JPS6119073A - Molten carbonate type fuel cell system - Google Patents

Molten carbonate type fuel cell system

Info

Publication number
JPS6119073A
JPS6119073A JP59140973A JP14097384A JPS6119073A JP S6119073 A JPS6119073 A JP S6119073A JP 59140973 A JP59140973 A JP 59140973A JP 14097384 A JP14097384 A JP 14097384A JP S6119073 A JPS6119073 A JP S6119073A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
reformer
gas
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59140973A
Other languages
Japanese (ja)
Inventor
Mitsuie Matsumura
光家 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59140973A priority Critical patent/JPS6119073A/en
Publication of JPS6119073A publication Critical patent/JPS6119073A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To reform fuel gas exhausted from an upper stream fuel cell, supply it a downstream fuel cell as fuel gas to increase power generation efficiency, and utilize by-product heat to reform fuel gas by installing a heat supply means which heats a reformer. CONSTITUTION:A reformer 6 is formed in such a way that its piping line passes inside an oxidizing gas piping line 9 for the oxidizing gas exhausted from an upper stream fuel cell 4, and an oxidizing gas piping line 8 is arranged so that a heat supply means which supplies heat of oxidizing gas exhausted to the reformer 6 is formed. Thereby, fuel gas exhausted from an upper stream is reformed by the reformer 6, and again supplied to a downstream fuel cell as fuel gas to prevent power generating efficiency drop, and moreover by-product heat of fuel cells 4 and 5 is utilized to effectively reform fuel gas.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、溶融炭酸塩形燃料電池システムに関し、特
に発電効率の改善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a molten carbonate fuel cell system, and particularly to improving power generation efficiency.

〔従来技術〕[Prior art]

第1図は従来の溶融炭酸塩形燃料電池を一部断面で示す
平面図であり、(1)は溶融炭酸塩形燃料電池(以下燃
料電池と称す)、(2a)、(2b)は燃料電池(1)
に酸化ガスをそれぞれ供給、排出するための酸化ガス入
口マニホルド、酸化ガス出口マニホルド、(3a) 、
 (3b)は燃料電池(1)に燃料ガスをそれぞれ供給
、排出するための燃料ガス入口マニホルド、燃料ガス出
口マニホルドである。図中、矢印Aは酸化ガスの流れ方
向を示し、矢印Bは燃料ガスの流れ方向を示す。
FIG. 1 is a plan view partially showing a conventional molten carbonate fuel cell, in which (1) is a molten carbonate fuel cell (hereinafter referred to as fuel cell), (2a) and (2b) are fuel cells. Battery (1)
an oxidizing gas inlet manifold and an oxidizing gas outlet manifold for supplying and discharging oxidizing gas, respectively; (3a);
(3b) is a fuel gas inlet manifold and a fuel gas outlet manifold for respectively supplying and discharging fuel gas to the fuel cell (1). In the figure, arrow A indicates the flow direction of oxidizing gas, and arrow B indicates the flow direction of fuel gas.

次に動作について説明する。溶融炭酸塩形燃料電池(1
)は例えば650℃前後で動作する燃料電池積層体を1
個又は複数個積層して構成されたもので、燃料ガスを燃
料ガス入口マニホルド(3a)よす供給し、酸化ガスを
酸化ガス入口マニホルド(2a)より供給すると、両ガ
スは燃料電池(1)内を十字流形式で流れる間に燃料ガ
ス側電極及び酸化ガス側電極においてそれぞれ次に示す
ような化学又は電気化学反応を行なう。
Next, the operation will be explained. Molten carbonate fuel cell (1
) is, for example, a fuel cell stack that operates at around 650°C.
When fuel gas is supplied through the fuel gas inlet manifold (3a) and oxidizing gas is supplied through the oxidizing gas inlet manifold (2a), both gases are supplied to the fuel cell (1). While flowing through the gas in a cross-flow manner, the following chemical or electrochemical reactions occur at the fuel gas side electrode and the oxidizing gas side electrode, respectively.

燃料ガス側電極 H2+COニー −+ H,0+ CO2+ 2e  
 −(1)CO+ H20→H,十CO□     −
(2)酸化ガス側電極 CO2+TO2+2e  −+ co、      (
3)上記に示すように、両電極により水素及び−酸化炭
素の持つ化学エネルギを電気エネルギと副生ずる熱エネ
ルギとに変換する。
Fuel gas side electrode H2+CO knee -+ H,0+ CO2+ 2e
-(1)CO+ H20→H, 10CO□ -
(2) Oxidizing gas side electrode CO2+TO2+2e −+ co, (
3) As shown above, both electrodes convert the chemical energy of hydrogen and carbon oxide into electrical energy and by-product thermal energy.

