JPS62184771A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPS62184771A
JPS62184771A JP61026127A JP2612786A JPS62184771A JP S62184771 A JPS62184771 A JP S62184771A JP 61026127 A JP61026127 A JP 61026127A JP 2612786 A JP2612786 A JP 2612786A JP S62184771 A JPS62184771 A JP S62184771A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
water vapor
molten carbonate
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61026127A
Other languages
Japanese (ja)
Inventor
Mitsuie Matsumura
光家 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61026127A priority Critical patent/JPS62184771A/en
Priority to US06/938,615 priority patent/US4722873A/en
Publication of JPS62184771A publication Critical patent/JPS62184771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a power generating system having high power-generating efficiency and long life by arranging a humidity controller between an upper stream side fuel cell and a downstream side fuel cell, and supplying a fuel gas whose excess water vapor is removed by the humidity controller to the downstream fuel cell. CONSTITUTION:A fuel gas which is exhausted from an upper stream side molten carbonate fuel cell 1a and containing a large amount of water vapor is supplied to a humidity controller 6 in which excess water vapor is removed to control the humidity. A fuel gas exhausted from the humidity controller 6 is supplied to a downstream side molten carbonate fuel cell 1b. Since the excess water vapor is removed by the humidity controller 6, partial pressure of hydrogen and carbon monoxide which are reaction materials is relatively increased. As a result, average voltage per cell on the downstream side molten carbonate fuel cell 1b is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池発電システムに関し、特に発を効
率の改善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell power generation system, and particularly to improving the efficiency of power generation.

〔従来の技術〕[Conventional technology]

従来、溶融炭酸塩形燃料電池を用いた発電装置のシステ
ムとして第2図に示すものがあり、例えばリポート(G
R工 Report ”Eualuation ofN
atural  Gas  Mo1ten  Carb
onate  Power  Plant ’)GR工
 RepFkLFCR−8522−2(1981)、)
などで発表されている。図において、(IIは単数また
は複数の電池スタックよりなる溶融炭酸塩形燃料電池、
(21はこの溶融炭酸塩形燃料電池(1)より排出され
た燃料ガスの温度・湿度を調節する温度・湿度調節装置
、(3)は溶融炭酸塩形燃料電池(11で未反応の燃料
ガスを酸化するための燃焼器である。(4)は溶融炭酸
塩形燃料電池…で発生した金利の熱を系外に持ち去るた
めの熱交換器、(6)は冷却の熱媒体となるガスを循環
するためのガス循環装置である。
Conventionally, there is a power generation system using a molten carbonate fuel cell, as shown in Figure 2.
R Engineering Report “Evaluation ofN
atural Gas Mo1ten Carb
onate Power Plant') GR Engineering RepFkLFCR-8522-2 (1981),)
etc. has been announced. In the figure, (II is a molten carbonate fuel cell consisting of one or more cell stacks,
(21 is a temperature/humidity control device for adjusting the temperature and humidity of the fuel gas discharged from this molten carbonate fuel cell (1), (3) is a molten carbonate fuel cell (11 is a temperature/humidity control device for controlling the temperature and humidity of the fuel gas discharged from the molten carbonate fuel cell), (4) is a heat exchanger for carrying away the heat generated in the molten carbonate fuel cell out of the system, and (6) is a combustor for oxidizing gas as a heat medium for cooling. This is a gas circulation device for circulation.

次に動作について説明する。例えば改質装置、石炭ガス
化装置などの燃料処理装置において炭化水素またはアル
コール類1石炭などを変質することにより得られた水素
、−酸化炭素および二酸化炭素を主要な成分とする燃料
ガスは、高温状態(例えば400℃以上)での式(!1
に示すような一酸化炭素の分解による炭素の析出を避け
るため水蒸気を適宜含ませた状態で溶融炭酸塩形燃料電
池11]に供給される。
Next, the operation will be explained. For example, fuel gas whose main components are hydrogen, carbon oxide, and carbon dioxide obtained by altering hydrocarbons or alcohol 1 coal in fuel processing equipment such as reformers and coal gasifiers is heated at high temperatures. The formula (!1
In order to avoid precipitation of carbon due to decomposition of carbon monoxide as shown in FIG.

