WO2023190737A1 - Fuel cell device and method for operating fuel cell device - Google Patents

Fuel cell device and method for operating fuel cell device Download PDF

Info

Publication number
WO2023190737A1
WO2023190737A1 PCT/JP2023/012926 JP2023012926W WO2023190737A1 WO 2023190737 A1 WO2023190737 A1 WO 2023190737A1 JP 2023012926 W JP2023012926 W JP 2023012926W WO 2023190737 A1 WO2023190737 A1 WO 2023190737A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel cell
fuel
raw material
cell device
Prior art date
Application number
PCT/JP2023/012926
Other languages
French (fr)
Japanese (ja)
Inventor
祥二 山下
孝 小野
仁英 大嶋
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023190737A1 publication Critical patent/WO2023190737A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a fuel cell device.
  • a fuel cell device includes a reformer that reformes fuel gas from raw material gas and generates electricity using the fuel gas (see Patent Document 1).
  • the fuel cell device includes a fuel cell that generates electricity using fuel gas, and a reformer that reforms a first fuel gas, which becomes the fuel gas, from a raw material gas, and is connected to the fuel cell on the downstream side.
  • a fuel gas supply line is connected to the fuel gas supply line, and a second fuel gas serving as the raw material gas is supplied from the upstream side; at least one of a second fuel gas that becomes the fuel gas used by the fuel cell by processing the exhaust gas produced by the fuel cell, or a second raw material gas that becomes the raw material gas that the reformer reformes into the first fuel gas that becomes the fuel gas.
  • a processing unit that supplies exhaust-derived gas containing gas to the fuel gas supply line.
  • a method of operating a fuel cell device is a method of operating a fuel cell device that generates electricity using fuel gas, in which a reformer is used for a fuel gas supply line to reform the fuel gas. a step of reforming a first fuel gas to be used as the fuel gas from the raw material gas; and a step of treating the exhaust gas discharged from the fuel cell to provide a first fuel gas to be used by the fuel cell.
  • the method further includes the step of further supplying, to the fuel gas supply line, an exhaust-derived gas containing at least one of the second fuel gas and the second raw material gas that becomes the raw material gas to be reformed into the first fuel gas.
  • a fuel cell device includes a fuel cell that generates electricity using fuel gas, and a first raw material gas or a second raw material gas that is supplied as a raw material gas that is reformed into the fuel gas using a reformer. and a reformer for reforming a first fuel gas, which becomes the fuel gas, from the raw material gas, and a fuel cell device that processes exhaust gas discharged from the fuel cell. , an exhaust gas containing, in the fuel gas supply line, at least one of a second fuel gas that becomes the fuel gas used by the fuel cell or a second raw material gas that becomes the raw material gas that is reformed by the reformer into the first fuel gas.
  • the apparatus further includes a processing section that supplies source gas.
  • FIG. 1 is a schematic configuration diagram of a fuel cell device according to a first embodiment. It is a schematic block diagram of the modification of the fuel cell apparatus based on 1st Embodiment.
  • FIG. 2 is a schematic configuration diagram of a fuel cell device according to a second embodiment.
  • FIG. 2 is a schematic configuration diagram of a fuel cell device according to a third embodiment.
  • a fuel cell device 100 includes a fuel cell 10, a fuel gas supply line 20, and a processing section 30.
  • the fuel cell device 100 is installed, for example, in an electric power consumer facility such as a home.
  • the fuel cell 10 may have a cell stack.
  • the fuel cell 10 may be a fuel cell module that includes a cell stack within a housing.
  • the cell stack is, for example, a solid oxide fuel cell (SOFC), and generates electricity through an electrochemical reaction using oxygen in the air and a fuel gas supplied by a reformer 21 or reactors 132, 332, which will be described later.
  • SOFC solid oxide fuel cell
  • the cell stack also generates water through an electrochemical reaction. Water discharged from the cell stack is discharged from the fuel cell 10 in the form of a high temperature gas.
  • the fuel cell 10 emits heat during operation for power generation.
  • the electrochemical reaction performed by the cell stack is expressed, for example, by the following chemical reaction formula. H 2 + 1/2O 2 ⁇ H 2 O CO+1/2O 2 ⁇ CO 2
  • the exhaust gas discharged from the fuel cell 10 generally contains unreacted fuel gas in the fuel cell 10.
  • the exhaust gas may include carbon dioxide, etc., which is processed by the processing section 30 described below.
  • the fuel gas in the exhaust gas may be combusted using, for example, an ignition heater, thereby heating the reformer 21, which will be described later.
  • the downstream side of the fuel gas supply line 20 is connected to the upstream side of the fuel cell 10.
  • a first source gas such as LNG or LPG supplied from outside the consumer is supplied to the fuel gas supply line 20 via the gas acquisition port 41 on the upstream side.
  • the fuel gas supply line 20 includes a reformer 21.
  • the reformer 21 may be enclosed in a housing together with the fuel cell 10 including the cell stack to constitute a fuel cell module.
  • the reformer 21 reforms raw material gas to generate fuel gas.
  • the reformer 21 reforms the first raw material gas using the first raw material gas as the raw material gas, and generates the first fuel gas as the fuel gas.
  • the reformer 21 generates hydrogen as a first fuel gas by causing a steam reforming reaction using the raw material gas and water acquired from an external supply pipe through the water acquisition port 42 as reactants. do.
  • the steam reforming reaction of methane contained in city gas is expressed by the following chemical reaction formula. CH4 + H2O ⁇ CO+ 3H2
  • the reformer 21 may perform at least one of steam reforming, partial oxidation reforming, and dry reforming.
  • the upstream side of the processing section 30 is connected to the fuel cell 10.
  • the downstream side of the processing section 30 is connected to the fuel gas supply line 20 .
  • the downstream side of the processing section 30 may be connected to the downstream side of the reformer 21 of the fuel gas supply line 20.
  • the downstream side of the processing section 30 described later and shown in FIG. 3 may be connected to the upstream side of the reformer 221 of the fuel gas supply line 220.
  • Note that the downstream side of the processing section 330 described later and shown in FIG. 4 may be connected to the upstream side of the reformer 21 of the fuel gas supply line 20.
  • the processing unit 30 processes exhaust gas discharged from the fuel cell 10 and supplies exhaust-derived gas so that carbon dioxide discharged from the fuel cell device 100 is reduced.
  • the exhaust gas may include unreacted hydrogen, carbon dioxide produced by electrochemical reactions, water vapor, and carbon monoxide.
  • the exhaust-derived gas includes at least one of the second fuel gas or the second raw material gas, as described below.
  • the second fuel gas can be the fuel gas used by the fuel cell 10.
  • the second fuel gas is a fuel gas with a higher concentration than the exhaust gas, and is, for example, at least one of hydrogen and carbon monoxide.
  • the second raw material gas can be a raw material gas that the reformer 21 reforms into the first fuel gas.
  • the second raw material gas is a raw material gas whose concentration is higher than that of the exhaust gas, and is, for example, methane.
  • the first source gas supplied from the upstream side of the fuel gas supply line 20 and the exhaust gas may have different components.
  • the exhaust gas and the exhaust-derived gas may have different components.
  • the concentration of the specific component contained in the exhaust gas may be higher than the concentration of the specific component contained in the exhaust gas.
  • the specific component is, for example, carbon dioxide.
  • the processing section 30 may include a separation section 31.
  • the separation unit 31 may separate specific components from the exhaust gas.
  • the separation unit 31 may further separate carbon monoxide and hydrogen from the exhaust gas. In other words, the separation unit 31 may mainly remove water vapor from the exhaust gas.