この後、反応した燃料ガスは燃料ガス出口マニホルド(
3b)より排出され、反応した酸化ガスは酸化ガス出口
マニホルドab>より排出される。
After this, the reacted fuel gas is transferred to the fuel gas outlet manifold (
3b), and the reacted oxidizing gas is discharged from the oxidizing gas outlet manifold ab>.

従って燃料電池(1)から定常的に電気出力を得るには
燃料ガスと酸化ガスを連続して燃料電池(1)に供給す
ることが必要である。
Therefore, in order to obtain constant electrical output from the fuel cell (1), it is necessary to continuously supply fuel gas and oxidizing gas to the fuel cell (1).

この燃料電池(1)を組込んだ溶融炭酸塩形燃料電池シ
ステムにおいて、式(1)及び(2)に示されるように
燃料電池(1)で直接燃料ガスとして利用できる物質は
水素及び−酸化炭素であるため、炭化水素や石炭などを
一次燃料とする場合には、燃料処理装置でそれらの一次
燃料を水素及び−酸化炭素を主成分とする燃料ガスに変
質した後、燃料電池(1)に供給している。しかし、燃
料処理装置で炭化水素や石炭などのすべてが分解される
のではなく、未分解の炭化水素などは燃料電池(1)に
供給され、未利用のまま燃料ガス出口マニホルド(あ)
から排出される。この未分解の炭化水素などの量が大き
い場合には、この燃料電池(1)を用いたシステムの発
電効率の低下をもたらし、問題であった。従って、溶融
炭酸塩形燃料電池システムにおいて望ましい燃料処理装
置は、その出口燃料ガス中の残存炭化水素の少ないもの
に限られ、またその運転条件も相対的に炭化水素の分解
を促進する高温、低圧に限られていた。
In a molten carbonate fuel cell system incorporating this fuel cell (1), as shown in equations (1) and (2), the substances that can be directly used as fuel gas in the fuel cell (1) are hydrogen and -oxidation. Since it is carbon, if hydrocarbons, coal, etc. are used as the primary fuel, the primary fuel is transformed into a fuel gas whose main components are hydrogen and carbon oxide in a fuel processing device, and then the fuel cell (1) is supplied to. However, not all hydrocarbons and coal are decomposed in the fuel processing device, but undecomposed hydrocarbons are supplied to the fuel cell (1) and remain unused at the fuel gas outlet manifold (A).
is discharged from. When the amount of undecomposed hydrocarbons and the like is large, this causes a problem in that the power generation efficiency of the system using the fuel cell (1) decreases. Therefore, a desirable fuel processing device for a molten carbonate fuel cell system is limited to one with a small amount of residual hydrocarbons in the outlet fuel gas, and its operating conditions are relatively high temperature and low pressure that promote hydrocarbon decomposition. was limited to.

従来の溶融炭酸塩形燃料電池システムは以上のように構
成されているので、炭化水素を直接燃料として利用でき
ないため、炭化水素を含んだ燃料ガスを使用する場合に
はシステムの発電効率が低下していた0また、この低下
を少なくするため、燃料電池に燃料ガスを供給する前に
燃料ガスを処理する燃料処理装置は、その出口燃料ガス
中の残存炭化水素の少ないものに限定されていた。さら
にこの燃料処理装置の運転条件も相対的に高温。
Conventional molten carbonate fuel cell systems are configured as described above, so hydrocarbons cannot be used directly as fuel, so when fuel gas containing hydrocarbons is used, the power generation efficiency of the system decreases. In addition, in order to reduce this decrease, fuel processing devices that process fuel gas before supplying it to the fuel cell have been limited to those that have a small amount of residual hydrocarbons in the outlet fuel gas. Furthermore, the operating conditions for this fuel processing device are relatively high temperatures.