!!00    、、:O↓+ Co、       
+1)燃料ガスに含まれる水蒸気は式(21に従い一酸
化炭素を消費するため炭素の析出を防ぐことができる。
! ! 00,,:O↓+Co,
+1) Since the water vapor contained in the fuel gas consumes carbon monoxide according to equation (21), precipitation of carbon can be prevented.

Co  + Hoop Co雪+ H!fi+溶融炭酸
塩形燃料電池111よシ排出された燃料ガスは温度・湿
度調節装置(21で過料の水分を除去し温度・湿度を調
節された後、燃焼器(3)で未反応の可燃性物質が完全
に酸化され、しかる後酸化ガス側に供給される。
Co + Hoop Co snow + H! The fuel gas discharged from the fi + molten carbonate fuel cell 111 is removed by a temperature/humidity control device (21) to remove water in the supercharge and its temperature/humidity is adjusted, and is then sent to a combustor (3) to remove unreacted combustible gas. The substance is completely oxidized and then fed to the oxidizing gas side.

一方、ブロワなどの空気供給装置(図示せず)よシ供給
された空気は燃焼器131より供給される完全に酸化さ
れた燃焼ガスと混合され、酸化ガスとして溶融炭酸塩形
燃料電池Ill K供給される。
On the other hand, air supplied by an air supply device (not shown) such as a blower is mixed with completely oxidized combustion gas supplied from the combustor 131, and the oxidized gas is supplied to the molten carbonate fuel cell Ill K. be done.

ここで溶融炭酸塩形燃料電池II+は、例えば650℃
付近の温度で動作する燃料電池で、燃料ガス′框極およ
び酸化ガス電極においてそれぞれ下に示す電気化学反応
・化学反応を行わせしめ、全体として燃料ガスの持つ化
学エネルギー全電気エネルギーと副生する熱エネルギー
とに変換する。
Here, the temperature of the molten carbonate fuel cell II+ is, for example, 650°C.
In a fuel cell that operates at a similar temperature, the electrochemical reactions and chemical reactions shown below are carried out at the fuel gas electrode and the oxidizing gas electrode, respectively, and the overall chemical energy of the fuel gas, total electrical energy, and by-product heat are Convert to energy.

(燃料ガス電極) Hz + 003  #JO+O(h +2e    
f31Co + H雪0   #001 + H!f4
)(酸化ガス電極) 十〇g +  OO1+4e−#003”      
  f51副生じた熱エネルギーは、ガス循環装置(6
)を用いて熱媒体である酸化ガスを循環し熱交換器(4
)よシ外部IfC熱を放出することにょ)、溶融炭酸塩
形燃料電池(1)よシ除去される。
(Fuel gas electrode) Hz + 003 #JO+O(h +2e
f31Co + H snow 0 #001 + H! f4
) (Oxidizing gas electrode) 10g + OO1+4e-#003”
The heat energy generated by f51 is transferred to the gas circulation device (6
) is used to circulate the oxidizing gas, which is a heat medium, and the heat exchanger (4
) to release external IfC heat), the molten carbonate fuel cell (1) is removed.

燃料電池システムの発電効率は発電システムの種々の要
因により影響を受けるが、その中でも燃料電池の燃料利
用率および平均単セル電圧による影響が大きい。ここで
燃料利用率と平均中セル電圧との間には一つの相関があ
り、燃料利用率を過度に大きくした場合には燃料電池出
口部分において反応物質である水素や一酸化炭素が稀薄
となり平均単セル電圧が大きく低下する。この傾向は、
式(31に示すように反応生成物、例えば水蒸気や二酸
化炭素が燃料ガス側に放散される溶融炭酸塩形燃料M1
.池のようなタイプの燃料電池に特に著るしい。溶融炭
酸塩形燃料電池におけるこのような燃料利用率とセル電
圧との相関の一実施例を第3図に示す。
The power generation efficiency of a fuel cell system is affected by various factors of the power generation system, among which the fuel utilization rate of the fuel cell and the average single cell voltage have a large influence. Here, there is a correlation between the fuel utilization rate and the average medium cell voltage, and if the fuel utilization rate is increased excessively, hydrogen and carbon monoxide, which are reactants at the fuel cell outlet, become diluted and the average Single cell voltage drops significantly. This trend is
Molten carbonate fuel M1 in which reaction products such as water vapor and carbon dioxide are released to the fuel gas side as shown in equation (31)
.. This is particularly noticeable in pond-type fuel cells. FIG. 3 shows an example of the correlation between fuel utilization and cell voltage in a molten carbonate fuel cell.

