JP2790020B2 - シリコン単結晶中の置換型炭素濃度の測定方法および自動測定装置 - Google Patents

シリコン単結晶中の置換型炭素濃度の測定方法および自動測定装置

Info

Publication number
JP2790020B2
JP2790020B2 JP26564893A JP26564893A JP2790020B2 JP 2790020 B2 JP2790020 B2 JP 2790020B2 JP 26564893 A JP26564893 A JP 26564893A JP 26564893 A JP26564893 A JP 26564893A JP 2790020 B2 JP2790020 B2 JP 2790020B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
difference
carbon
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26564893A
Other languages
English (en)
Other versions
JPH06194310A (ja
Inventor
寛 窪田
正郎 玉塚
豊 北川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26547079&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2790020(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP26564893A priority Critical patent/JP2790020B2/ja
Publication of JPH06194310A publication Critical patent/JPH06194310A/ja
Application granted granted Critical
Publication of JP2790020B2 publication Critical patent/JP2790020B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • G01N2021/3568Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor applied to semiconductors, e.g. Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、FT−IR法による
炭素分析法、さらに詳しくは、リファレンスを用い、F
T−IR法によってシリコン単結晶中の置換型炭素濃度
を測定する方法等に関するものである。
【0002】
【従来の技術】
【0003】シリコン単結晶からなるウェーハ中の炭素
不純物は酸素不純物と共にウェーハの品質を支配する重
要な因子であり、このシリコンウェーハ中の炭素濃度を
測定するために、FT−IR法が広く採用されている。
【0004】図9は、このFT−IR法に用いられるF
T−IR光学系を示している。このFT−IR光学系に
おいては、赤外連続光源1から出た発散光は、アパーチ
ャ2を通ってコリメータ鏡3で平行化され、マイケルソ
ン干渉計4に入射し、ビームスプリッタ5に入る。ビー
ムスプリッタ5に入った赤外光は反射光と透過光に分割
され、このうち反射光は固定鏡6で反射してビームスプ
リッタ5の方へ戻り、透過光は可動鏡7で反射してビー
ムスプリッタ5の方へ戻る。そして、このビームスプリ
ッタ5で両光は合わさり干渉し、この干渉光は凹面鏡8
で集光され、サンプル9を透過し、アパーチャ10を通
って検出器11に入る。この検出器11によって検出さ
れたインターフェログラムはデジタル変換された後フー
リエ変換され、サンプル9の赤外吸光度スペクトルが得
られる。同様な方法によってリファレンスの赤外吸光度
スペクトルを求める。このようにして得られたCZ法に
よるシリコン単結晶のサンプル(p型10Ωcm)、お
よびFZ法によるシリコン単結晶のリファレンス(p型
2000Ωcm)の赤外吸光度スペクトルの一例が図1
0および図11にそれぞれ示されている。
【0005】なお、このサンプルおよびリファレンスの
測定の順序は前記とは逆の場合が多く、通常は、リファ
レンスの測定を予め行っておき、その赤外吸光度スペク
トルデータを保存しておくことが行われている。
【0006】このようにしてシリコン単結晶ウェーハ中
の置換型炭素に関し、サンプルおよびリファレンスの両
赤外吸光度スペクトルが得られたならば、差吸光度スペ