低圧に限られてしまい狭い運転範囲の燃料処理装置しか
適用できないという欠点があった。
It has the disadvantage that it is limited to low pressures and can only be applied to fuel processing devices with a narrow operating range.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、燃料ガスと酸化ガスが供給され電
気化学反応を起す上流側燃料電池、触媒を有し、上流側
燃料電池で電気化学反応を起し排出された燃料ガスを導
入し、この燃料ガスを改質する改質器、改質された燃料
ガスが供給されると共に酸化ガスが供給され電気化学反
応を起す下流側燃料電池、並びに上流側電池及び下流側
燃料電池の少くともいずれか一方の排出された酸化ガス
を改質器に供給し、改質器に熱を与える熱供給手段を備
えることによシ、上流側燃料電池から排出される燃料ガ
スを改質器で改質して、下流側燃料電池に再び燃料ガス
として供給して発電効率の低下を低減できると共に、こ
の改質器は燃料電池で副生する熱を利用して燃料ガスを
効率よく改質でき、さらに望ましい燃料処理装置の範囲
が広い#d炭酸塩形燃料電池システムを提供することを
目的としている。
This invention was made to eliminate the drawbacks of the conventional ones as described above, and includes an upstream fuel cell and a catalyst that are supplied with fuel gas and oxidizing gas to cause an electrochemical reaction, and the upstream fuel cell generates electricity. A reformer that introduces fuel gas discharged after a chemical reaction and reforms this fuel gas, and a downstream fuel cell that is supplied with the reformed fuel gas and oxidizing gas to cause an electrochemical reaction. , and a heat supply means for supplying the oxidizing gas discharged from at least one of the upstream cell and the downstream fuel cell to the reformer and applying heat to the reformer. The fuel gas discharged from the cell is reformed in a reformer and supplied as fuel gas to the downstream fuel cell again, reducing the reduction in power generation efficiency. It is an object of the present invention to provide a #d carbonate fuel cell system that can efficiently reform fuel gas by utilizing the above-described method and has a wide range of desirable fuel processing devices.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第2
図において、(4)は燃料電池積層体で構成され、シス
テム中の燃料ガス流路の上流側に配置されている上流側
燃料電池、(5)は燃料電池積層体で構成され、システ
ム中の燃料ガス流路の下流側に配置されている下流側燃
料電池、(6)は上流側燃料電池(4)と下流側燃料電
池(5)との間の燃料ガス流路に配置され、上流側燃料
゛電池(4)より排出された燃料ガスを導入して燃料ガ
スを改質し、下流側燃料電池(5)に導出する改質器、
(7)は改質器(6)の内部に多孔板(8)によって保
持された触媒で、炭化水素の分解を促進し、例えばアル
ミナを担体としたNi触媒などで構成されている。また
、改質器(6)は、例えば上流側燃料電池(4)から排
出される酸化ガス配管(9)の内部を通るように配置さ
れ、排出される酸化ガスの熱が改質器(6)に供給され
る熱供給手段を備えている。
An embodiment of the present invention will be described below with reference to the drawings. Second
In the figure, (4) is composed of a fuel cell stack, and is an upstream fuel cell placed upstream of the fuel gas flow path in the system, and (5) is a fuel cell stack, which is arranged on the upstream side of the fuel gas flow path in the system. The downstream fuel cell (6) is arranged on the downstream side of the fuel gas passage, and the downstream fuel cell (6) is arranged on the fuel gas passage between the upstream fuel cell (4) and the downstream fuel cell (5). a reformer that introduces the fuel gas discharged from the fuel cell (4), reforms the fuel gas, and leads it to the downstream fuel cell (5);
(7) is a catalyst held by a perforated plate (8) inside the reformer (6), which promotes the decomposition of hydrocarbons, and is composed of, for example, a Ni catalyst using alumina as a carrier. Further, the reformer (6) is arranged to pass through the inside of the oxidant gas pipe (9) discharged from the upstream fuel cell (4), for example, so that the heat of the discharged oxidant gas is transferred to the reformer (6). ) is equipped with heat supply means.

このような溶融炭酸塩形燃料電池システムにおいて、水
素及び−酸化炭素に加えて例えば5〜10憾程度のメタ
ンなどの炭化水素を含む石炭ガス化ガスで構成された燃
料ガスは、上流側燃料電池(4)の燃料ガス入口マニホ
ルド(3a)よシ矢印Bで示されるように導入され、燃
料ガス側電極に供給される。
In such a molten carbonate fuel cell system, a fuel gas composed of coal gasified gas containing, for example, about 5 to 10 hydrocarbons such as methane in addition to hydrogen and carbon oxide is supplied to the upstream fuel cell. (4) The fuel gas is introduced through the fuel gas inlet manifold (3a) as shown by arrow B, and is supplied to the fuel gas side electrode.

同時に酸化ガスが酸化ガス入口マニホルド(2a)より
矢印Aで示されるように導入され、酸化ガス側電極に供
給される。両電極で燃料ガス中の水素及び−酸化炭素か
ら式(1) 、 (2)及び(3)に示す電気化学反応
に従って水蒸気と二酸化炭素が生成され、同時に電気エ
ネルギ及び熱エネルギを生成する。この電気化学反応を
起した後の約650℃の燃料ガスは燃料ガス出口マニホ
ルド(3b)から排出され、改質器(6)に導入される
。改質器(6)内部には触媒(7)が保持されているの
で、例えば下式に従って燃料ガス中の炭化水素が分解さ
れる。
At the same time, oxidizing gas is introduced from the oxidizing gas inlet manifold (2a) as shown by arrow A, and is supplied to the oxidizing gas side electrode. At both electrodes, water vapor and carbon dioxide are generated from hydrogen and carbon oxide in the fuel gas according to the electrochemical reactions shown in equations (1), (2), and (3), and at the same time, electrical energy and thermal energy are generated. The fuel gas at about 650° C. after this electrochemical reaction is discharged from the fuel gas outlet manifold (3b) and introduced into the reformer (6). Since the catalyst (7) is held inside the reformer (6), hydrocarbons in the fuel gas are decomposed according to the following formula, for example.