俗料電池発電システムにおいて発′鑞効率を改善する最
も効果的な方法は燃料利用率を大きくとることであるが
、従来の発電システムにおいて燃料利用率を大きくする
と平均単セル電圧の低下が著るしく、発電効率の改善を
効果的に行えなかった。
The most effective way to improve the generation efficiency in conventional battery power generation systems is to increase the fuel utilization rate, but in conventional power generation systems, increasing the fuel utilization rate causes a significant drop in the average single cell voltage. Therefore, it was not possible to effectively improve power generation efficiency.

また燃料利用率を大きくした場合には燃料電池出口部分
において燃料ガス中の水蒸気分圧が増大し、部材のIK
食を促進すると共に特に溶融炭酸塩形燃料電池の場合に
は式(6)に示すように電解質の分解を促進し、燃料電
池の寿命がLiKOOs + Hz0−LiK(OH)
s +OQ2    fil短くなるという問題もあっ
た。
Furthermore, when the fuel utilization rate is increased, the water vapor partial pressure in the fuel gas increases at the fuel cell outlet, and the IK of the component increases.
In the case of a molten carbonate fuel cell, it also promotes the decomposition of the electrolyte as shown in equation (6), and the life of the fuel cell is reduced to LiKOOs + Hz0-LiK(OH).
There was also the problem that s + OQ2 fil became shorter.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の燃料電池発電システムは以上のように構成されて
いるので、発電効率の向上を口折して燃料利用率を大き
くしても平均単セル電圧の低下が大きいため効果的な発
電効率の改善が行えず、筐た同時に燃料電池出口部分の
水蒸気分圧が増大することにより懇料電池の寿命を短か
くするなどの問題点があった。
Conventional fuel cell power generation systems are configured as described above, so even if the fuel utilization rate is increased at the expense of improving power generation efficiency, the average single cell voltage will drop significantly, making it difficult to effectively improve power generation efficiency. However, the water vapor partial pressure at the outlet of the fuel cell increases at the same time as the casing, leading to problems such as shortening the life of the fuel cell.

この発明は上記のような問題点を解消する念めになされ
たもので、高燃料利用率においても長期に安定して良好
な電池特性での燃料電池の運転を可能とし、従って発電
効率が高く且つ存命の長い燃料電池発電システムを得る
こと?目的とする。
This invention was made with the aim of solving the above-mentioned problems, and enables the operation of a fuel cell with stable and good cell characteristics for a long period of time even at high fuel utilization rates, resulting in high power generation efficiency. Is it possible to obtain a fuel cell power generation system that has a long lifespan? purpose.

〔問題点全解決するための手段〕[Means to solve all problems]

この発明rC係る燃料電池発電システムは、燃料ガスと
酸化ガスが供給され電気化学反応および化学反応を起す
上流側燃料電池、この上流側燃料電池より排出された燃
料ガスが供給されこの燃料ガスの湿度を調節する湿度調
節装置、およびこの湿度調節装置において湿度が調節さ
れた燃料ガスが供給されると共に酸化ガスが供給され電
気化学反応および化学反応を起す下流αU・燃料電池を
備えるものである。
The fuel cell power generation system according to the present invention includes an upstream fuel cell that is supplied with fuel gas and an oxidizing gas to cause an electrochemical reaction and a chemical reaction, and a fuel cell that is supplied with fuel gas discharged from the upstream fuel cell and has a humidity of this fuel gas. and a downstream αU fuel cell in which fuel gas with controlled humidity is supplied and oxidizing gas is supplied to cause an electrochemical reaction and a chemical reaction.

〔作用〕[Effect]

この発明における湿度調節装置は上流側燃料電池より排
出された燃料ガスから金利の水蒸気を除去する。このよ
うにして燃料ガス中の水蒸気量が減少した結果、相対的
に反応活物質である水素や一酸化炭素の分圧が増大した
燃料ガスが下流側燃料′電池に供給され、平均単セル電
圧が向上する。捷た燃料電池出口部分における燃料ガス
中の水蒸気分圧が低下し、部材の腐食並びに電解質の分
解が抑制される。
The humidity control device in this invention removes water vapor from the fuel gas discharged from the upstream fuel cell. As a result of reducing the amount of water vapor in the fuel gas in this way, fuel gas with a relatively increased partial pressure of hydrogen and carbon monoxide, which are reaction active materials, is supplied to the downstream fuel cell, and the average single cell voltage will improve. The partial pressure of water vapor in the fuel gas at the outlet of the shattered fuel cell is reduced, and corrosion of members and decomposition of the electrolyte are suppressed.