クトルを求めるために差係数fを決定し、リファレンス
の赤外吸光度スペクトルに差係数fを乗じたものをサン
プルの赤外吸光度スペクトルから減じることによって、
差吸光度スペクトルを求める。図10および図11の両
赤外吸光度スペクトルから得られた差吸光度スペクトル
の一例が図12に示されている。
【0007】以上のようにして差吸光度スペクトルが得
られたなら、この差吸光度スペクトルにおいて、例えば
595cm-1から615cm-1の間に引いたベースライ
ンと、605cm-1に現れる置換型炭素Csの局在振動
吸収ピークとの距離つまりピーク高さから、置換型炭素
濃度の定量を行う。図12に示す差吸光度スペクトルか
ら置換型炭素Csとの濃度を定量すれば、その値は0.
5ppmaである。なお、この場合の置換型炭素濃度の
検出下限は、ASTM designation:F123-81の規格に
従った場合、0.05ppma程度である。
【0008】
【発明が解決しようとする課題】ところで、半導体デバ
イス作成の素材となるシリコン単結晶ウェーハの製造方
法には、大きく分けて2つの方法がある。1つは、石英
ルツボ内に原料ポリシリコンを入れ、このポリシリコン
をカーボンヒータで溶融し、この融液表面に単結晶シリ
コンである種結晶を浸し、この種結晶を回転させつつ引
き上げることにより、シリコン単結晶を成長させるCZ
法(チョクラルスキー法)であり、他は、原料ポリシリ
コン棒の一部を溶融コイルによって溶融し、このゾーン
を移動させることによって、シリコン単結晶を成長させ
るFZ法(フローティングゾーン法)である。
【0009】この両方法によって製造したシリコン単結
晶を比べると、CZ法シリコン単結晶は炭素不純物およ
び酸素不純物を比較的多く含有している。この炭素不純
物は、原料ポリシリコンの溶融のためのカーボンヒータ
等から、酸素不純物は、原料ポリシリコンの融液を保持
する石英ルツボから混入するものとみられる。これに対
して、FZ法シリコン単結晶は炭素不純物および酸素不
純物をほとんど含有していないとされていた。
【0010】したがって従来法では、CZ法シリコン単
結晶における炭素濃度や酸素濃度を測定するためのリフ
ァレンスとして、FZ法シリコン単結晶が有効であると
考えられてきた。
【0011】しかし、FZ法シリコン単結晶をリファレ
ンスとして用いる場合には、次のような問題点のあるこ
とが本発明者等の研究によって明らかになった。
【0012】すなわち、シリコン単結晶中の置換型炭素
Csの局在振動吸収ピークは605cm-1に現れるの
で、図13に示すように、シリコンのフォノンの強い吸
収ピークと重なり合ってしまう。また、このシリコンの
フォノン吸収ピークの形状を見ると、図13のように抵
抗率が3Ωcmの場合と20Ωcmの場合では、ドーパ
ントによるフリーキャリア吸収の影響を受け、その形状
が変わってしまう。
【0013】したがって、サンプルおよびリファレンス
の両赤外吸光度スペクトルから、置換型炭素Csの局在
振動吸収ピークを差吸光度スペクトルとして正確に抽出
するためには、サンプルおよびリファレンス間の置換型
炭素Csの局在振動ピーク以外の違いによる影響、特に
シリコンの強いフォノンによる吸収の影響、およびフリ
ーキャリアによる吸収の影響を極力低減することが必要
である。そのためには、炭素の吸収ピークと重なり合
う、シリコンのフォノン吸収およびドーパントのフリー
キャリア吸収を、ほぼ同程度にしたリファレンスを用い
ることが必要となる。
【0014】しかしながら、サンプルであるCZ法シリ
コン単結晶は、殆んどの場合、その抵抗率は20Ωcm
以下であるのに対して、リファレンス用のFZ法シリコ
ン単結晶は、通常ドーピング剤を入れずに製造するた
め、抵抗率は1000Ωcm以上である。したがって、
サンプルとリファレンスとでは、ドーパントのフリーキ
ャリア吸収に大きな違いが生じてしまう。
【0015】その上、FZ法シリコン単結晶はCZ法シ
リコン単結晶に比べて、前述の説明のように、酸素不純
物の濃度が非常に小さい。そのためサンプルおよびリフ
ァレンス間で、シリコンのフォノン吸収ピークの形状が
さらに違ってしまうことになる。その結果として、0.
1ppma以下の低炭素濃度になると、求められた差吸
光度スペクトルの炭素吸収ピークが変形し、置換型炭素
濃度を正確に求めることが困難であった。
【0016】また、測定精度に関係する、従来の差係数
の決定方法にも問題があった。
【0017】すなわち、従来市販されているFT−IR
法炭素濃度定量装置の場合、差係数fの算出は、ある特
定波数κにおいてサンプルの赤外吸光度(As(κ))