  • the separation section 31 may be a condenser, a water vapor separation membrane, a water vapor permeable ion exchange resin, or the like.
  • the downstream side of the processing section 30 is connected to the fuel gas supply line 20. More specifically, the permeate gas outlet of the separation section 31 of the processing section 30 may be connected to the fuel gas supply line 20 on the downstream side of the reformer 21 .
  • the fuel cell 10 may generate electricity using the second fuel gas concentrated by separation in the separation section 31 as the fuel gas. In other words, the separation section 31 of the processing section 30 may supply the second fuel gas used by the fuel cell 10.
  • the exhaust gas may contain carbon monoxide that could not be separated by the separation section 31.
  • a combustion section 50 that burns carbon monoxide in the exhaust gas may be provided downstream of the exhaust port of the separation section 31 .
  • the processing section 130 may further include a reactor 132 downstream of the permeate gas outlet of the separation section 31.
  • the downstream side of the reactor 132 of the processing section 130 may be connected to the downstream side of the reformer 21 of the fuel gas supply line 20 .
  • the reactor 132 synthesizes the specific component (carbon dioxide) concentrated in the separation section 31 and the hydrogen concentrated in the separation section 31 or hydrogen supplied from the reformer 21 or the like to generate carbon monoxide. You may do so.
  • This reaction is represented by the following chemical reaction formula.
  • Reactor 132 may include, for example, a reduction catalyst. CO 2 + H 2 ⁇ CO + H 2 O
  • the reaction carried out by the reactor 132 is an endothermic reaction.
  • a reactor 132 of the processing section 130 may be placed near the fuel cell 10 so that heat generated by the fuel cell 10 is applied to the reactor 132.
  • a heat source such as a burner may heat the reactor 132 of the processing section 130.
  • the reactor 132 may supply not only the synthesized carbon monoxide but also the carbon monoxide or hydrogen concentrated in the separation section 31 to the fuel cell 10.
  • the fuel cell 10 may generate electricity using carbon monoxide or hydrogen supplied from the reactor 132 as the second fuel gas.
  • the reactor 132 of the processing unit 130 may supply the second fuel gas used by the fuel cell 10.
  • a fuel cell device 200 has a configuration similar to the fuel cell device 100.
  • the same configuration as the fuel cell device 100 will not be explained again, but a different configuration from the fuel cell device 100 will be explained.
  • the separation unit 31 may concentrate carbon dioxide, carbon monoxide, and hydrogen in the exhaust gas as described above.
  • a carbon dioxide reforming reaction may occur in which carbon dioxide (second source gas) concentrated in the separation section 31 is reformed.
  • carbon monoxide first fuel gas
  • the exhaust-derived gas supplied by the separation unit 31 includes carbon monoxide and hydrogen, which are the second fuel gas, and carbon dioxide, which is the second source gas.
  • the downstream side of the processing section 30 may be connected to the upstream side of the reformer 221 of the fuel gas supply line 20.
  • the downstream side of the permeated gas outlet of the separation section 31 and the downstream side of the gas acquisition port 41 may merge. As the merging occurs, the second raw material gas or the second fuel gas supplied by the separation unit 31 and the first raw material gas supplied from the external supply pipe via the gas acquisition port 41 are mixed, and the fuel gas supply line is mixed. 20 may be supplied.
  • the reformer 221 of the fuel gas supply line 220 may cause a carbon dioxide reforming reaction in addition to the steam reforming reaction described above. Specifically, the reformer 221 separates methane contained in the first raw material gas supplied from an external supply pipe via the gas acquisition port 41 and carbon dioxide contained in the second raw material gas supplied by the separation unit 31. Together with carbon, a first fuel gas such as carbon monoxide, hydrogen, etc., which the fuel cell 10 uses for power generation, may be generated.
  • the carbon dioxide reforming reaction is represented by the following chemical reaction formula. CH 4 +CO 2 ⁇ 2CO+2H 2
  • the second fuel gas supplied by the separation section 31 may pass through the reformer 221 as is.
  • a fuel cell device 300 has a configuration similar to the fuel cell device 100.
  • the same configuration as the fuel cell device 100 will not be explained again, but a different configuration from the fuel cell device 100 will be explained.
  • the separation unit 31 of the processing unit 330 may concentrate and supply carbon dioxide, carbon monoxide, and hydrogen in the exhaust gas as described above.
  • the fuel cell device 300 may include a reactor 332 connected to the downstream side of the permeate gas outlet of the separation section 31 .
  • the reactor 332 is supplied with carbon dioxide concentrated in the separation section 31 and the carbon dioxide concentrated in the separation section 31 or supplied from the reformer 21 or the like.
  • Hydrocarbons such as methane (second raw material gas) may be synthesized using the hydrogen. The synthesis is expressed, for example, by the following chemical reaction formula.
  • Reactor 332 may be a nickel-based catalyst or a ruthenium-based catalyst. Note that this reaction is an exothermic reaction. CO 2 +4H 2 ⁇ CH 4 +2H 2 O
  • the hydrogen used in the above reaction may be supplied from any external hydrogen source.
  • the carbon monoxide supplied by the separation section 31 may pass through the reactor 332 as is.
  • the downstream side of the processing section 330 may be connected to the upstream side of the reformer 21 in the fuel gas supply line 20.
  • the downstream side of the reactor 332 and the downstream side of the gas acquisition port 41 may merge.
  • the first raw material gas supplied from the external supply pipe via the gas acquisition port 41 and the second raw material gas or the second fuel gas supplied by the reactor 332 are mixed, and the fuel gas is supplied. It may be supplied to line 20.
  • the fuel cell devices 100, 100', 200, and 300 of this embodiment configured as described above include a fuel cell 10 that generates electricity using fuel gas, and a first fuel gas that is a fuel gas that is reformed from a raw material gas.
  • Fuel gas supply lines 20 and 220 that include reformers 21 and 221 are connected to the fuel cell 10 on the downstream side, and are supplied with a first raw material gas as a raw material gas from the upstream side, and are connected to the fuel cell 10 on the upstream side.
  • a second fuel gas or reformer 21 is connected to the fuel gas supply lines 20 and 220 on the downstream side, and processes the exhaust gas discharged from the fuel cell 10 to become the fuel gas used by the fuel cell 10. It includes processing units 30, 130, and 330 that supply exhaust-derived gas containing at least one of the second raw material gas that becomes the raw material gas to be reformed.
  • exhaust gas from the fuel cell containing carbon monoxide, carbon dioxide, etc. is combusted in a combustion section, converted into carbon dioxide, and then discharged.
  • the processing units 30, 130, and 330 process the exhaust gas containing carbon dioxide and the like to convert the second fuel gas into a fuel.
  • the second raw material gas is supplied to the battery 10 or the reformer 21 . Therefore, in the fuel cell devices 100, 100', 200, and 300, the amount of carbon dioxide emitted can be reduced.
  • the fuel cell 10 uses the first fuel gas generated from the first source gas supplied from the gas acquisition port 41. Furthermore, the fuel cell 10 also uses the second fuel gas generated by the processing units 30, 130, 330, or the first fuel gas generated from the second source gas generated by the processing units 30, 130, 330. Therefore, in the fuel cell devices 100, 100', 200, and 300, the amount of first source gas supplied from the gas acquisition port 41 can be reduced.
  • the processing section 130 is arranged near the fuel cell 10.
  • the reaction in which the processing unit 130 processes the exhaust gas and supplies the second fuel gas or the second raw material gas is an endothermic reaction.
  • Fuel cell device 10 Fuel cell 20,220 Fuel gas supply line 21,221 Reformer 30,130,330 Processing section 31 Separation section 132,332 Reactor 41 Gas acquisition port 42 Water acquisition port 50 Combustion part