〔実施例〕〔Example〕

以下、この発明の一実施例2図について説明する。第1
図において、(la)は下流側溶融炭酸塩形燃料電池、
(xb)は下流側溶融炭酸塩形燃料電池である。従来例
同様、(21は温度・湿度調節装置、(3)は燃焼器、
(4)は熱交換器、(5)はガス循環装置である。(6
)は上流側溶融炭酸塩形燃料電池(la)よシ排出され
た燃料ガスの湿度を調節する湿度調節装置である。
Hereinafter, a second embodiment of the present invention will be described. 1st
In the figure, (la) is the downstream molten carbonate fuel cell;
(xb) is a downstream molten carbonate fuel cell. As in the conventional example, (21 is a temperature/humidity control device, (3) is a combustor,
(4) is a heat exchanger, and (5) is a gas circulation device. (6
) is a humidity adjustment device that adjusts the humidity of the fuel gas discharged from the upstream molten carbonate fuel cell (la).

次にこのようなシステムの動作について説明する。Next, the operation of such a system will be explained.

上rAt側溶融炭酸塩形燃料電池(la)には、下流側
溶融炭酸塩形燃料電池(lb)で消費される燃料ガスも
合わせて供給される。
The upper rAt side molten carbonate fuel cell (la) is also supplied with the fuel gas consumed in the downstream side molten carbonate fuel cell (lb).

上記下流側溶融炭酸塩形燃料電池(la)より排出され
電気化学反応式13+の結果生成した水蒸気を多量含む
燃料ガスは、湿度調節装置(6)に供給され、適宜、適
切な量の水蒸気が除去され湿度調節が行われる。この時
過度の水蒸気の除去は弐…、(2)などの反応を通して
炭素の析出を誘引するため、これらの可能性を考慮して
湿度調節を行うことが肝要である。このような湿度調節
装置(6)は例えば燃料ガスを冷却して一部水蒸気を凝
縮せしめる熱交換器、凝縮水を分離除去する気水分離器
、および冷却された燃料ガスを予熱する熱交換器等によ
シ容易VC溝成するこ七ができる。また水蒸気の除去は
例えばモレキュラーシープのような吸着剤を用いて行う
ことも可能である。
The fuel gas containing a large amount of water vapor discharged from the downstream molten carbonate fuel cell (la) and generated as a result of electrochemical reaction formula 13+ is supplied to the humidity control device (6), where an appropriate amount of water vapor is removed and humidity adjusted. At this time, excessive removal of water vapor induces carbon precipitation through reactions such as (2), so it is important to take these possibilities into account when adjusting humidity. Such a humidity control device (6) includes, for example, a heat exchanger that cools fuel gas and partially condenses water vapor, a steam separator that separates and removes condensed water, and a heat exchanger that preheats the cooled fuel gas. etc., it is possible to easily create a VC groove. It is also possible to remove water vapor using an adsorbent such as molecular sheep.

湿度調節装置(6)より排出された燃料ガスは下流側溶
融炭酸塩形燃料電池(lk+)に供給される。上記燃料
ガスは湿度調節装置+61 において余分な水蒸気が除
去されておシ、従ってrfl対的に反応質質である水素
と一酸化炭素分圧が増大している。
The fuel gas discharged from the humidity control device (6) is supplied to the downstream molten carbonate fuel cell (lk+). Excess water vapor is removed from the fuel gas in the humidity controller +61, so that the partial pressures of hydrogen and carbon monoxide, which are reactants, are increased relative to rfl.