CHa  + H2O−+CO+ 3H2+ 49.3
Km/mol  −(4)CnHm +nH2O−+ 
nco + ”%”−H2−(5)CO+ H2O−+
■2  + H2−9,8KaIVmol   −(6
)次に改質器(6)で生成された燃料電池で利用可能な
水素及び−酸化炭素を含む燃料ガスを下流側燃料電池(
6)の燃料ガス入口マニホルド(3a)から供給すると
共に酸化ガスを酸化ガス入口マニホルド(2a)から供
給し、酸化ガス側電極及び燃料ガス側電極で電気化学反
応を起し、電気エネルギ及び熱エネルギを生成する。
CHa + H2O-+CO+ 3H2+ 49.3
Km/mol −(4)CnHm +nH2O−+
nco + “%”-H2-(5)CO+ H2O-+
■2 + H2-9,8KaIVmol -(6
) Next, the fuel gas containing hydrogen and carbon oxide that can be used in the fuel cell produced in the reformer (6) is transferred to the downstream fuel cell (
6) is supplied from the fuel gas inlet manifold (3a), and oxidizing gas is also supplied from the oxidizing gas inlet manifold (2a), causing an electrochemical reaction at the oxidizing gas side electrode and the fuel gas side electrode, and generating electrical energy and thermal energy. generate.

改質器(6)における炭化水素の分解は式(4)及び(
5)に示すように燃料ガス中の水素濃度が低く、水蒸気
濃度が高いほど促進される0この発明では上記のように
、上流側燃料電池(4)で水素を消費し、かつ水蒸気を
生成して排出された約650℃程度の燃料ガスを改質器
(6)に導入するため、この導入された燃料ガス中の水
素濃度は低く、水蒸気濃度は高くなっており、含まれて
いる炭化水素は容易に効率的に分解されるりさらに、こ
の炭化水素を分解する反応は全体として大きな吸熱反応
であり、反応熱は、酸化ガス配管(9)を流れる酸化ガ
スの熱と、燃料ガスそれ自身の持つ顕熱により供給され
、効率よく反応が行なわれる。
The decomposition of hydrocarbons in the reformer (6) is expressed by equations (4) and (
As shown in 5), the lower the hydrogen concentration in the fuel gas and the higher the water vapor concentration, the higher the concentration of water vapor. In this invention, as described above, the upstream fuel cell (4) consumes hydrogen and generates water vapor. Since the fuel gas discharged at approximately 650°C is introduced into the reformer (6), the hydrogen concentration in the introduced fuel gas is low and the water vapor concentration is high. Furthermore, the reaction to decompose hydrocarbons is a large endothermic reaction as a whole, and the reaction heat is composed of the heat of the oxidizing gas flowing through the oxidizing gas pipe (9) and the heat of the fuel gas itself. It is supplied by the sensible heat it possesses, and the reaction is carried out efficiently.

次に一例として、燃料処理装置においてメタンを分解し
た燃料ガスを導入し、従来の溶融炭酸塩形燃料電池シス
テムを用いた場合とこの発明の一実施例によるものを用
いた場合の未反応のメタン量の比較例について述べる。
Next, as an example, when a fuel gas in which methane is decomposed is introduced into a fuel processing device, unreacted methane is produced when a conventional molten carbonate fuel cell system is used and when a fuel cell system according to an embodiment of the present invention is used. A comparative example of quantity will be described.

計算の条件として、燃料処理装置の動作温度を650℃
、燃料処理装置へのスチームとメタンの供給量のモル比
を4=1溶融炭酸塩形燃料電池での全反応水素量は燃料
処理装置に供給されたメタンが完全に水素に分解された
場合の水素量の80俤であるとする。
As a condition for calculation, the operating temperature of the fuel processing device is 650℃.
, the molar ratio of steam and methane supplied to the fuel processor is 4 = 1. The total amount of hydrogen reacted in the molten carbonate fuel cell is when the methane supplied to the fuel processor is completely decomposed into hydrogen. Assume that the amount of hydrogen is 80 t.

従来の溶融炭酸塩形燃料電池システム(1)を用いる場
合、燃料処理装置が大気圧動作の時に、投入されたメタ
ン量のうち4.8%のメタンの未分解で未利用のまま排
出される。
When using a conventional molten carbonate fuel cell system (1), when the fuel processing device operates at atmospheric pressure, 4.8% of the input methane is discharged undecomposed and unused. .