Abstract

This fuel cell device comprises a fuel cell, a fuel gas supply line, and a processing unit. The fuel cell generates electric power using a fuel gas. The fuel gas supply line includes a reformer for reforming, from a source gas, a first fuel gas that becomes the fuel gas, and is connected to the fuel cell on the downstream side, and a first source gas that becomes the source gas is supplied thereto from the upstream side. The processing unit is connected to the fuel cell on the upstream side and connected to the fuel gas supply line on the downstream side, and supplies, to the fuel gas supply line, an exhaust air-derived gas containing a second fuel gas that is obtained by processing an exhaust gas discharged from the fuel cell and becomes the fuel gas to be used by the fuel cell and/or a second source gas that becomes the source gas to be reformed to the first fuel gas that becomes the fuel gas by the reformer.

Description

燃料電池装置、及び燃料電池装置の運転方法Fuel cell device and method of operating the fuel cell device 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年3月31日に日本国に特許出願された特願2022-061334の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。 This application claims priority to Japanese Patent Application No. 2022-061334 filed in Japan on March 31, 2022, and the entire disclosure of this earlier application is incorporated herein by reference.
 本開示は、燃料電池装置に関するものである。 The present disclosure relates to a fuel cell device.
 原料ガスから燃料ガスを改質する改質器を含み、燃料ガスを用いて発電する燃料電池装置が知られている(特許文献1参照)。 A fuel cell device is known that includes a reformer that reformes fuel gas from raw material gas and generates electricity using the fuel gas (see Patent Document 1).
特開2002-298863号公報Japanese Patent Application Publication No. 2002-298863
 第1の観点による燃料電池装置は、燃料ガスを用いて発電する燃料電池と、前記燃料ガスとなる第1燃料ガスを原料ガスから改質する改質器を含み、下流側で前記燃料電池に接続され、上流側から前記原料ガスとなる第2燃料ガスが供給される燃料ガス供給ラインと、上流側が前記燃料電池に接続され、下流側が前記燃料ガス供給ラインに接続され、前記燃料電池から排出される排ガスを処理し前記燃料電池が用いる燃料ガスとなる第2燃料ガス又は前記改質器が前記燃料ガスとなる前記第1燃料ガスに改質する原料ガスとなる第2原料ガスの少なくとも一方を含む排気由来ガスを前記燃料ガス供給ラインに供給する処理部と、を備える。 The fuel cell device according to the first aspect includes a fuel cell that generates electricity using fuel gas, and a reformer that reforms a first fuel gas, which becomes the fuel gas, from a raw material gas, and is connected to the fuel cell on the downstream side. A fuel gas supply line is connected to the fuel gas supply line, and a second fuel gas serving as the raw material gas is supplied from the upstream side; at least one of a second fuel gas that becomes the fuel gas used by the fuel cell by processing the exhaust gas produced by the fuel cell, or a second raw material gas that becomes the raw material gas that the reformer reformes into the first fuel gas that becomes the fuel gas. and a processing unit that supplies exhaust-derived gas containing gas to the fuel gas supply line.
 第2の観点による燃料電池装置の運転方法は、燃料ガスを用いて発電する燃料電池装置の運転方法であって、燃料ガス供給ラインに対して改質器を用いて前記燃料ガスに改質される原料ガスを供給するステップと、前記燃料ガスとなる第1燃料ガスを原料ガスから改質するステップと、前記燃料電池から排出される排ガスを処理し、前記燃料電池が用いる燃料ガスとなる第2燃料ガス又は前記第1燃料ガスに改質する原料ガスとなる第2原料ガスの少なくとも一方を含む排気由来ガスを更に前記燃料ガス供給ラインに対して供給するステップと、を含む。 A method of operating a fuel cell device according to a second aspect is a method of operating a fuel cell device that generates electricity using fuel gas, in which a reformer is used for a fuel gas supply line to reform the fuel gas. a step of reforming a first fuel gas to be used as the fuel gas from the raw material gas; and a step of treating the exhaust gas discharged from the fuel cell to provide a first fuel gas to be used by the fuel cell. The method further includes the step of further supplying, to the fuel gas supply line, an exhaust-derived gas containing at least one of the second fuel gas and the second raw material gas that becomes the raw material gas to be reformed into the first fuel gas.
 第3の観点による燃料電池装置は、燃料ガスを用いて発電する燃料電池と、改質器を用いて前記燃料ガスに改質される原料ガスとなる第1原料ガス又は第2原料ガスが供給される燃料ガス供給ラインと、前記燃料ガスとなる第1燃料ガスを前記原料ガスから改質する改質器と、を備える燃料電池装置であり、前記燃料電池から排出される排ガスを処理して、前記燃料ガス供給ラインに、前記燃料電池が用いる燃料ガスとなる第2燃料ガス又は前記改質器が前記第1燃料ガスに改質する原料ガスとなる第2原料ガスの少なくとも一方を含む排気由来ガスを供給する処理部と、を更に備える。 A fuel cell device according to a third aspect includes a fuel cell that generates electricity using fuel gas, and a first raw material gas or a second raw material gas that is supplied as a raw material gas that is reformed into the fuel gas using a reformer. and a reformer for reforming a first fuel gas, which becomes the fuel gas, from the raw material gas, and a fuel cell device that processes exhaust gas discharged from the fuel cell. , an exhaust gas containing, in the fuel gas supply line, at least one of a second fuel gas that becomes the fuel gas used by the fuel cell or a second raw material gas that becomes the raw material gas that is reformed by the reformer into the first fuel gas. The apparatus further includes a processing section that supplies source gas.
第1の実施形態に係る燃料電池装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a fuel cell device according to a first embodiment. 第1の実施形態に係る燃料電池装置の変形例の概略構成図である。It is a schematic block diagram of the modification of the fuel cell apparatus based on 1st Embodiment. 第2の実施形態に係る燃料電池装置の概略構成図である。FIG. 2 is a schematic configuration diagram of a fuel cell device according to a second embodiment. 第3の実施形態に係る燃料電池装置の概略構成図である。FIG. 2 is a schematic configuration diagram of a fuel cell device according to a third embodiment.
 以下、本開示を適用した燃料電池装置の実施形態が、図面を参照して説明される。 Hereinafter, embodiments of a fuel cell device to which the present disclosure is applied will be described with reference to the drawings.
 図1に示すように、本開示の一実施形態に係る燃料電池装置100は、燃料電池10と、燃料ガス供給ライン20と、処理部30と、を含んで構成される。燃料電池装置100は、例えば、家庭等の電力の需要家施設に設けられる。 As shown in FIG. 1, a fuel cell device 100 according to an embodiment of the present disclosure includes a fuel cell 10, a fuel gas supply line 20, and a processing section 30. The fuel cell device 100 is installed, for example, in an electric power consumer facility such as a home.
 燃料電池10は、セルスタックを有してよい。燃料電池10は、筐体内にセルスタックを内包する燃料電池モジュールとしてよい。セルスタックは、例えば固体酸化物形燃料電池(SOFC)であり、後述する改質器21又は反応器132、332が供給する燃料ガス、及び空気中の酸素を用いた電気化学反応により発電する。また、セルスタックは電気化学反応により水を生成する。セルスタックから排出される水は、高温のガス状で燃料電池10から排出される。燃料電池10は、発電のための稼働中に熱を発する。 The fuel cell 10 may have a cell stack. The fuel cell 10 may be a fuel cell module that includes a cell stack within a housing. The cell stack is, for example, a solid oxide fuel cell (SOFC), and generates electricity through an electrochemical reaction using oxygen in the air and a fuel gas supplied by a reformer 21 or reactors 132, 332, which will be described later. The cell stack also generates water through an electrochemical reaction. Water discharged from the cell stack is discharged from the fuel cell 10 in the form of a high temperature gas. The fuel cell 10 emits heat during operation for power generation.