と、リファレンスの赤外吸光度(Ar(κ))の単純な
比を用いて行うか([数1])、ある連続した波数領域
において、その領域におけるサンプルの赤外吸光度(A
s(κ))、およびリファレンスの赤外吸光度(Ar
(κ))の積分値を比較して行っている([数2])。
但し、[数2]の場合、実用上は波数κはある分解能で
測定されるため、連続値ではなく、不連続値κn :n=
1,2,3,・・・)になるため[数3]のような式と
なる。
【0018】
【数1】
【数2】
【数3】
【0019】しかし、上記[数1]、[数2]または
[数3]による方法で差係数fを求め、その差係数fに
よって差吸光度スペクトルを求めた場合、装置自体の経
時変化、サンプルとリファレンスの状態の違い(厚さや
抵抗率の違い等)の影響を最小限に抑えることができ
ず、その影響が残っていた。そのため、測定毎の繰り返
し精度が悪くなったり、機種間の差が大きくなるなどの
問題が生じていた。しかしながら、今日の高純度シリコ
ン単結晶ウェーハにおいては、デバイスの高集積化に伴
う品質要求の厳格化と、それに伴うデバイスプロセスの
高純度化によって、要求される炭素不純物の濃度は、
0.05ppma以下のレベルにまで達してきており、
測定に求められる精度も厳しくなってきている。
【0020】本発明は、かかる点に鑑みなされたもの
で、シリコン単結晶中の置換型炭素濃度を正確に測るこ
とができる方法および自動測定装置を提供することを目
的としている。
【0021】
【課題を解決するための手段】請求項1記載の測定方法
は、FT−IR法を用いて、シリコン単結晶サンプル中
の置換型炭素濃度を測定するにあたり、リファレンスと
して、サンプルと同一の製造法で製造され、フリーキャ
リア吸収が同程度で、かつ実質的に無炭素のシリコン単
結晶を用いるようにしたものである。
【0022】つまり、請求項1記載の測定方法は、サン
プルの赤外吸光度スペクトルを測定し、さらに、このサ
ンプルと同一の製造法で製造され、フリーキャリア吸収
が同程度で、かつ実質的に無炭素のリファレンスの赤外
吸光度スペクトルを測定し、両赤外吸光度スペクトルか
ら前記算出式([数1]、[数2]または[数3])に
て得られる差吸光度スペクトルを求める。そして、この
差吸光度スペクトルにおける置換型炭素の局在振動吸収
ピークとベースラインとの距離から、サンプル中の置換
型炭素濃度を定量するようにしたものである。
【0023】これを具体例で示すと、従来法では、抵抗
率10Ωcm、炭素濃度約0.05ppmaのp型CZ
法シリコン単結晶をサンプルとし、抵抗率2000Ωc
mのp型FZ法シリコン単結晶をリファレンスとして、
前記算出式([数1]、[数2]または[数3])を用
いて、差吸光度スペクトルを求めている。この従来法に
よって求めた差吸光度スペクトルの一例が図1に示され
ている。
【0024】これに対して、本発明の請求項1では、図
1におけるのと同一のサンプルについて、抵抗率20Ω
cmで実質的に無炭素のp型CZ法シリコン単結晶をリ
ファレンスとし、前記算出式([数1]、[数2]また
は[数3])を用いて、差吸光度スペクトルを求めてい
る。そして、この発明によって求めた差吸光度スペクト
ルの一例が図2に示されている。この図2によれば、置
換型炭素Csの局在振動吸収ピークが明瞭に観察できる
ことが判る。
【0025】請求項2記載の測定方法は、請求項1記載
の差吸光度スペクトルを求めるにあたり、[数1]、
[数2]または[数3]の算出式を用いずに、サンプル
およびリファレンスの両赤外吸光度スペクトルから、置
換型炭素の局在振動吸収ピーク前後の波数領域で、差吸
光度スペクトルの波数と赤外吸光度との関係式が、1次
式あるいは2次式に最も近くなるように最小自乗法にて
差係数を算出し、その差係数を用いて差吸光度スペクト
ルを求めるようにしたものである。
【0026】前述のように差吸光度スペクトルは、リフ
ァレンスの赤外吸光度スペクトルに差係数fを乗じたも
のをサンプルの赤外吸光度スペクトルから減じることに
より算出される。したがって、差係数fの選択の仕方に
よって差吸光度スペクトルの形状は大きく変化する。図
3には差係数fを変化させた場合の差吸光度スペクトル
の形状変化の一例が示されている。ここでは、サンプル
として抵抗率10Ωcm、炭素濃度約0.05ppma
のp型CZ法シリコン単結晶を、リファレンスとして抵
抗率20Ωcmで実質的に無炭素のp型CZ法シリコン
単結晶を用いている。そして、差係数fをf=0.97
5,f=0.985,f=0.995,f=1.00
5,f=1.015,f=1.025と変化させてい
る。この場合、炭素濃度を定量するのに最も適した差係