その結果下流側溶融炭酸塩形燃料電池(Ib)の平均単
セル電圧が改善される。システム全体として考えた場合
、上流側溶融炭酸塩形燃料電池(la)および下流側溶
融炭酸塩形燃料電池(xb)両者の平均単セル電圧をそ
れぞれの燃料電池での電気化学反応量で加重平均したシ
ステム全体の平均単セル電圧が重要である。本発明では
システム全体の平均単セル電圧は下流側溶融炭酸塩形燃
料電池(1)の平均単セル電圧が改善された効果により
改善される。その結果システムの発電効率も改善される
As a result, the average single cell voltage of the downstream molten carbonate fuel cell (Ib) is improved. When considering the system as a whole, the average single cell voltage of both the upstream molten carbonate fuel cell (la) and the downstream molten carbonate fuel cell (xb) is a weighted average by the amount of electrochemical reaction in each fuel cell. The average single cell voltage of the entire system is important. In the present invention, the average single cell voltage of the entire system is improved due to the effect of improving the average single cell voltage of the downstream molten carbonate fuel cell (1). As a result, the power generation efficiency of the system is also improved.

このような発電効率の改善は、電気化学反応式(3)の
結果生成した水蒸気分圧が大きくなる高燃料利用率での
運転において特に著るしい。
Such improvement in power generation efficiency is particularly remarkable in operation at a high fuel utilization rate where the partial pressure of water vapor generated as a result of electrochemical reaction equation (3) increases.

l試算例によると、改質反応器で天然ガスを水蒸気改質
することにより得られた燃料ガスを利用する溶製炭酸塩
形燃料電池発電システムにおいて、燃料ガスの組成を一
例として下のように考える。
According to an example calculation, in a melted carbonate fuel cell power generation system that uses fuel gas obtained by steam reforming natural gas in a reforming reactor, the composition of the fuel gas is as follows. think.

OH4),0% H248,8% Co    9.5% CO24,9% H2C36,8% また燃料電池の動作条件として、燃料利用率90%、動
作圧力6. o 4y aとし、また上流側溶融炭酸塩
形燃料電池(la)と下流側溶融炭酸塩形燃料電池(l
b)との電気化学反応量の比をl:1に設定した場合、
まず湿度調節装置(6)において水蒸気のモル分率を約
48%から約25%に低減する。この時の水蒸気分圧は
約116℃の飽和水蒸気圧に相当する。従って湿度調節
装置(6)において、燃料ガスを冷却し水蒸気の一部を
凝縮せしめることにより水蒸気のモル分率を約25%に
まで低減せしめる場合には、例えば熱交換器を用いて約
116℃まで燃料ガス全冷却し、凝縮水を分離除去すれ
ばよい。
OH4), 0% H248.8% Co 9.5% CO24.9% H2C36.8% The operating conditions for the fuel cell are a fuel utilization rate of 90% and an operating pressure of 6. o 4y a, and an upstream molten carbonate fuel cell (la) and a downstream molten carbonate fuel cell (l
When the ratio of electrochemical reaction amount with b) is set to 1:1,
First, the mole fraction of water vapor is reduced from about 48% to about 25% in the humidity control device (6). The water vapor partial pressure at this time corresponds to a saturated water vapor pressure of about 116°C. Therefore, in the humidity control device (6), when the mole fraction of water vapor is reduced to about 25% by cooling the fuel gas and condensing a part of the water vapor, for example, a heat exchanger is used to reduce the mole fraction of water vapor to about 116°C. The fuel gas can be completely cooled down to the point where the condensed water is separated and removed.

またこのようにすることにより本試算例においては従来
例に比較して2〜3%の発電効率の向上が得られる。
Moreover, by doing so, in this trial calculation example, an improvement in power generation efficiency of 2 to 3% can be obtained compared to the conventional example.

また、下流側溶融炭酸塩形燃料電池(tb)において燃
料ガス中の水蒸気濃度を低減でき、部材の腐食や電解質
の分解金低く押えることにより、燃料電池発電システム
の寿命を伸ばすことができる。
In addition, the water vapor concentration in the fuel gas in the downstream molten carbonate fuel cell (tb) can be reduced, and the corrosion of members and decomposition of the electrolyte can be kept low, thereby extending the life of the fuel cell power generation system.

なお、上記実施例では燃料電池として上、下流側共に溶
融炭酸塩形燃料電池を利用した発電システムについて説
明したが、燃料ガス側に電気化学反応の生成物である水
蒸気を放散する形式の他の燃料電池、例えば固体電解質
形燃料電池を少なくとも上流側に用いた発電システムで
あってもよく、上記実施例と同様の効果を奏する。
In the above example, a power generation system using molten carbonate fuel cells on both the upstream and downstream sides as the fuel cell was explained, but other types of power generation systems that dissipate water vapor, which is a product of an electrochemical reaction, on the fuel gas side were described. A power generation system using a fuel cell, for example a solid oxide fuel cell, at least on the upstream side may be used, and the same effects as in the above embodiments can be achieved.