 セルスタックが行う電気化学反応は、例えば以下の化学反応式で表される。
 H+1/2O→H
 CO+1/2O→CO
The electrochemical reaction performed by the cell stack is expressed, for example, by the following chemical reaction formula.
H 2 + 1/2O 2 →H 2 O
CO+1/2O 2 →CO 2
 燃料電池10から排出される排ガスは、燃料電池10において未反応の燃料ガスを含むことが一般的である。当該排ガスは、前述のように、後述する処理部30が処理する二酸化炭素等を含んでよい。当該排ガス中の燃料ガスが、例えば着火ヒータ等を用いて燃焼されることで、後述する改質器21が加熱されてもよい。 The exhaust gas discharged from the fuel cell 10 generally contains unreacted fuel gas in the fuel cell 10. As described above, the exhaust gas may include carbon dioxide, etc., which is processed by the processing section 30 described below. The fuel gas in the exhaust gas may be combusted using, for example, an ignition heater, thereby heating the reformer 21, which will be described later.
 燃料電池10の上流側に、燃料ガス供給ライン20の下流側が接続される。 The downstream side of the fuel gas supply line 20 is connected to the upstream side of the fuel cell 10.
 LNG、LPG等の需要家の外部から供給される第1原料ガスが、上流側のガス取得口41を介して、燃料ガス供給ライン20へ供給される。 A first source gas such as LNG or LPG supplied from outside the consumer is supplied to the fuel gas supply line 20 via the gas acquisition port 41 on the upstream side.
 燃料ガス供給ライン20は、改質器21を含む。なお改質器21は、セルスタックを含む燃料電池10と一緒に筐体内に内包されて、燃料電池モジュールを構成してよい。改質器21は、原料ガスを改質して燃料ガスを生成する。具体的には、改質器21は、第1原料ガスを原料ガスとして用いて改質して、第1燃料ガスを燃料ガスとして生成する。改質器21は、原料ガスと、水取得口42を介して外部の供給管などから取得する水とを反応物として、水蒸気改質反応を生じさせることにより、水素を第1燃料ガスとして生成する。例えば、都市ガスに含まれるメタンの水蒸気改質反応は、以下の化学反応式で表される。
 CH+HO→CO+3H
The fuel gas supply line 20 includes a reformer 21. Note that the reformer 21 may be enclosed in a housing together with the fuel cell 10 including the cell stack to constitute a fuel cell module. The reformer 21 reforms raw material gas to generate fuel gas. Specifically, the reformer 21 reforms the first raw material gas using the first raw material gas as the raw material gas, and generates the first fuel gas as the fuel gas. The reformer 21 generates hydrogen as a first fuel gas by causing a steam reforming reaction using the raw material gas and water acquired from an external supply pipe through the water acquisition port 42 as reactants. do. For example, the steam reforming reaction of methane contained in city gas is expressed by the following chemical reaction formula.
CH4 + H2O →CO+ 3H2
 改質器21は、水蒸気改質、部分酸化改質及びドライリフォーミングの少なくとも一つを行ってよい。 The reformer 21 may perform at least one of steam reforming, partial oxidation reforming, and dry reforming.
 処理部30の上流側は、燃料電池10に接続される。処理部30の下流側は、燃料ガス供給ライン20に接続される。処理部30の下流側は、燃料ガス供給ライン20の改質器21の下流側に接続されてよい。後述され図3に示される処理部30の下流側は、燃料ガス供給ライン220の改質器221の上流側に接続されてもよい。なお、後述され図4に示される処理部330の下流側は、燃料ガス供給ライン20の改質器21の上流側に接続されてもよい。処理部30は、燃料電池装置100から排出される二酸化炭素が削減されるように、燃料電池10から排出される排ガスを処理し、排気由来ガスを供給する。排ガスは、未反応の水素、電気化学反応により生成した二酸化炭素、水蒸気、及び一酸化炭素を含んでよい。 The upstream side of the processing section 30 is connected to the fuel cell 10. The downstream side of the processing section 30 is connected to the fuel gas supply line 20 . The downstream side of the processing section 30 may be connected to the downstream side of the reformer 21 of the fuel gas supply line 20. The downstream side of the processing section 30 described later and shown in FIG. 3 may be connected to the upstream side of the reformer 221 of the fuel gas supply line 220. Note that the downstream side of the processing section 330 described later and shown in FIG. 4 may be connected to the upstream side of the reformer 21 of the fuel gas supply line 20. The processing unit 30 processes exhaust gas discharged from the fuel cell 10 and supplies exhaust-derived gas so that carbon dioxide discharged from the fuel cell device 100 is reduced. The exhaust gas may include unreacted hydrogen, carbon dioxide produced by electrochemical reactions, water vapor, and carbon monoxide.
 排気由来ガスは、後述されるように、第2燃料ガス又は第2原料ガスの少なくとも一方を含む。第2燃料ガスは、燃料電池10が用いる燃料ガスとなり得る。第2燃料ガスは、排気ガスよりも濃度が高められた燃料ガスであって、例えば、水素及び一酸化炭素の少なくとも一方である。第2原料ガスは、改質器21が第1燃料ガスに改質する原料ガスとなり得る。第2原料ガスは、排気ガスよりも濃度が高められた原料ガスであって、例えば、メタンである。燃料ガス供給ライン20の上流側から供給される第1原料ガスと、排気由来ガスとで成分が異なってよい。排ガスと、排気由来ガスとで成分が異なってよい。排気由来ガスに含まれる特定成分の濃度が、排ガスに含まれる当該特定成分の濃度よりも高くてよい。特定成分は、例えば、二酸化炭素である。 The exhaust-derived gas includes at least one of the second fuel gas or the second raw material gas, as described below. The second fuel gas can be the fuel gas used by the fuel cell 10. The second fuel gas is a fuel gas with a higher concentration than the exhaust gas, and is, for example, at least one of hydrogen and carbon monoxide. The second raw material gas can be a raw material gas that the reformer 21 reforms into the first fuel gas. The second raw material gas is a raw material gas whose concentration is higher than that of the exhaust gas, and is, for example, methane. The first source gas supplied from the upstream side of the fuel gas supply line 20 and the exhaust gas may have different components. The exhaust gas and the exhaust-derived gas may have different components. The concentration of the specific component contained in the exhaust gas may be higher than the concentration of the specific component contained in the exhaust gas. The specific component is, for example, carbon dioxide.
 処理部30は、分離部31を含んでよい。分離部31は、排ガスから特定成分を分離してよい。分離部31は、更に、排ガスから一酸化炭素及び水素を分離してよい。言換えると、分離部31は、排ガスから主に水蒸気を除去してよい。分離部31は、凝縮器、水蒸気分離膜、水蒸気透過性のイオン交換樹脂等であってよい。 The processing section 30 may include a separation section 31. The separation unit 31 may separate specific components from the exhaust gas. The separation unit 31 may further separate carbon monoxide and hydrogen from the exhaust gas. In other words, the separation unit 31 may mainly remove water vapor from the exhaust gas. The separation section 31 may be a condenser, a water vapor separation membrane, a water vapor permeable ion exchange resin, or the like.