数fは、置換型炭素Csの局在振動吸収ピークの高波数
側、および低波数側の曲線が最もフラットになったf=
0.955の場合である。しかし、大量のサンプルを測
定する目的の市販のライン用測定器の場合、差係数fの
算出を前記算出式([数1]、[数2]または[数
3])によっているため、f=0.995のような最適
の差係数fを算出することができない。それでも、置換
型炭素濃度が0.1ppmaを超える場合には、局在振
動吸収ピークが大きいため定量値は比較的安定していた
が、0.1ppma以下の低炭素濃度サンプルの場合に
は大きな定量誤差が生じる原因となる。そこで、本発明
者は最適な差係数f=0.995を算出する方法とし
て、請求項2記載の方法を見い出した。
【0027】すなわち、従来は差係数fを[数1]、
[数2]または[数3]の算出式によって算出していた
が、請求項2記載の方法では[数4]の算出式によって
差係数fを算出するようにしている。その結果、差吸光
度スペクトルは置換型炭素Csの局在振動吸収ピーク前
後の波数領域でほぼフラットになる。但し、[数4]の
場合、実用上、波数κはある分解能で測定されるために
連続値ではなく、不連続値κn :n=1,2,3,・・
・)になるため[数5]のような式となる。
【0028】
【数4】
【数5】
【0029】[数5]の算出式を用いて差係数fを算出
するには、置換型炭素Csの局在振動吸収ピークの低波
数側の領域としてκ=κl1からκ=κh1の波数領域を、
高波数側の領域としてκ=κl2からκ=κh2の波数領域
を設定し、この2つの領域において差吸光度スペクトル
が波数κに対して1次の直線式に最も近くなるように
[数5]の算出式で差係数fを算出する。具体的には、
低い波数領域として550〜595cm-1(つまりκl1
=550,κh1=595)、高い波数領域として615
〜660cm-1(つまりκl2=615,κh2=660)
を用いている。
【0030】なお、図3では、サンプルと導電型が同じ
で、抵抗率もほぼ同程度のリファレンスを用いたが、サ
ンプルの抵抗率がさらに低くなってくると、差吸光度ス
ペクトルにおけるベースラインがある曲率をもった曲線
となる。
【0031】このような場合については、[数4]また
は[数5]のように1次式で近似する方法ではなく、
[数6]のように2次式で近似する方法を用いれば適切
な差係数fを計算することができる。但し、[数6]の
場合、実用上、波数κはある分解能で測定されるため、
連続値ではなく、不連続値κn :n=1,2,3,・・
・)になるため[数7]のような式となる。
【0032】
【数6】
【数7】
【0033】図3との比較のため、同一サンプルおよび
リファレンスについて[数1]および[数2]の方法に
よって求めた差吸光度スペクトルを図4に示した。この
図4において破線は[数1]によるもの、実線は[数
2]によるものを示している。この図4を見るに、どち
らによる場合も置換型炭素Csの局在振動吸収ピークが
現れていないことが判る。
【0034】請求項3記載の測定装置は、FT−IR法
を用いて得られたサンプルおよびリファレンスの両赤外
吸光度スペクトルから、赤外吸光度の差吸光度スペクト
ルを求め、この差吸光度スペクトルから、シリコン単結
晶中の置換型炭素濃度の定量を行うように構成された測
定装置である。この測定装置は、赤外吸光度スペクトル
を記録保持可能な記憶部を備え、この記憶部に、フリー
キャリア吸収が異なる実質的に無炭素である複数のリフ
ァレンスの赤外吸光度スペクトルデータを記録保持させ
ておき、その中からサンプルとフリーキャリア吸収が同
程度のリファレンスの赤外吸光度スペクトルデータを選
択することができる。さらに選択したリファレンスの赤
外吸光度スペクトルデータとサンプルの赤外吸光度スペ
クトルデータとから、請求項1または請求項2の方法に
よって、置換型炭素濃度の定量を行うように構成されて
いる。さらに、本測定装置においては、FT−IR法を
用いて得られたCZ法シリコン単結晶(サンプル)およ
びリファレンスの両赤外吸光度スペクトルから差吸光度
スペクトルを求め、この差吸光度スペクトルから置換型
炭素濃度の定量を行うという一連の作業が自動化されて
いる。
【0035】
【作用】上記した手段によれば、リファレンスとして、
サンプルと同一の製造法によって製造され、フリーキャ
リア吸収が同程度で、かつ無炭素のシリコン単結晶を用
いているので、置換型炭素Csの局在振動吸収ピークを
抽出するのにサンプルおよびリファレンス間の置換型炭
素Csの局在振動吸収ピーク以外をほぼ同じ程度にする
ことができる。
【0036】これを図1(FZ法シリコン単結晶をリフ
ァレンスとしたもの)と、図2(CZ法シリコン単結晶