また、燃料処理装置を高圧動作にするとメタンの未分解
率が急激に増加し、例えば4気圧動作の場合には、メタ
ンの未分解率が29.9%に達し、実□際上システムの
動作は不可能となる。
Furthermore, when the fuel processing device is operated at high pressure, the undecomposed rate of methane increases rapidly.For example, in the case of 4 atmosphere operation, the undecomposed rate of methane reaches 29.9%, which makes it difficult for the system to operate effectively. becomes impossible.

これに対し、この発明の一実施例による溶融炭酸塩形燃
料電池システムを用いる場合、上流側燃料電池(4)と
下流側燃料電池(5)とにおける反応水素の比を3=1
に設定すると、燃料処理装置が大気圧動作の場合メタン
の未分解率が0.06%、4気圧動作の場合1.3%と
なり、いずれの運転条件の場合にもシステムが効率よく
運転されることがわかる。
On the other hand, when using a molten carbonate fuel cell system according to an embodiment of the present invention, the ratio of reaction hydrogen in the upstream fuel cell (4) and the downstream fuel cell (5) is set to 3=1.
When set to , the undecomposed rate of methane is 0.06% when the fuel processing device operates at atmospheric pressure, and 1.3% when operated at 4 atmospheres, and the system operates efficiently under both operating conditions. I understand that.

また、近年発電効率の向上を目指して、溶融炭酸塩形燃
料電池積層体で副生ずる熱エネルギを利用する燃料処理
装置の開発が進められている。この燃料処理装置は例え
ば550℃〜650℃の比較的低温で動作するため、原
理上未分解の炭化水素が多く、特に電池の特性が向上す
る高圧動作の場合には従来システムでは大巾な発電効率
の低下をもたらすが、この発明によれば副生ずる熱エネ
ルギの排熱回収効果と合わせて、大きな発電効率の向上
が得られることになる。
Furthermore, in recent years, with the aim of improving power generation efficiency, progress has been made in the development of fuel processing devices that utilize thermal energy by-produced in molten carbonate fuel cell stacks. Since this fuel processing device operates at a relatively low temperature of, for example, 550°C to 650°C, in principle there is a large amount of undecomposed hydrocarbons, and conventional systems cannot generate a large amount of power, especially in the case of high-pressure operation that improves battery characteristics. Although this results in a decrease in efficiency, according to the present invention, together with the effect of recovering exhaust heat from by-product thermal energy, a large improvement in power generation efficiency can be obtained.

なお、上記実施例では、上流側燃料電池(4)と下流側
燃料電池(5)の反応水素量比を3=1に設定している
が、これに限るものではない。しかし、改質器(6)へ
導入する燃料ガスに蒸気を十分含ませると、改質器(6
)での炭化水素の分解が促進されるので、上流側燃料電
池(4)における反広水素量が下流側燃料電池(5)の
それよりも大きい方が望ましい。
In the above embodiment, the reaction hydrogen amount ratio between the upstream fuel cell (4) and the downstream fuel cell (5) is set to 3=1, but the ratio is not limited to this. However, if the fuel gas introduced into the reformer (6) contains enough steam, the reformer (6)
), it is desirable that the amount of hydrogen in the upstream fuel cell (4) is larger than that in the downstream fuel cell (5).

また、他の実施例として、第3図に示すように改質器(
6)を上流燃料電池(5)の燃料ガス出口マニホルド(
3b)の内部に配置し、この改質器(6)の内部に酸化
ガス配管(9)を通して改質器(6)に熱を供給するよ
うに構成すれば、上記実施例と同様の効果に加えて、さ
らに燃料電池側面からの放射による熱エネルギを効率よ
く反応熱として利用できる効果がある。
In addition, as another embodiment, a reformer (
6) to the fuel gas outlet manifold (5) of the upstream fuel cell (5).
If heat is supplied to the reformer (6) through the oxidizing gas pipe (9) inside the reformer (6), the same effect as in the above embodiment can be obtained. In addition, there is an effect that thermal energy radiated from the side of the fuel cell can be efficiently used as reaction heat.

また同様に、改質器(6)を下流側燃料電池(5)の燃
料ガス入口マニホルド(3a)の内部に配置してもよく
、さらに−上流側燃料電池(4)の燃料ガス出口マニホ
ルド(3b)内部と下流側燃料電池(5)の燃料ガス入
口マニホルド(3a)内部とにまたがって配置してもよ
い。
Likewise, the reformer (6) may be arranged inside the fuel gas inlet manifold (3a) of the downstream fuel cell (5), and furthermore - in the fuel gas outlet manifold (3a) of the upstream fuel cell (4). 3b) It may be disposed across the inside and the inside of the fuel gas inlet manifold (3a) of the downstream fuel cell (5).