 前述されるように、処理部30の下流側は、燃料ガス供給ライン20に接続される。より具体的に、処理部30の分離部31の透過ガス出口は、燃料ガス供給ライン20の、改質器21の下流側に、接続されてよい。燃料電池10は、分離部31における分離により濃縮した第2燃料ガスを燃料ガスとして用いて発電してよい。言い換えれば、処理部30の分離部31は、燃料電池10が用いる第2燃料ガスを供給してよい。 As described above, the downstream side of the processing section 30 is connected to the fuel gas supply line 20. More specifically, the permeate gas outlet of the separation section 31 of the processing section 30 may be connected to the fuel gas supply line 20 on the downstream side of the reformer 21 . The fuel cell 10 may generate electricity using the second fuel gas concentrated by separation in the separation section 31 as the fuel gas. In other words, the separation section 31 of the processing section 30 may supply the second fuel gas used by the fuel cell 10.
 分離部31で排ガスから除去された水蒸気等は、排気される。排気には、分離部31で分離できなかった一酸化炭素が含まれることがある。排気中の一酸化炭素を燃焼させる燃焼部50が分離部31の排気口の下流に設けられてよい。 Water vapor and the like removed from the exhaust gas in the separation section 31 are exhausted. The exhaust gas may contain carbon monoxide that could not be separated by the separation section 31. A combustion section 50 that burns carbon monoxide in the exhaust gas may be provided downstream of the exhaust port of the separation section 31 .
 図2に示すように、処理部130は、分離部31の透過ガス出口の下流側に、更に反応器132を備えてよい。処理部130の反応器132の下流側は、燃料ガス供給ライン20の、改質器21の下流側に、接続されてよい。反応器132は、分離部31で濃縮された特定成分(二酸化炭素)と、分離部31で濃縮された水素又は改質器21等から供給される水素とを合成して、一酸化炭素を生成してよい。この反応は、以下の化学反応式で表される。反応器132は、例えば還元触媒を含んでよい。
 CO+H→CO+H
As shown in FIG. 2, the processing section 130 may further include a reactor 132 downstream of the permeate gas outlet of the separation section 31. The downstream side of the reactor 132 of the processing section 130 may be connected to the downstream side of the reformer 21 of the fuel gas supply line 20 . The reactor 132 synthesizes the specific component (carbon dioxide) concentrated in the separation section 31 and the hydrogen concentrated in the separation section 31 or hydrogen supplied from the reformer 21 or the like to generate carbon monoxide. You may do so. This reaction is represented by the following chemical reaction formula. Reactor 132 may include, for example, a reduction catalyst.
CO 2 + H 2 → CO + H 2 O
 反応器132が行う反応は吸熱反応である。処理部130の例えば反応器132が燃料電池10に近傍に配置されて、燃料電池10が発する熱が反応器132に与えられてよい。バーナ等の熱源が処理部130の反応器132を加熱してもよい。 The reaction carried out by the reactor 132 is an endothermic reaction. For example, a reactor 132 of the processing section 130 may be placed near the fuel cell 10 so that heat generated by the fuel cell 10 is applied to the reactor 132. A heat source such as a burner may heat the reactor 132 of the processing section 130.
 反応器132は、合成される一酸化炭素だけでなく、分離部31で濃縮された一酸化炭素又は水素も、燃料電池10に供給してよい。 The reactor 132 may supply not only the synthesized carbon monoxide but also the carbon monoxide or hydrogen concentrated in the separation section 31 to the fuel cell 10.
 燃料電池10は、反応器132から供給される一酸化炭素又は水素を、第2燃料ガスとして用いて発電してよい。言い換えれば、処理部130の反応器132は、燃料電池10が用いる第2燃料ガスを供給してよい。 The fuel cell 10 may generate electricity using carbon monoxide or hydrogen supplied from the reactor 132 as the second fuel gas. In other words, the reactor 132 of the processing unit 130 may supply the second fuel gas used by the fuel cell 10.
 図3に示すように、本開示の第2の実施形態に係る燃料電池装置200は、燃料電池装置100に類似する構成を有する。以下、燃料電池装置100と同じ構成は再度説明されず、燃料電池装置100とは異なる構成が説明される。 As shown in FIG. 3, a fuel cell device 200 according to the second embodiment of the present disclosure has a configuration similar to the fuel cell device 100. Hereinafter, the same configuration as the fuel cell device 100 will not be explained again, but a different configuration from the fuel cell device 100 will be explained.
 分離部31は、上述したように排ガス中の二酸化炭素、一酸化炭素及び水素を濃縮してよい。改質器221では、後述するように、分離部31で濃縮された二酸化炭素(第2原料ガス)を用いて改質する二酸化炭素改質反応を生じてよい。この二酸化炭素改質反応の結果として、水素に加えて、一酸化炭素(第1燃料ガス)も生成されてよい。したがって、分離部31が供給する排気由来ガスは、第2燃料ガスである一酸化炭素及び水素、並びに第2原料ガスである二酸化炭素を含む。 The separation unit 31 may concentrate carbon dioxide, carbon monoxide, and hydrogen in the exhaust gas as described above. In the reformer 221, as will be described later, a carbon dioxide reforming reaction may occur in which carbon dioxide (second source gas) concentrated in the separation section 31 is reformed. As a result of this carbon dioxide reforming reaction, in addition to hydrogen, carbon monoxide (first fuel gas) may also be produced. Therefore, the exhaust-derived gas supplied by the separation unit 31 includes carbon monoxide and hydrogen, which are the second fuel gas, and carbon dioxide, which is the second source gas.
 処理部30の下流側は、燃料ガス供給ライン20の、改質器221の上流側に、接続されてよい。分離部31の透過ガス出口の下流と、ガス取得口41の下流とが合流してよい。合流に伴い、分離部31が供給する第2原料ガス又は第2燃料ガスと、ガス取得口41を介して外部の供給管から供給される第1原料ガスとが混合して、燃料ガス供給ライン20へ供給されてよい。 The downstream side of the processing section 30 may be connected to the upstream side of the reformer 221 of the fuel gas supply line 20. The downstream side of the permeated gas outlet of the separation section 31 and the downstream side of the gas acquisition port 41 may merge. As the merging occurs, the second raw material gas or the second fuel gas supplied by the separation unit 31 and the first raw material gas supplied from the external supply pipe via the gas acquisition port 41 are mixed, and the fuel gas supply line is mixed. 20 may be supplied.
 燃料ガス供給ライン220の改質器221は、上述した水蒸気改質反応に加えて、二酸化炭素改質反応を生じさせてよい。具体的には、改質器221は、ガス取得口41を介して外部の供給管から供給される第1原料ガスに含まれるメタンと、分離部31が供給する第2原料ガスに含まれる二酸化炭素とで、燃料電池10が発電に使用する一酸化炭素、水素等の第1燃料ガスを生成してよい。例えば、二酸化炭素改質反応は、以下の化学反応式で表される。
 CH+CO→2CO+2H
The reformer 221 of the fuel gas supply line 220 may cause a carbon dioxide reforming reaction in addition to the steam reforming reaction described above. Specifically, the reformer 221 separates methane contained in the first raw material gas supplied from an external supply pipe via the gas acquisition port 41 and carbon dioxide contained in the second raw material gas supplied by the separation unit 31. Together with carbon, a first fuel gas such as carbon monoxide, hydrogen, etc., which the fuel cell 10 uses for power generation, may be generated. For example, the carbon dioxide reforming reaction is represented by the following chemical reaction formula.
CH 4 +CO 2 →2CO+2H 2
 分離部31が供給する第2燃料ガスは、改質器221をそのまま通過してよい。 The second fuel gas supplied by the separation section 31 may pass through the reformer 221 as is.
 図4に示すように、本開示の第3の実施形態に係る燃料電池装置300は、燃料電池装置100に類似する構成を有する。以下、燃料電池装置100と同じ構成は再度説明されず、燃料電池装置100とは異なる構成が説明される。 As shown in FIG. 4, a fuel cell device 300 according to the third embodiment of the present disclosure has a configuration similar to the fuel cell device 100. Hereinafter, the same configuration as the fuel cell device 100 will not be explained again, but a different configuration from the fuel cell device 100 will be explained.
