 | 2016-01-28 | ゼネラル・エレクトリック・カンパニイ | Power generation system and method using serial fuel batteries |
JP2018137209A (en) * | 2016-11-04 | 2018-08-30 | ゼネラル・エレクトリック・カンパニイ | Power generation system using cascaded fuel cell and associated method therefor |
JP2021077585A (en) * | 2019-11-13 | 2021-05-20 | 森村Sofcテクノロジー株式会社 | Fuel cell module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10680265B2 (en) | Energy storage using an REP with an engine | |
ATE216136T1 (en) | SOLID OXIDE FUEL CELL OPERATED WITH EXCESS FUEL | |
JP2581662B2 (en) | Fuel cell generator | |
JPS61193372A (en) | Internally reformed type of fuel cell | |
JPS62274560A (en) | Composite type fuel cell power generating system | |
JP2014502020A (en) | Solid oxide fuel cell system and solid oxide fuel cell system operating method | |
KR102496688B1 (en) | Hydrogen Generation Using Fuel Cell Systems with REP | |
JP2004171802A (en) | Fuel cell system | |
JP2023552768A (en) | Solid Oxide Fuel Cell System with Increased Carbon Capture and Efficiency | |
JP4536391B2 (en) | Fuel cell power generation system and fuel cell module | |
JP2005108509A (en) | Fuel cell power generating system | |
JP5919139B2 (en) | High temperature fuel cell system | |
JP4620399B2 (en) | Control method of fuel cell power generation system | |
JP4467929B2 (en) | Fuel cell power generation system | |
JP3872006B2 (en) | Fuel cell power generation system | |
JP2000243423A (en) | Fuel cell purging method | |
EP2835346B1 (en) | Hydrogen purifier, hydrogen generation apparatus, and fuel cell system | |
US20240243318A1 (en) | Fuel cell system and method for operating the same | |
JP3886887B2 (en) | Fuel cell power generation system | |
JP4467924B2 (en) | Fuel cell power generation system | |
JP2023139726A (en) | fuel cell system | |
JPS62184771A (en) | Fuel cell power generating system | |
JPS6119073A (en) | Molten carbonate type fuel cell system | |
JP2005268171A (en) | Fuel cell module and fuel cell power generating system | |
KR20160128699A (en) | Fuel cell power generating apparatus and method in offshore structure |