また、さらに他の実施例を第4図に示す。上記実施例で
は上流側燃料電池(4)を形成する積層体とF流側燃料
電池(5)を形成する積層体を分離して形成しているが
、この実施例では上流側燃料電池(4)を形成する嘴層
体と下流側燃料′電池(5)を形成する積層体で1つの
積層体を構成する。この実施例では、上記実施例の効果
に加え゛C1上流側、下流側燃料電池(4)、(5)の
酸化カスの流路を兼ねることができるシステムを小型化
することが可能となり、さらに熱の損失も少なく、効率
のよいシステムが得られる効果がある。さらに、第5図
は、上流側燃料電池(4)の燃料ガス出口マニホルド(
3b)と下流側燃料電池(5)の燃料ガス入口マニホル
ド(3a)を接続して構成し、この内部に改質器(6)
を形成した実施例である。このように構成すればさらに
小型化熱損失の低減に効果がある。
Further, still another embodiment is shown in FIG. In the above embodiment, the stack forming the upstream fuel cell (4) and the stack forming the F-stream fuel cell (5) are formed separately, but in this embodiment, the stack forming the upstream fuel cell (4) is formed separately. ) and the laminate forming the downstream fuel cell (5) constitute one laminate. In this embodiment, in addition to the effects of the above embodiment, it is possible to miniaturize the system that can also serve as the flow path for the oxidation residue of the C1 upstream and downstream fuel cells (4) and (5), and furthermore, This has the effect of reducing heat loss and providing a highly efficient system. Furthermore, FIG. 5 shows the fuel gas outlet manifold (
3b) and the fuel gas inlet manifold (3a) of the downstream fuel cell (5), and a reformer (6) is installed inside this.
This is an example in which a This configuration is more effective in downsizing and reducing heat loss.

また、第4図及び第5図に示す実施例では燃料ガスの供
給方法として燃料電池積層体の平面方向で上流側、下流
側燃料電池(4) 、 (5)に分離して構成している
が、積層力量で分離して構成してもよい。
Furthermore, in the embodiment shown in FIGS. 4 and 5, the fuel gas is supplied by separating the fuel cells into upstream and downstream fuel cells (4) and (5) in the planar direction of the fuel cell stack. However, they may be separated and configured by lamination capacity.

また、第6図に示すように、改質器(6)を上流側又は
下流側燃料電池(4) 、 (5)の酸化ガス出口マニ
ホルド(2b)の中を通るように構成して、酸化ガスの
熱を改質器(6)に供給してもよい。
Further, as shown in FIG. 6, the reformer (6) is configured to pass through the oxidant gas outlet manifold (2b) of the upstream or downstream fuel cell (4), (5), The heat of the gas may be supplied to the reformer (6).