 処理部330の分離部31は、上述したように排ガス中の二酸化炭素、一酸化炭素及び水素を濃縮し供給してよい。 The separation unit 31 of the processing unit 330 may concentrate and supply carbon dioxide, carbon monoxide, and hydrogen in the exhaust gas as described above.
 燃料電池装置300は、分離部31の透過ガス出口の下流側に接続される、反応器332を備えてよい。反応器332は、前述した反応器132が生じさせる反応に代えて又は当該反応に加えて、分離部31で濃縮された二酸化炭素と、分離部31で濃縮された又は改質器21等から供給される水素とを用いて、メタン等の炭化水素(第2原料ガス)を合成してよい。合成は、例えば以下の化学反応式で表される。反応器332は、ニッケル系触媒又はルテニウム系触媒としてよい。なお、この反応は発熱反応である。
 CO+4H→CH+2H
The fuel cell device 300 may include a reactor 332 connected to the downstream side of the permeate gas outlet of the separation section 31 . In place of or in addition to the reaction generated by the reactor 132 described above, the reactor 332 is supplied with carbon dioxide concentrated in the separation section 31 and the carbon dioxide concentrated in the separation section 31 or supplied from the reformer 21 or the like. Hydrocarbons such as methane (second raw material gas) may be synthesized using the hydrogen. The synthesis is expressed, for example, by the following chemical reaction formula. Reactor 332 may be a nickel-based catalyst or a ruthenium-based catalyst. Note that this reaction is an exothermic reaction.
CO 2 +4H 2 →CH 4 +2H 2 O
 上述した反応に使用される水素は、外部の任意の水素源から供給されてよい。分離部31が供給する一酸化炭素は、反応器332をそのまま通過してよい。 The hydrogen used in the above reaction may be supplied from any external hydrogen source. The carbon monoxide supplied by the separation section 31 may pass through the reactor 332 as is.
 処理部330の下流側は、燃料ガス供給ライン20の、改質器21の上流側に、接続されてよい。反応器332の下流と、ガス取得口41の下流とが合流してよい。合流に伴い、ガス取得口41を介して外部の供給管から供給される第1原料ガスと、反応器332が供給する第2原料ガス又は第2燃料ガスと、が混合されて、燃料ガス供給ライン20へ供給されてよい。 The downstream side of the processing section 330 may be connected to the upstream side of the reformer 21 in the fuel gas supply line 20. The downstream side of the reactor 332 and the downstream side of the gas acquisition port 41 may merge. Along with the merging, the first raw material gas supplied from the external supply pipe via the gas acquisition port 41 and the second raw material gas or the second fuel gas supplied by the reactor 332 are mixed, and the fuel gas is supplied. It may be supplied to line 20.
 以上のような構成の本実施形態の燃料電池装置100、100’、200及び300は、燃料ガスを用いて発電する燃料電池10と、燃料ガスとなる第1燃料ガスを原料ガスから改質する改質器21、221を含み、下流側で燃料電池10に接続され、上流側から原料ガスとなる第1原料ガスが供給される燃料ガス供給ライン20、220と、上流側が燃料電池10に接続され、下流側が燃料ガス供給ライン20、220に接続され、燃料電池10から排出される排ガスを処理し燃料電池10が用いる燃料ガスとなる第2燃料ガス又は改質器21が前記第1燃料ガスに改質する原料ガスとなる第2原料ガスの少なくとも一方を含む排気由来ガスを供給する処理部30、130、330と、を備える。 The fuel cell devices 100, 100', 200, and 300 of this embodiment configured as described above include a fuel cell 10 that generates electricity using fuel gas, and a first fuel gas that is a fuel gas that is reformed from a raw material gas. Fuel gas supply lines 20 and 220 that include reformers 21 and 221, are connected to the fuel cell 10 on the downstream side, and are supplied with a first raw material gas as a raw material gas from the upstream side, and are connected to the fuel cell 10 on the upstream side. A second fuel gas or reformer 21 is connected to the fuel gas supply lines 20 and 220 on the downstream side, and processes the exhaust gas discharged from the fuel cell 10 to become the fuel gas used by the fuel cell 10. It includes processing units 30, 130, and 330 that supply exhaust-derived gas containing at least one of the second raw material gas that becomes the raw material gas to be reformed.
 一般的な燃料電池装置では、一酸化炭素、二酸化炭素等を含む燃料電池からの排ガスが、燃焼部により燃焼されて二酸化炭素にされ排出されていた。一方、上述の構成を有する本実施形態の燃料電池装置100、100’、200及び300では、処理部30、130、330が、二酸化炭素等を含む排ガスを処理して、第2燃料ガスを燃料電池10に供給し、又は第2原料ガスを改質器21に供給する。したがって、燃料電池装置100、100’、200及び300では、排出される二酸化炭素が減少され得る。 In a typical fuel cell device, exhaust gas from the fuel cell containing carbon monoxide, carbon dioxide, etc. is combusted in a combustion section, converted into carbon dioxide, and then discharged. On the other hand, in the fuel cell devices 100, 100', 200, and 300 of this embodiment having the above-described configuration, the processing units 30, 130, and 330 process the exhaust gas containing carbon dioxide and the like to convert the second fuel gas into a fuel. The second raw material gas is supplied to the battery 10 or the reformer 21 . Therefore, in the fuel cell devices 100, 100', 200, and 300, the amount of carbon dioxide emitted can be reduced.
 又、本実施形態の燃料電池装置100、100’、200及び300では、燃料電池10が、ガス取得口41から供給される第1原料ガスから生成される第1燃料ガスを用いる。更に、燃料電池10は、処理部30、130、330が生成する第2燃料ガス、又は処理部30、130、330が生成する第2原料ガスから生成される第1燃料ガスも用いる。それゆえ、燃料電池装置100、100’、200及び300では、ガス取得口41から供給される第1原料ガスの供給量が削減され得る。 Furthermore, in the fuel cell devices 100, 100', 200, and 300 of this embodiment, the fuel cell 10 uses the first fuel gas generated from the first source gas supplied from the gas acquisition port 41. Furthermore, the fuel cell 10 also uses the second fuel gas generated by the processing units 30, 130, 330, or the first fuel gas generated from the second source gas generated by the processing units 30, 130, 330. Therefore, in the fuel cell devices 100, 100', 200, and 300, the amount of first source gas supplied from the gas acquisition port 41 can be reduced.
 また、本実施形態の燃料電池装置100’において、処理部130が燃料電池10の近傍に配置される。処理部130が排ガスを処理して第2燃料ガス又は第2原料ガスを供給する反応は、吸熱反応である。処理部130を燃料電池10の近傍に配置することにより、燃料電池10が発する熱が、処理部130に与えられ、処理部130の吸熱反応が促進され得る。 Furthermore, in the fuel cell device 100' of this embodiment, the processing section 130 is arranged near the fuel cell 10. The reaction in which the processing unit 130 processes the exhaust gas and supplies the second fuel gas or the second raw material gas is an endothermic reaction. By arranging the processing section 130 near the fuel cell 10, the heat generated by the fuel cell 10 is applied to the processing section 130, and the endothermic reaction of the processing section 130 can be promoted.
 本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。 Although the present invention has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various changes and modifications based on the present disclosure. Therefore, it should be noted that these variations and modifications are included within the scope of the present invention.
 100,100’,200,300 燃料電池装置
 10 燃料電池
 20,220 燃料ガス供給ライン
 21,221 改質器
 30,130,330 処理部
 31 分離部
 132,332 反応器
 41 ガス取得口
 42 水取得口
 50 燃焼部
 