をリファレンスとしたもの)とを用いて説明すれば、図
2では置換型炭素Csの局在振動吸収ピーク(斜線部)
が明瞭に現れているのに対し、図1では局在振動吸収ピ
ークが現れていないのが判る。その原因としては、請求
項1記載の方法では、リファレンスとしてサンプルと同
じp型シリコン単結晶を用い、しかも、抵抗率差は、F
Z法シリコン単結晶を用いる場合に比べて、差があまり
ないことから、フリーキャリア吸収が同程度となり、さ
らに、リファレンスは実質的に無炭素なので、サンプル
中の置換型炭素Csの局在振動吸収ピークが強調される
ことがあげられる。このようにリファレンスとしてフリ
ーキャリア吸収が同程度で、しかも実質的に無炭素のC
Z法シリコン単結晶を用いることによって、明瞭なピー
クが得られることが判る。
【0037】また、請求項2記載の測定方法によれば、
炭素濃度が0.1ppma以下の低濃度であっても、サ
ンプルとリファレンスとの状態(厚さや抵抗率)の違い
による影響を低減化することができる。
【0038】すなわち、[数1]または[数2]の方法
で市販のFT−IR法炭素濃度定量の定量ソフトにて差
吸光度スペクトルを算出した結果(図4)では、[数
1]による方法(破線データ)、[数2]による方法
(実線データ)ともシリコン吸収ピークの影響が残り、
それに置換型炭素Csの局在振動吸収ピークが埋没して
しまっている。これに対して、本発明者等が見い出した
差係数fの算出方法([数5]では、同一サンプルおよ
びリファレンスを用いて差吸光度スペクトルを求めた場
合に、置換型炭素Csの局在振動吸収ピークを正確に抽
出することができ、ひいては炭素濃度を正確に求めるこ
とが可能となることが判る(図5)。
【0039】また、請求項3記載の測定装置によれば、
フリーキャリア吸収の違う複数の無炭素シリコン単結晶
リファレンスの赤外吸光度スペクトルから、最適なリフ
ァレンス赤外吸光度スペクトルを選択し計算することが
できるため、一般的に使用されるラインの測定装置によ
っても、精度に高い測定方法を適用することができる。
【0040】
【実施例】以下、本発明に係るシリコン単結晶中の置換
型炭素濃度の測定方法および測定装置の実施例を説明す
る。
【0041】この実施例に使用される測定装置は、FT
−IR法を用いて得られたサンプルおよびリファレンス
の両赤外吸光度スペクトルから差吸光度スペクトルを求
め、この差吸光度スペクトルから置換型炭素濃度の定量
を行うように構成されたものであり、赤外吸光度スペク
トルを記録保持可能な記憶部を備え、この記憶部には、
各種リファレンスの赤外吸光度スペクトルデータが記録
保持されている。
【0042】シリコン単結晶の製造方法としての主流を
なす、CZ法によるシリコン単結晶ウェーハがサンプル
である場合、リファレンスには炭素不純物が極めて少な
いCZ法シリコン単結晶が用いられる。CZ法シリコン
単結晶は石英るつぼ内で原料ポリシリコンをカーボンヒ
ータにて溶融し、そのシリコン融液に種結晶を浸漬し、
種結晶を引き上げることによって製造されるものである
ため、原料ポリシリコンおよびカーボンヒータ起因の炭
素が取り込まれることになる。この場合の炭素の取込み
量は偏析によってシリコン棒のテールに向けて徐々に多
くなってゆく。したがって、炭素濃度が微少な厳選され
た原料ポリシリコンを用いて引き上げたシリコン単結晶
棒の種結晶に近い部分をスライスして得られたシリコン
単結晶を用いれば、実質的に無炭素に近いCZ法シリコ
ン単結晶のリファレンスが得られる。前記記憶部には、
このようにして得られた無炭素CZ法シリコン単結晶で
あって、フリーキャリア吸収がそれぞれ異なるものの赤
外吸光度スペクトルデータが予め記録保持されている。
【0043】そして、このような準備の後に、各種サン
プルの赤外吸光度スペクトルを同法によって求め、前記
記憶部内のデータからサンプルとフリーキャリア吸収が
同程度のリファレンスのデータを選択し、そのデータと
サンプルの赤外吸光度スペクトルデータとから差吸光度
スペクトルを求める。
【0044】この差吸光度スペクトルを求めるにあたっ
ては、上記両データから、置換型炭素Csの局在振動吸
収ピーク前後の波数領域で、差吸光度スペクトルにおけ
る波数と吸光度との関係式が1次式あるいは2次式に最
も近くなるように最小自乗法にて差係数を算出し、その
差係数により差吸光度スペクトルを求める。
【0045】具体的には、図6に示すように、置換型炭
素Csの局在振動吸収ピークは605cm-1に現れるの
で、Csピークの波数領域よりも低い領域として波数範
囲550〜595cm-1を、高い波数領域として615
〜660cm-1を設定する。例えば、[数4]において