さらに、触媒(7)はアルミナを担体としたNt触媒に
限るものではなく、炭化水素の分解を促進するものなら
ない。
Further, the catalyst (7) is not limited to an Nt catalyst using alumina as a carrier, and does not promote the decomposition of hydrocarbons.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、燃料ガスを酸化が供
給され電気化学反応を起す上流側燃料電池、触媒を有し
、上流側燃料電池で電気化学反応を起し排出された燃料
ガスを導入し、この燃料ガスを改質する改質器、改質さ
れた燃料ガスが供給されると共に酸化ガスが供給され電
気化学反応を起す下流側燃料電池、並びに上流側燃料電
池及び下流側燃料電池の少くともいずれか一方の排出さ
れた酸化ガスを改質器に供給し、改質器に熱を与える熱
供給手段を備えることにより、上流側燃料電池から排出
される燃料ガスを改質器で改質して、下流側燃料電池に
再び燃料ガスとして供給して発電動車の低下を低減でき
ると共に、燃料電池で副生ずる熱を利用して燃料ガスを
効率よく改質でき、さらに望ましい燃料処理装置の範囲
が広い溶融炭酸塩形燃料電池システムを提供できる効果
がある。
As described above, according to the present invention, the upstream fuel cell includes an upstream fuel cell that oxidizes fuel gas and causes an electrochemical reaction, and a catalyst, and the upstream fuel cell causes an electrochemical reaction and discharges the fuel gas. A reformer that introduces the fuel gas and reforms the fuel gas, a downstream fuel cell that is supplied with the reformed fuel gas and an oxidizing gas that causes an electrochemical reaction, and an upstream fuel cell and a downstream fuel cell. By supplying at least one of the discharged oxidizing gases to the reformer and providing heat supply means for applying heat to the reformer, the fuel gas discharged from the upstream fuel cell can be used in the reformer. A more desirable fuel processing device that can reform the fuel gas and supply it again to the downstream fuel cell as fuel gas to reduce the deterioration of the power generating vehicle, and can efficiently reform the fuel gas by using the heat by-produced in the fuel cell. This has the effect of providing a molten carbonate fuel cell system with a wide range of conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の溶融炭酸塩形燃料電池を一部断面で示す
平面図、第2図はこの発明の一実施例による溶融炭酸塩
形燃料電池システムを示す構成図、第3図はこの発明の
他の実施例に係わる上流側燃料電池の燃料ガス出口マニ
ホルドを示す断面図、第4図、第5図はそれぞれこの発
明のさらに他の実施例による溶融炭酸塩形燃料電池シス
テムの構成図、第6図はこの発明のさらに他の実施例に
係わる燃料電池の酸化ガス出口マニホルドを示す断面図
である。 図において、(2a)は酸化ガス入口マニホルド、(2
b)は酸化ガス出口マニホルド、(3a)は燃料ガス入
口マニホルド、(3b)は燃料ガス出口マニホルド、(
4)は上流側燃料電池、(5)は下流側燃料電池、(6
)は改質器、(7)は触媒、(8)は酸化ガス配管で熱
供給手段を構成している。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a partially sectional plan view of a conventional molten carbonate fuel cell, FIG. 2 is a configuration diagram showing a molten carbonate fuel cell system according to an embodiment of the present invention, and FIG. 3 is a plan view of a conventional molten carbonate fuel cell. FIGS. 4 and 5 are a cross-sectional view showing a fuel gas outlet manifold of an upstream fuel cell according to another embodiment of the present invention, respectively, and FIGS. FIG. 6 is a sectional view showing an oxidizing gas outlet manifold of a fuel cell according to still another embodiment of the present invention. In the figure, (2a) is the oxidizing gas inlet manifold, (2a)
b) is the oxidizing gas outlet manifold, (3a) is the fuel gas inlet manifold, (3b) is the fuel gas outlet manifold, (
4) is an upstream fuel cell, (5) is a downstream fuel cell, and (6) is a downstream fuel cell.
) is a reformer, (7) is a catalyst, and (8) is an oxidizing gas pipe, which constitutes a heat supply means. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (7)

【特許請求の範囲】[Claims] (1)燃料ガスと酸化ガスが供給され電気化学反応を起
す上流側燃料電池、触媒を有し、上記上流側燃料電池で
電気化学反応を起し排出された燃料ガスを導入し、この
燃料ガスを改質する改質器、改質された燃料ガスが供給
されると共に酸化ガスが供給され電気化学反応を起す下
流側燃料電池、並びに上記上流側燃料電池及び上記下流
側燃料電池の少くともいずれか一方の排出された酸化ガ
スを上記改質器に供給し、上記改質器に熱を与える熱供
給手段を備えた溶融炭酸塩形燃料電池システム。
(1) It has an upstream fuel cell that is supplied with fuel gas and oxidizing gas to cause an electrochemical reaction, and a catalyst, and the fuel gas discharged from the upstream fuel cell that causes an electrochemical reaction is introduced, and this fuel gas a downstream fuel cell to which the reformed fuel gas is supplied as well as an oxidizing gas to cause an electrochemical reaction, and at least any of the upstream fuel cell and the downstream fuel cell. A molten carbonate fuel cell system comprising heat supply means for supplying one of the discharged oxidizing gases to the reformer and applying heat to the reformer.
(2)上流側燃料電池を形成する積層体と下流側燃料電
池を形成する積層体が分離されていることを特徴とする
特許請求の範囲第1項記載の溶融炭酸塩形燃料電池シス
テム。
(2) The molten carbonate fuel cell system according to claim 1, wherein the laminate forming the upstream fuel cell and the laminate forming the downstream fuel cell are separated.
(3)上流側燃料電池を形成する積層体と下流側燃料電
池を形成する積層体で1つの積層体を形成することを特
徴とする特許請求の範囲第1項記載の溶融炭酸塩形燃料
電池システム。
(3) The molten carbonate fuel cell according to claim 1, wherein the laminate forming the upstream fuel cell and the laminate forming the downstream fuel cell form one laminate. system.
(4)熱供給手段は、改質器中に排出酸化ガス流路を設
けて排出酸化ガスの熱と熱交換することを特徴とする特
許請求の範囲第1項ないし第3項のいずれかに記載の溶
融炭酸塩形燃料電池システム。
(4) According to any one of claims 1 to 3, the heat supply means is characterized in that an exhaust oxidant gas flow path is provided in the reformer to exchange heat with the exhaust oxidant gas. The molten carbonate fuel cell system described.
(5)熱供給手段は、排出酸化ガス流路に改質器を設け
て排出酸化ガスの熱を上記改質器に与えるようにしたこ
とを特徴とする特許請求の範囲第1項ないし第3項のい
ずれかに記載の溶融炭酸塩形燃料電池システム。
(5) The heat supply means is characterized in that a reformer is provided in the exhaust oxidant gas flow path and the heat of the exhaust oxidant gas is applied to the reformer. The molten carbonate fuel cell system according to any one of paragraphs.
(6)燃料電池の燃料ガスマニホルドの中に改質器を設
けたことを特徴とする特許請求の範囲第4項記載の溶融
炭酸塩形燃料電池システム。
(6) The molten carbonate fuel cell system according to claim 4, characterized in that a reformer is provided in the fuel gas manifold of the fuel cell.
(7)燃料電池の酸化ガスマニホルドの中に改質器を設
けたことを特徴とする特許請求の範囲第5項記載の溶融
炭酸塩形燃料電池システム。
(7) The molten carbonate fuel cell system according to claim 5, characterized in that a reformer is provided in the oxidizing gas manifold of the fuel cell.
JP59140973A 1984-07-06 1984-07-06 Molten carbonate type fuel cell system Pending JPS6119073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59140973A JPS6119073A (en) 1984-07-06 1984-07-06 Molten carbonate type fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59140973A JPS6119073A (en) 1984-07-06 1984-07-06 Molten carbonate type fuel cell system