100,100',200,300 Fuel cell device 10 Fuel cell 20,220 Fuel gas supply line 21,221 Reformer 30,130,330 Processing section 31 Separation section 132,332 Reactor 41 Gas acquisition port 42 Water acquisition port 50 Combustion part

Claims (11)

  1.  燃料ガスを用いて発電する燃料電池と、
     前記燃料ガスとなる第1燃料ガスを原料ガスから改質する改質器を含み、下流側で前記燃料電池に接続され、上流側から前記原料ガスとなる第1原料ガスが供給される燃料ガス供給ラインと、
     上流側が前記燃料電池に接続され、下流側が前記燃料ガス供給ラインに接続され、前記燃料電池から排出される排ガスを処理し前記燃料電池が用いる燃料ガスとなる第2燃料ガス又は前記改質器が前記第1燃料ガスに改質する原料ガスとなる第2原料ガスの少なくとも一方を含む排気由来ガスを前記燃料ガス供給ラインに供給する処理部と、を備える
    燃料電池装置。
    A fuel cell that generates electricity using fuel gas,
    A fuel gas that includes a reformer for reforming a first fuel gas that becomes the fuel gas from a raw material gas, is connected to the fuel cell on the downstream side, and is supplied with the first raw material gas that becomes the raw material gas from the upstream side. supply line,
    A second fuel gas or the reformer is connected on the upstream side to the fuel cell and connected on the downstream side to the fuel gas supply line, and processes the exhaust gas discharged from the fuel cell to become the fuel gas used by the fuel cell. A fuel cell device comprising: a processing unit that supplies exhaust-derived gas containing at least one of a second raw material gas that becomes a raw material gas to be reformed into the first fuel gas to the fuel gas supply line.
  2.  請求項1に記載の燃料電池装置において、
     前記燃料ガス供給ラインの前記上流側から供給される前記第1原料ガスと、前記排気由来ガスとで成分が異なる、
    燃料電池装置。
    The fuel cell device according to claim 1,
    The first raw material gas supplied from the upstream side of the fuel gas supply line and the exhaust-derived gas have different components;
    Fuel cell device.
  3.  請求項1又は2に記載の燃料電池装置において、
     前記排ガスと、前記排気由来ガスとで成分が異なり、又は
     前記排気由来ガスに含まれる特定成分の濃度が、前記排ガスに含まれる前記特定成分の濃度よりも高い、
    燃料電池装置。
    The fuel cell device according to claim 1 or 2,
    The exhaust gas and the exhaust-derived gas have different components, or the concentration of the specific component contained in the exhaust-derived gas is higher than the concentration of the specific component contained in the exhaust gas.
    Fuel cell device.
  4.  請求項3に記載の燃料電池装置において、
     前記処理部は、前記排ガスから前記特定成分を分離する分離部を含む、
    燃料電池装置。
    The fuel cell device according to claim 3,
    The processing section includes a separation section that separates the specific component from the exhaust gas.
    Fuel cell device.
  5.  請求項3又は4に記載の燃料電池装置において、
     前記特定成分は二酸化炭素である、
    燃料電池装置。
    The fuel cell device according to claim 3 or 4,
    the specific component is carbon dioxide;
    Fuel cell device.
  6.  請求項1から5のいずれか一項に記載の燃料電池装置において、
     前記処理部は、前記改質器の上流側に接続される、
    燃料電池装置。
    The fuel cell device according to any one of claims 1 to 5,
    The processing section is connected to the upstream side of the reformer,
    Fuel cell device.
  7.  請求項1から5のいずれか一項に記載の燃料電池装置において、
     前記処理部は、前記改質器の下流側に接続される、
    燃料電池装置。
    The fuel cell device according to any one of claims 1 to 5,
    The processing section is connected to the downstream side of the reformer,
    Fuel cell device.
  8.  請求項1から6のいずれか一項に記載の燃料電池装置において、
     前記処理部は、前記排ガスに含まれるガス成分から、前記第2原料ガスを生成する、燃料電池装置。
    The fuel cell device according to any one of claims 1 to 6,
    In the fuel cell device, the processing section generates the second raw material gas from gas components contained in the exhaust gas.
  9.  請求項1から8のいずれか一項に記載の燃料電池装置において、
     前記処理部が前記燃料電池の近傍に配置される、
    燃料電池装置。
    The fuel cell device according to any one of claims 1 to 8,
    the processing unit is placed near the fuel cell;
    Fuel cell device.
  10.  燃料ガスを用いて発電する燃料電池装置の運転方法であって、
     燃料ガス供給ラインに対して改質器を用いて前記燃料ガスに改質される原料ガスを供給するステップと、
     前記燃料ガスとなる第1燃料ガスを原料ガスから改質するステップと、
     前記燃料電池から排出される排ガスを処理し、前記燃料電池が用いる燃料ガスとなる第2燃料ガス又は前記第1燃料ガスに改質する原料ガスとなる第2原料ガスの少なくとも一方を含む排気由来ガスを更に前記燃料ガス供給ラインに対して供給するステップと、を含む、
    燃料電池装置の運転方法。
    A method of operating a fuel cell device that generates electricity using fuel gas, the method comprising:
    supplying a raw material gas to be reformed into the fuel gas using a reformer to a fuel gas supply line;
    reforming the first fuel gas to become the fuel gas from the raw material gas;
    Exhaust-derived exhaust gas that processes the exhaust gas discharged from the fuel cell and includes at least one of a second fuel gas that becomes the fuel gas used by the fuel cell or a second raw material gas that becomes the raw material gas that is reformed into the first fuel gas. further supplying gas to the fuel gas supply line;
    How to operate a fuel cell device.
  11.  燃料ガスを用いて発電する燃料電池と、
     改質器を用いて前記燃料ガスに改質される原料ガスとなる第1原料ガス又は第2原料ガスが供給される燃料ガス供給ラインと、
     前記燃料ガスとなる第1燃料ガスを前記原料ガスから改質する改質器と、
    を備える燃料電池装置であり、
     前記燃料電池から排出される排ガスを処理して、前記燃料ガス供給ラインに、前記燃料電池が用いる燃料ガスとなる第2燃料ガス又は前記改質器が前記第1燃料ガスに改質する原料ガスとなる第2原料ガスの少なくとも一方を含む排気由来ガスを供給する処理部と、を更に備える、
    燃料電池装置。
     