た発電システムについて説明したが、両者の積層体で1
つの積層体を形成する燃料電池を利用してもよく、上記
実施例と同様の効果を奏する。
I explained about the power generation system with a stack of both.
A fuel cell forming two stacked bodies may be used, and the same effects as in the above embodiment can be obtained.

また、上記実施例では燃料電池全上流側と下流側に2分
割した場合について示したが、例えば上、中、下流側に
8分割し、上流側燃料電池より排出された燃料ガスを湿
度調節装置を通って中流側燃料電池に供給し、中流側燃
料電池よシ排出された燃料ガスを湿度調節装置を通って
下流側燃料電池に供給してもよく、上記実施例と同様の
効果が得られる。
In addition, in the above embodiment, the case where the fuel cell is divided into two parts, the entire upstream side and the downstream side, is shown, but for example, if the fuel cell is divided into eight parts, into upper, middle, and downstream sides, the fuel gas discharged from the upstream fuel cell is transferred to the humidity control device. The fuel gas discharged from the midstream fuel cell may be supplied to the downstream fuel cell through a humidity control device, and the same effect as in the above embodiment can be obtained. .

さらに、酸化ガスの供給経路等については上記実施例に
限るものではないことは明白である。
Furthermore, it is clear that the oxidizing gas supply route and the like are not limited to the above embodiments.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば上流側燃料電池と下流
側燃料電池との間の燃料ガス系に介在接続された湿度調
節装置を設け、上記湿度調節装置において余分の水蒸気
を分離除去された燃料ガスを下流側燃料電池に供給する
ように構成したので、発電効率が高くまた寿命の長い燃
料電池発電システムが得られる効果がある。
As described above, according to the present invention, a humidity control device is provided which is connected to the fuel gas system between the upstream fuel cell and the downstream fuel cell, and excess water vapor is separated and removed in the humidity control device. Since the fuel gas is configured to be supplied to the downstream fuel cell, a fuel cell power generation system with high power generation efficiency and long life can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による燃料電池発電システ
ムを示す構成図、第2図は従来の燃料電池発電システム
を示す構成図、第3図は溶:a炭酸塩形燃料電池におけ
る燃料利用率とセル電圧の間係の一実施例を示す特性図
である。 図において、(1)は燃料電池、(Xa)は上流側燃料
電池、(lb)は下流側燃料電池、(21は温度、湿度
調節装置、(31は燃焼器、(4)は熱交換器、(6)
はガス循環装置、(6)は湿度調節装置である。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
Fig. 1 is a block diagram showing a fuel cell power generation system according to an embodiment of the present invention, Fig. 2 is a block diagram showing a conventional fuel cell power generation system, and Fig. 3 is a block diagram showing a fuel cell power generation system according to an embodiment of the present invention. FIG. 3 is a characteristic diagram showing an example of the relationship between the cell voltage and the cell voltage. In the figure, (1) is a fuel cell, (Xa) is an upstream fuel cell, (lb) is a downstream fuel cell, (21 is a temperature and humidity control device, (31 is a combustor, and (4) is a heat exchanger. ,(6)
(6) is a gas circulation device, and (6) is a humidity control device. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)燃料ガスと酸化ガスが供給され電気化学反応およ
び化学反応を起す上流側燃料電池と、この上流側燃料電
池で電気化学反応および化学反応を起して排出された燃
料ガスが供給され、この燃料ガスの湿度を低減する湿度
調節装置と、この湿度調節装置において湿度が低減され
た燃料ガスが供給されると共に酸化ガスが供給され電気
化学反応および化学反応を起す下流側燃料電池とを備え
た燃料電池発電システム。
(1) An upstream fuel cell to which fuel gas and oxidizing gas are supplied to cause an electrochemical reaction and a chemical reaction, and a fuel gas discharged from the upstream fuel cell to cause an electrochemical reaction and a chemical reaction to be supplied; It includes a humidity control device that reduces the humidity of the fuel gas, and a downstream fuel cell that is supplied with the fuel gas whose humidity has been reduced in the humidity control device and also receives an oxidizing gas to cause an electrochemical reaction and a chemical reaction. fuel cell power generation system.
(2)上流側燃料電池は溶融炭酸塩形燃料電池であるこ
とを特徴とする特許請求の範囲第1項記載の燃料電池発
電システム。
(2) The fuel cell power generation system according to claim 1, wherein the upstream fuel cell is a molten carbonate fuel cell.
(3)上流側燃料電池は固体電解質形燃料電池であるこ
とを特徴とする特許請求の範囲第1項記載の燃料電池発
電システム。
(3) The fuel cell power generation system according to claim 1, wherein the upstream fuel cell is a solid electrolyte fuel cell.
(4)上流側燃料電池を形成する積層体と下流側燃料電
池を形成する積層体で1つの積層体を形成することを特
徴とする特許請求の範囲第1項ないし第3項の何れかに
記載の燃料電池発電システム。
(4) In any one of claims 1 to 3, the laminate forming the upstream fuel cell and the laminate forming the downstream fuel cell form one laminate. The fuel cell power generation system described.
JP61026127A 1985-12-06 1986-02-07 Fuel cell power generating system Pending JPS62184771A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61026127A JPS62184771A (en) 1986-02-07 1986-02-07 Fuel cell power generating system
US06/938,615 US4722873A (en) 1985-12-06 1986-12-05 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61026127A JPS62184771A (en) 1986-02-07 1986-02-07 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPS62184771A true JPS62184771A (en) 1987-08-13