κl1=550cm-1,κl1=595cm-1,κl2=61
5cm-1,κh2=660cm-1とする。次に、サンプル
として抵抗率10Ωcm、炭素濃度約0.05ppma
のp型CZ法シリコン単結晶を、リファレンスとして抵
抗率20Ωcmの無炭素のp型CZ法シリコン単結晶を
用い、その両シリコン単結晶の赤外吸光度スペクトルを
求める。このサンプルおよびリファレンスの赤外吸光度
スペクトルが図7に示されている。
【0046】以上のデータから[数5]を用いて差係数
fを算出するとf=0.9764途なり、この差係数を
用いて差吸光度スペクトルを算出する。これによって得
られた差吸光度スペクトルが図8に示されている。図8
から595cm-1と615cm-1をベースラインとして
炭素濃度をASTM designation:F123-81 に基づいて
定量すると[Cs]=0.09ppmaとなった。
【0047】以上、本発明の実施例の測定方法について
説明したが、本発明は、かかる実施例に限定されるもの
ではなく、その要旨を逸脱しない範囲で種々の変形が可
能である。
【0048】例えば、前記実施例では、p型のCZ法シ
リコン単結晶の炭素濃度の測定について述べたが、n型
のCZ法シリコン単結晶の炭素濃度の測定もできること
は勿論である。ただし、その場合には、リファレンスと
してサンプルと同程度のフリーキャリア吸収のCZ法シ
リコン単結晶を用いることが必要である。また、CZ法
シリコン単結晶のみならず、FZ法シリコン単結晶に対
しても適用できる。但し、その場合には、リファレンス
として実質的に無炭素なFZ法シリコン単結晶を用いれ
ば良い。
【0049】
【発明の効果】本発明によれば、FT−IR法を用い
て、シリコン単結晶中の置換型炭素濃度を測定するにあ
たり、シリコン単結晶サンプルから得られた赤外吸光度
スペクトルと、前記サンプルと同一の製造法で製造され
たフリーキャリア吸収が同程度で、かつ実質的に無炭素
のシリコン単結晶リファレンスから得られた赤外吸光度
スペクトルとから差係数を算出し、この差係数を用いて
前記両赤外吸光度スペクトルから差吸光度スペクトルを
求めて、この差吸光度スペクトルにおける置換型炭素の
局在振動吸収ピークとベースラインとの距離から、サン
プル中の置換型炭素濃度を定量するようにしたので、従
来法に比べて、置換型炭素の局在振動吸収ピークを正確
に抽出することができ、炭素濃度を正確に求めることが
可能となる。また、測定における繰返し精度ひいては装
置間の差を低減することができる。具体的には、本発明
者らが所有する装置数台を用いて行った試験によれば、
繰返し精度を3倍に、装置間差を1/3にすることがで
きた。
【図面の簡単な説明】
【図1】従来法のCZ法シリコン単結晶サンプルのFZ
法シリコン単結晶リファレンスによる差吸光度スペクト
ルを表す図である。
【図2】本発明方法のCZ法シリコン単結晶サンプルの
CZ法シリコン単結晶リファレンスによる差吸光度スペ
クトルを表す図である。
【図3】差係数を変化させた場合の差吸光度スペクトル
の形状変化を表す図である。
【図4】市販のFT−IRソフトにより算出した場合の
差吸光度スペクトルを表す図である。
【図5】本発明方法により算出した場合の差吸光度スペ
クトルを表す図である。
【図6】本発明方法による差吸光度スペクトルからの炭
素濃度の定量例を説明する図である。
【図7】本発明方法の実施例における、サンプルおよび
リファレンスの赤外吸光度スペクトルを表す図である。
【図8】本発明の実施例における、差吸光度スペクトル
の算出例を示す図である。
【図9】FT−IR光学系を表す図である。
【図10】CZ法シリコン単結晶の赤外吸光度スペクト
ルを表す図である。
【図11】FZ法シリコン単結晶の赤外吸光度スペクト
ルを表す図である。
【図12】従来法のCZ法シリコン単結晶サンプルおよ
びFZ法シリコン単結晶リファレンスから求めた差吸光
度スペクトルを表す図である。
【図13】従来法における、抵抗率の異なるCZ法シリ
コン単結晶サンプルの赤外吸光度スペクトルを表す図で
ある。
【符号の説明】
4 マイケルソン干渉計 9 サンプル(またはリファレンス)
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−111739(JP,A) 特開 平5−243353(JP,A) 特開 平4−109146(JP,A) 特開 平4−109145(JP,A) 特開 平4−108693(JP,A) 特開 昭63−147340(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/61