    A fuel cell that generates electricity using fuel gas,
    a fuel gas supply line to which a first raw material gas or a second raw material gas, which is a raw material gas to be reformed into the fuel gas using a reformer, is supplied;
    a reformer for reforming a first fuel gas, which becomes the fuel gas, from the raw material gas;
    A fuel cell device comprising:
    The exhaust gas discharged from the fuel cell is processed and the fuel gas supply line is supplied with a second fuel gas that becomes the fuel gas used by the fuel cell or a raw material gas that the reformer reforms into the first fuel gas. further comprising a processing unit that supplies an exhaust-derived gas containing at least one of the second raw material gases,
    Fuel cell device.
PCT/JP2023/012926 2022-03-31 2023-03-29 Fuel cell device and method for operating fuel cell device WO2023190737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-061334 2022-03-31
JP2022061334A JP2023151619A (en) 2022-03-31 2022-03-31 fuel cell device

Publications (1)

Publication Number Publication Date
WO2023190737A1 true WO2023190737A1 (en) 2023-10-05

Family

ID=88202645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012926 WO2023190737A1 (en) 2022-03-31 2023-03-29 Fuel cell device and method for operating fuel cell device

Country Status (2)

Country Link
JP (1) JP2023151619A (en)
WO (1) WO2023190737A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128680A (en) * 2005-11-01 2007-05-24 Toyota Central Res & Dev Lab Inc Fuel cell system
JP2016184504A (en) * 2015-03-26 2016-10-20 東京瓦斯株式会社 Fuel battery system
JP2017154120A (en) * 2016-03-04 2017-09-07 東京瓦斯株式会社 Carbon dioxide separation system and fuel cell system
JP2020518948A (en) * 2017-05-02 2020-06-25 テクニシェ ユニバーシタット ミュンヘン Fuel cell system and method of operating a fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128680A (en) * 2005-11-01 2007-05-24 Toyota Central Res & Dev Lab Inc Fuel cell system
JP2016184504A (en) * 2015-03-26 2016-10-20 東京瓦斯株式会社 Fuel battery system
JP2017154120A (en) * 2016-03-04 2017-09-07 東京瓦斯株式会社 Carbon dioxide separation system and fuel cell system
JP2020518948A (en) * 2017-05-02 2020-06-25 テクニシェ ユニバーシタット ミュンヘン Fuel cell system and method of operating a fuel cell system

Also Published As

Publication number Publication date
JP2023151619A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
CN110799452B (en) Method for producing synthesis gas
US6878362B2 (en) Fuel processor apparatus and method based on autothermal cyclic reforming
BR112020001485A2 (en) method for preparing synthesis gas
CA2619714A1 (en) Synthesis gas and carbon dioxide generation method
CA2343740A1 (en) Solid oxide fuel cell which operates with an excess of fuel
JP2000026102A (en) Ceramic membrane type reforming reactor
JP2005506659A (en) Method of purging a fuel cell system with an inert gas made from organic fuel
JP2007254180A (en) Self-sustained lower hydrocarbon direct decomposition process and process system thereof
JP6639578B2 (en) Hydrogen and carbon monoxide production using REP with partial oxidation
EP1020401B1 (en) Reformer, method of reforming, and fuelcell system equipped with the reformer
US20230064109A1 (en) Method and system to produce hydrocarbon feedstocks
WO2023190737A1 (en) Fuel cell device and method for operating fuel cell device
JP3784751B2 (en) Solid oxide fuel cell system
JP2004299939A (en) Fuel reformer, and fuel battery generator
JP2001146405A (en) Apparatus for reforming fuel and method for operating the same
KR100859940B1 (en) Reformer of fuel cell system
JP2008541363A (en) Operation method of fuel cell device and fuel cell device
WO2023180114A1 (en) Process for co-producing ammonia and methanol with reduced carbon
KR20230154545A (en) Fuel cell system for factories
JPS6119073A (en) Molten carbonate type fuel cell system
WO2023203079A1 (en) Fuel process and plant
WO2024056871A1 (en) Autothermal reforming process for production of hydrogen
CN116459748A (en) Fuel reforming device
JP2023515191A (en) Method for producing synthesis gas
JP2008543020A (en) Autothermal reformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780745

Country of ref document: EP

Kind code of ref document: A1