Family

ID=12184897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61026127A Pending JPS62184771A (en) 1985-12-06 1986-02-07 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPS62184771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476610A2 (en) * 1990-09-19 1992-03-25 Ishikawajima-Harima Heavy Industries Co., Ltd. Power generation system using fuel cells
JPH04206158A (en) * 1990-11-29 1992-07-28 Hitachi Ltd Separation-recovery of carbon dioxide by use of molten carbonate type fuel cell and device thereof
JP2020009728A (en) * 2018-07-12 2020-01-16 日本碍子株式会社 Fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476610A2 (en) * 1990-09-19 1992-03-25 Ishikawajima-Harima Heavy Industries Co., Ltd. Power generation system using fuel cells
JPH04206158A (en) * 1990-11-29 1992-07-28 Hitachi Ltd Separation-recovery of carbon dioxide by use of molten carbonate type fuel cell and device thereof
JP2020009728A (en) * 2018-07-12 2020-01-16 日本碍子株式会社 Fuel cell system

Similar Documents

Publication Publication Date Title
US4722873A (en) Fuel cell power generating system
US4917971A (en) Internal reforming fuel cell system requiring no recirculated cooling and providing a high fuel process gas utilization
US4080487A (en) Process for cooling molten carbonate fuel cell stacks and apparatus therefor
EP0376219B1 (en) Electric power producing system using molten carbonate type fuel cell
JP2899709B2 (en) Molten carbonate fuel cell power generator
US6531243B2 (en) Solid oxide fuel operating with an excess of fuel
EP0246649B1 (en) Integrated power plant and method for operating the plant
US4539267A (en) Process for generating steam in a fuel cell powerplant
JP2002319428A (en) Molten carbonate fuel cell power generating device
JP7364831B2 (en) Power generation system using cascaded fuel cells and related methods
JP3943405B2 (en) Fuel cell power generation system
US4946750A (en) Process for generating electricity
JPH06103629B2 (en) Combined fuel cell power generation facility
JP4457421B2 (en) Fuel cell system
JPS62184771A (en) Fuel cell power generating system
WO2000039875A1 (en) A hydrocarbon fueled power plant employing a proton exchange membrane (pem) fuel cell
JP2751526B2 (en) Molten carbonate fuel cell power generator
JP2819734B2 (en) Molten carbonate fuel cell power generator
JPH0542783B2 (en)
JPH0828233B2 (en) Power plant using molten carbonate fuel cell
JP3211505B2 (en) Method for controlling anode inlet temperature of molten carbonate fuel cell power generator
JP2929034B2 (en) Molten carbonate fuel cell power generator
JP2007115715A (en) Fuel cell power generating system
JPH0821412B2 (en) Fuel cell power generation method
JPH0722036A (en) Layered fuel cell