Publications (1)

Publication Number Publication Date
JPS6119073A true JPS6119073A (en) 1986-01-27

Family

ID=15281142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59140973A Pending JPS6119073A (en) 1984-07-06 1984-07-06 Molten carbonate type fuel cell system

Country Status (1)

Country Link
JP (1) JPS6119073A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476610A2 (en) * 1990-09-19 1992-03-25 Ishikawajima-Harima Heavy Industries Co., Ltd. Power generation system using fuel cells
US5346779A (en) * 1992-06-25 1994-09-13 Ishikawajima-Harima Heavy Industries Co., Ltd. Fuel reforming method and apparatus for power generation system using fuel cells
EP0742960A1 (en) * 1994-02-04 1996-11-20 Ceramatec, Inc. Fuel cell module with multiple fuel cell stacks

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476610A2 (en) * 1990-09-19 1992-03-25 Ishikawajima-Harima Heavy Industries Co., Ltd. Power generation system using fuel cells
US5221586A (en) * 1990-09-19 1993-06-22 Ishikawajima-Harima Heavy Industries Co., Ltd. Power generation system using fuel cells
US5346779A (en) * 1992-06-25 1994-09-13 Ishikawajima-Harima Heavy Industries Co., Ltd. Fuel reforming method and apparatus for power generation system using fuel cells
EP0742960A1 (en) * 1994-02-04 1996-11-20 Ceramatec, Inc. Fuel cell module with multiple fuel cell stacks
EP0742960A4 (en) * 1994-02-04 1998-08-05 Ceramatec Inc Fuel cell module with multiple fuel cell stacks

Similar Documents

Publication Publication Date Title
US5380600A (en) Fuel cell system
US6531243B2 (en) Solid oxide fuel operating with an excess of fuel
JP4318920B2 (en) Fuel cell system
JP2005506659A (en) Method of purging a fuel cell system with an inert gas made from organic fuel
JP2008135395A (en) Fuel cell power plant, and method of operating fuel cell power plant
JPS61193371A (en) Fuel cell power generator
JP2005516351A (en) Fuel desulfurization method
JPH06267580A (en) Fuel cell generating power device
JP4570904B2 (en) Hot standby method of solid oxide fuel cell system and its system
JPH09237635A (en) Solid electrolyte fuel cell
JPS62274560A (en) Composite type fuel cell power generating system
JP3784751B2 (en) Solid oxide fuel cell system
US20040177554A1 (en) WGS reactor incorporated with catalyzed heat exchanger for WGS reactor volume reduction
JPS6119073A (en) Molten carbonate type fuel cell system
JPH0536427A (en) Molten carbonate fuel cell generator device
US20030086866A1 (en) Compact combined shift and selective methanation reactor for co control
JPS6110877A (en) Molten-carbonate-type fuel cell system
JP3257604B2 (en) Fuel cell generator
JP3545254B2 (en) Fuel cell carbon monoxide remover
JP2003331898A (en) Fuel cell system
JPH0665060B2 (en) Molten carbonate fuel cell power generation system
JPH04101364A (en) Fuel cell
WO2023190737A1 (en) Fuel cell device and method for operating fuel cell device
JPS63231878A (en) Power generating method by fuel cell and its system
US20040148862A1 (en) WGS reactor incorporated with catalyzed heat exchanger for WGS reactor volume reduction