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】 フーリエ変換赤外分光測定法(以下、F
    T−IR法と称す)を用いて、シリコン単結晶中の置換
    型炭素濃度を測定するにあたり、被測定物(以下、サン
    プルと称す)であるシリコン単結晶から得られた赤外吸
    光度スペクトルと、前記サンプルと同一の製造法で製造
    された、フリーキャリア吸収が同程度で、かつ実質的に
    無炭素のシリコン単結晶(以下、リファレンスと称す)
    から得られた赤外吸光度スペクトルとから差係数を算出
    し、この差係数を用いて前記両赤外吸光度スペクトルか
    ら差吸光度スペクトルを求めて、この差吸光度スペクト
    ルにおける置換型炭素の局在振動吸収ピークとベースラ
    インとの距離から、サンプル中の置換型炭素濃度を定量
    するようにしたことを特徴とする、シリコン単結晶中の
    置換型炭素濃度の測定方法。
  2. 【請求項2】 前記差吸光度スペクトルを求めるにあた
    り、サンプルおよびリファレンスの両赤外吸光度スペク
    トルから、置換型炭素の局在振動吸収ピーク前後の波数
    領域で、波数と赤外吸光度との関係式が1次式あるいは
    2次式に最も近くなるように最小自乗法にて差係数を算
    出し、その差係数により差吸光度スペクトルを求めるよ
    うにしたことを特徴とする、請求項1記載のシリコン単
    結晶中の置換型炭素濃度の測定方法。
  3. 【請求項3】 FT−IR法を用いて得られたサンプル
    およびリファレンスの両赤外吸光度スペクトルから、赤
    外吸光度の差吸光度スペクトルを求め、この差吸光度ス
    ペクトルから、シリコン単結晶中の置換型炭素濃度の定
    量を行うように構成された測定装置において、赤外吸光
    度スペクトルを記録保持可能な記憶部を備え、この記憶
    部に、フリーキャリア吸収が異なる実質的に無炭素であ
    る複数のリファレンスの赤外吸光度スペクトルデータを
    記録保持させておき、その中からサンプルとフリーキャ
    リア吸収が同程度のリファレンスの赤外吸光度スペクト
    ルデータを選択し、そのデータとサンプルの赤外吸光度
    スペクトルデータとから、請求項1または請求項2記載
    の方法によって、置換型炭素濃度の定量を行うように構
    成されていることを特徴とする、シリコン単結晶中の置
    換型炭素濃度の自動測定装置。
JP26564893A 1992-09-30 1993-09-29 シリコン単結晶中の置換型炭素濃度の測定方法および自動測定装置 Expired - Fee Related JP2790020B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26564893A JP2790020B2 (ja) 1992-09-30 1993-09-29 シリコン単結晶中の置換型炭素濃度の測定方法および自動測定装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-285113 1992-09-30
JP28511392 1992-09-30
JP26564893A JP2790020B2 (ja) 1992-09-30 1993-09-29 シリコン単結晶中の置換型炭素濃度の測定方法および自動測定装置

Publications (2)

Publication Number Publication Date
JPH06194310A JPH06194310A (ja) 1994-07-15
JP2790020B2 true JP2790020B2 (ja) 1998-08-27

Family

ID=26547079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26564893A Expired - Fee Related JP2790020B2 (ja) 1992-09-30 1993-09-29 シリコン単結晶中の置換型炭素濃度の測定方法および自動測定装置

Country Status (1)

Country Link
JP (1) JP2790020B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345785B2 (ja) 2008-01-08 2013-11-20 Sumco Techxiv株式会社 分光吸収測定方法及び分光吸収測定装置
JP5524894B2 (ja) 2011-04-04 2014-06-18 信越化学工業株式会社 多結晶シリコン中の炭素濃度測定方法
JP6098891B2 (ja) * 2013-11-28 2017-03-22 信越半導体株式会社 シリコン単結晶の炭素濃度測定方法
JP6300104B2 (ja) * 2014-12-02 2018-03-28 信越半導体株式会社 シリコン結晶の炭素濃度測定方法、シリコン結晶の炭素関連準位測定方法
JP6662330B2 (ja) 2017-03-06 2020-03-11 信越半導体株式会社 単結晶シリコン中の炭素濃度測定方法
KR102085612B1 (ko) * 2017-12-22 2020-03-06 주식회사 포스코 적외선 분광기를 이용한 실리콘 환원제 분석 방법
JP6950639B2 (ja) 2018-07-20 2021-10-13 株式会社Sumco シリコン単結晶の炭素濃度測定方法及び装置
JP7031555B2 (ja) * 2018-10-19 2022-03-08 株式会社Sumco シリコン試料の炭素濃度評価方法およびこの方法に使用される評価装置、シリコンウェーハ製造工程の評価方法、シリコンウェーハの製造方法ならびにシリコン単結晶インゴットの製造方法

Also Published As

Publication number Publication date
JPH06194310A (ja) 1994-07-15

Similar Documents

Publication Publication Date Title
EP0250707B1 (en) Method and apparatus for measuring by infrared absorption the concentration of microcrystal defects in a silicon wafer used in the manufacture of a semiconductor element
US20050211901A1 (en) Method for determining the substitutional carbon content in monocrystalline or polycrystalline silicon
US5066599A (en) Silicon crystal oxygen evaluation method using fourier transform infrared spectroscopy (ftir) and semiconductor device fabrication method using the same
JP2790020B2 (ja) シリコン単結晶中の置換型炭素濃度の測定方法および自動測定装置
Tanner et al. Advanced X-ray scattering techniques for the characterization of semiconducting materials
EP0803725A1 (en) Method and apparatus for determination of interstitial oxygen concentration in silicon single crystal
US5444246A (en) Determining carbon concentration in silicon single crystal by FT-IR
US5598452A (en) Method of evaluating a silicon single crystal
JPS6161697B2 (ja)
US20020113971A1 (en) Method for measuring characteristics, especially the temperature of a multi-layer material while the layers are being built up
Vineis et al. In situ monitoring of GaSb, GaInAsSb, and AlGaAsSb
US5099122A (en) Method for evaluation of transition region of silicon epitaxial wafer
Alt et al. Method to determine carbon in silicon by infrared absorption spectroscopy
Gaini et al. Large diameter germanium single crystals for infrared optics
US5757003A (en) Method to determine the extent of oxygen precipitate in silicon
Sozontov et al. Photoemission in Bragg diffraction of X‐rays by bicrystals
Stephenson Step‐Scanning WSR Section Topography for Indirect (Point Defect) Characterization of Dislocation‐Free Si Wafers
JPH05312721A (ja) 酸素析出したシリコン単結晶中の格子間酸素濃度測定方法
Krishnan et al. Characterization Of Semiconductor Silicon Using FT-IR Spectroscopy.
Savin et al. Measuring oxygen and bulk microdefects in silicon
Westphal et al. Application of advanced sensors to the liquid phase epitaxy (LPE) growth of MCT
JP3003508B2 (ja) GaP単結晶中のSi濃度簡易測定法
SU1622803A1 (ru) Способ определени степени нарушенности поверхности или объема монокристаллических пластин
JPH10135293A (ja) 半導体結晶評価方法
JPH09260450A (ja) シリコン結晶炭素濃度測定法及びそのためのカーボンフリー標準試料

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080612

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100612

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100612

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110612

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110612

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees