JP2786568B2 - Structural members and their manufacturing methods - Google Patents

Structural members and their manufacturing methods

Info

Publication number
JP2786568B2
JP2786568B2 JP26315892A JP26315892A JP2786568B2 JP 2786568 B2 JP2786568 B2 JP 2786568B2 JP 26315892 A JP26315892 A JP 26315892A JP 26315892 A JP26315892 A JP 26315892A JP 2786568 B2 JP2786568 B2 JP 2786568B2
Authority
JP
Japan
Prior art keywords
less
temperature
treatment
solution treatment
hour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26315892A
Other languages
Japanese (ja)
Other versions
JPH05287461A (en
Inventor
明次 藤田
隆之 河野
辰喜 松本
真助 大場
誠 中村
英利 末岡
文和 坂井
学 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to DK94908809T priority Critical patent/DK0625586T3/en
Priority to EP94908809A priority patent/EP0625586B1/en
Priority to DE69317265T priority patent/DE69317265T2/en
Priority to KR1019940701465A priority patent/KR0149740B1/en
Priority to PCT/JP1993/001137 priority patent/WO1994005824A1/en
Priority to US08/232,191 priority patent/US5599408A/en
Publication of JPH05287461A publication Critical patent/JPH05287461A/en
Priority to FI942014A priority patent/FI103585B1/en
Application granted granted Critical
Publication of JP2786568B2 publication Critical patent/JP2786568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、特に高速客艇の水中
翼、洋上石油関連設備、その他高強度、高靱性ならびに
高耐食性が必要でかつ溶接施工を伴う構造部材の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a hydrofoil of a high-speed passenger boat, offshore oil-related equipment, and other structural members which require high strength, high toughness and high corrosion resistance and require welding.

【0002】[0002]

【従来の技術】従来、本上記構造部材の熱処理は焼入れ
焼もどし処理を施するのが普通であり、また溶接を施し
た後には再溶体化処理及び時効処理を施している。
2. Description of the Related Art Conventionally, the heat treatment of the above-mentioned structural member is usually performed by quenching and tempering, and after welding, a re-solution treatment and an aging treatment are performed.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の再溶体
化処理を施すと熱処理中に溶接構造部材は残留応力や自
重によって変形を起こしてしまうため、それを防ぐため
にはかなり大掛かりでしかも強固な拘束が必要である。
また、溶接を含まない構造部材であっても本発明の熱処
理法を与えたものに比べて遙に靱性が劣るものとなって
いる。
However, when the above-mentioned re-solution treatment is performed, the welded structural member is deformed by the residual stress or its own weight during the heat treatment. Restraint is required.
Further, even a structural member which does not include welding has much lower toughness as compared with a member provided with the heat treatment method of the present invention.

【0004】本発明は上記事情に鑑みてなされたもの
で、熱処理中に変形することを防止するとともに、靱性
を大幅に改善しえる構造部材とその製造方法を提供する
ことを目的とする。
[0004] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a structural member capable of preventing deformation during heat treatment and significantly improving toughness, and a method of manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明らは、上記問題点
を解決するため鋭意研究を重ねた結果、熱処理中におけ
る変形を防止し、更に靱性を大幅に改善した新しい構造
部材とその製造方法を発明した。即ち、
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present invention has prevented a deformation during heat treatment and further improved toughness, and a new structural member and a method of manufacturing the same. Was invented. That is,

【0006】(1)重量比で炭素:0.07%以下、シ
リコン:1%以下、マンガン:1%以下、銅:2.5〜
5%、ニッケル:3〜5.5%、クロム:14〜17.
5%、モリブデン:0.5%以下、ニオブ:0.15〜
0.45%及び残部が実質的に鉄からなる組成で、オー
ステナイト相が6〜30体積%及び残りが実質的にマル
テンサイト相からなる基地中にε相が析出している事を
特徴とする高靱性で熱処理歪の小さい構造部材。
(1) Carbon: 0.07% or less, silicon: 1% or less, manganese: 1% or less, copper: 2.5 to
5%, nickel: 3 to 5.5%, chromium: 14 to 17.
5%, molybdenum: 0.5% or less, niobium: 0.15-
0.45% and a balance substantially composed of iron, and an ε phase is precipitated in a matrix composed of an austenite phase of 6 to 30% by volume and a balance substantially composed of a martensite phase. Structural member with high toughness and small heat distortion.

【0007】(2)船体と、核船体の後方に設けられる
推進装置と、実質的に水平向きに前記船体の下方に設け
られ、重量比で炭素:0.07%以下、シリコン:1%
以下、マンガン:1%以下、銅:2.5〜5%、ニッケ
ル:3〜5.5%、クロム:14〜17.5%、モリブ
デン:0.5%以下、ニオブ:0.15〜0.45%及
び残部が実質的に鉄からなる組成で、オーステナイト相
が6〜30体積%及び残りが実質的にマルテンサイト相
からなる基地中にε相が析出してなる組織とを有するス
テンレス鋼からなる水中翼とを備えた船舶。
(2) A hull, a propulsion device provided at the rear of the nuclear hull, and provided substantially below the hull in a horizontal direction, with a weight ratio of carbon: 0.07% or less, silicon: 1%
Hereafter, manganese: 1% or less, copper: 2.5 to 5%, nickel: 3 to 5.5%, chromium: 14 to 17.5%, molybdenum: 0.5% or less, niobium: 0.15 to 0 Stainless steel having a composition of .45% and a balance substantially composed of iron, and having a structure in which an ε phase is precipitated in a matrix including an austenite phase of 6 to 30% by volume and a balance substantially composed of a martensite phase. A ship equipped with a hydrofoil composed of:

【0008】(3)重量比で炭素:0.07%以下、シ
リコン:1%以下、マンガン:1%以下、銅:2.5〜
5%、ニッケル:3〜5.5%、クロム:14〜17.
5%、モリブデン:0.5%以下、ニオブ:0.15〜
0.45%及び残部が実質的に鉄からなるステンレス鋼
に、1010〜1050℃にて第1の溶体化処理を行っ
た後、第1の時効処理を520℃以上630℃以下で時
効する構造部材の製造方法において、さらに第2の溶体
化処理を730〜840℃で行った後、第2の時効処理
を520℃以上630℃以下で行うことを特徴とする構
造部材の製造方法。
(3) Carbon: 0.07% or less, silicon: 1% or less, manganese: 1% or less, copper: 2.5 to
5%, nickel: 3 to 5.5%, chromium: 14 to 17.
5%, molybdenum: 0.5% or less, niobium: 0.15-
A structure in which a first solution treatment is performed at 1010 to 1050 ° C on stainless steel of 0.45% and the balance substantially consisting of iron, and then the first aging treatment is performed at 520 ° C to 630 ° C. A method for manufacturing a structural member, further comprising performing a second solution treatment at 730 to 840 ° C. and then performing a second aging treatment at a temperature of 520 ° C. to 630 ° C. in the member manufacturing method.

【0009】(4)重量比で炭素:0.07%以下、シ
リコン:1%以下、マンガン:1%以下、銅:2.5〜
5%、ニッケル:3〜5.5%、クロム:14〜17.
5%、モリブデン:0.5%以下、ニオブ:0.15〜
0.45%及び残部が実質的に鉄からなるステンレス鋼
に、1010〜1050℃にて第1の溶体化処理を行っ
た後、第1の時効処理を520℃以上630℃以下で時
効する構造部材の製造方法において、溶接施工により任
意の形状の構造部材とし、その後第2の溶体化処理を7
30〜840℃で行った後、第2の時効処理を520℃
以上630℃以下で行うことを特徴とする構造部材の製
造方法。
(4) Carbon: 0.07% or less, silicon: 1% or less, manganese: 1% or less, copper: 2.5 to
5%, nickel: 3 to 5.5%, chromium: 14 to 17.
5%, molybdenum: 0.5% or less, niobium: 0.15-
A structure in which a first solution treatment is performed at 1010 to 1050 ° C on stainless steel of 0.45% and the balance substantially consisting of iron, and then the first aging treatment is performed at 520 ° C to 630 ° C. In the method of manufacturing a member, a structural member having an arbitrary shape is formed by welding, and then the second solution treatment is carried out in 7
After performing at 30 to 840 ° C, the second aging treatment is performed at 520 ° C.
A method for producing a structural member, which is performed at a temperature of 630 ° C. or lower.

【0010】(5)重量比で炭素:0.07%以下、シ
リコン:1%以下、マンガン:1%以下、銅:2.5〜
5%、ニッケル:3〜5.5%、クロム:14〜17
%、モリブデン:0.5%以下、ニオブ:0.15〜
0.45%及び残部実質的に鉄からなるステンレス鋼
に、第1の溶体化処理を1010〜1050℃で行った
後、第1の時効処理を520℃以上630℃以下で時効
し、さらに100℃/時間以下の速度で昇温し、第2の
溶体化処理を730〜840℃で行い、その後炉内にお
いて100℃/時間以下の冷却速度で室温まで冷却し、
更に第2の時効処理を520℃以上630℃以下で行
い、その後炉内において100℃/時間以下の冷却速度
で室温まで冷却することを特徴とする構造部材の製造方
法。
(5) Carbon: 0.07% or less, silicon: 1% or less, manganese: 1% or less, copper: 2.5 to
5%, nickel: 3 to 5.5%, chromium: 14 to 17
%, Molybdenum: 0.5% or less, niobium: 0.15-
After performing a first solution treatment at 1010 to 1050 ° C. on stainless steel of 0.45% and the balance substantially consisting of iron, a first aging treatment is performed at 520 ° C. to 630 ° C. The temperature is raised at a rate of not more than ℃ / hour, a second solution treatment is performed at 730-840 ° C., and then cooled to room temperature at a cooling rate of not more than 100 ° C./hour in a furnace;
A method for producing a structural member, further comprising performing a second aging treatment at a temperature of 520 ° C. or more and 630 ° C. or less, and thereafter cooling to room temperature in a furnace at a cooling rate of 100 ° C./hour or less.

【0011】(6)重量比で炭素:0.07%以下、シ
リコン:1%以下、マンガン:1%以下、銅:2.5〜
5%、ニッケル:3〜5.5%、クロム:14〜17.
5%、モリブデン:0.5%以下、ニオブ:0.15〜
0.45%及び残部実質的に鉄からなるステンレス鋼
に、第1の溶体化処理を1010〜1050℃で行った
後、第1の時効処理を520℃以上630℃以下で時効
し、溶接施工により任意の形状の構造部材として、さら
に100℃/時間以下の速度で昇温し、第2の溶体化処
理を730〜840℃で行い、その後炉内において10
0℃/時間以下の冷却速度で室温まで冷却した後、第2
の時効処理を520℃以上630℃以下で行い、その後
炉内において100℃/時間以下の冷却速度で室温まで
冷却することを特徴とする構造部材の製造方法。
(6) Carbon: 0.07% or less, silicon: 1% or less, manganese: 1% or less, copper: 2.5 to
5%, nickel: 3 to 5.5%, chromium: 14 to 17.
5%, molybdenum: 0.5% or less, niobium: 0.15-
After performing a first solution treatment at 1010 to 1050 ° C. on stainless steel of 0.45% and the balance substantially consisting of iron, the first aging treatment is aged at 520 ° C. to 630 ° C. and welded As a structural member having an arbitrary shape, the temperature is further increased at a rate of 100 ° C./hour or less, a second solution treatment is performed at 730 to 840 ° C.
After cooling to room temperature at a cooling rate of 0 ° C./hour or less, the second
Aging treatment at 520 ° C. or more and 630 ° C. or less, and thereafter cooling to room temperature in a furnace at a cooling rate of 100 ° C./hour or less.

【0012】(7)重量比で炭素:0.07%以下、シ
リコン:1%以下、マンガン:1%以下、銅:2.5〜
5%、ニッケル:3〜5.5%、クロム:14〜17.
5%、モリブデン:0.5%以下、ニオブ:0.15〜
0.45%及び残部実質的に鉄からなるステンレス鋼
に、第1の溶体化処理を1010〜1050℃で行った
後、第1の時効処理を520℃以上630℃以下で時効
し、金属製の板で作られた容器内に当該材料を入れ、容
器と共に素材に対して100℃/時間以下の速度で昇温
し、第2の溶体化処理を730〜840℃で行い、その
後炉内において100℃/時間以下の冷却速度で室温ま
で冷却した後、第2の時効処理を520℃以上630℃
以下で行い、その後炉内において100℃/時間以下の
冷却速度で室温まで冷却することを特徴とする構造部材
の製造方法。
(7) Carbon: 0.07% or less, silicon: 1% or less, manganese: 1% or less, copper: 2.5 to
5%, nickel: 3 to 5.5%, chromium: 14 to 17.
5%, molybdenum: 0.5% or less, niobium: 0.15-
After performing a first solution treatment at 1010 to 1050 ° C. on stainless steel of 0.45% and the balance substantially composed of iron, the first aging treatment is aged at 520 ° C. to 630 ° C. The material is put in a container made of a plate of the above, and the temperature of the material together with the container is raised at a rate of 100 ° C./hour or less, a second solution treatment is performed at 730 to 840 ° C., and then in a furnace After cooling to room temperature at a cooling rate of 100 ° C./hour or less, the second aging treatment is performed at 520 ° C. to 630 ° C.
A method for producing a structural member, comprising the steps of: performing cooling in a furnace at a cooling rate of 100 ° C./hour or less;

【0013】(8)重量比で炭素:0.07%以下、シ
リコン:1%以下、マンガン:1%以下、銅:2.5〜
5%、ニッケル:3〜5.5%、クロム:14〜17.
5%、モリブデン:0.5%以下、ニオブ:0.15〜
0.45%及び残部実質的に鉄からなるステンレス鋼
に、第1の溶体化処理を1010〜1050℃で行った
後、第1の時効処理を520℃以上630℃以下で時効
し、溶接施工により任意の形状の構造部材とし、金属製
の板で作られた容器内に当該材料を入れ、容器と共に素
材に対して100℃/時間以下の速度で昇温し、第2の
溶体化処理を730〜840℃で行い、その後炉内にお
いて100℃/時間以下の冷却速度で室温まで冷却し、
更に第2の時効処理を520℃以上630℃以下で行
い、その後炉内において100℃/時間以下の冷却速度
で室温まで冷却することを特徴とする構造部材の製造方
法。
(8) Carbon: 0.07% or less, silicon: 1% or less, manganese: 1% or less, copper: 2.5 to
5%, nickel: 3 to 5.5%, chromium: 14 to 17.
5%, molybdenum: 0.5% or less, niobium: 0.15-
After performing a first solution treatment at 1010 to 1050 ° C. on stainless steel of 0.45% and the balance substantially consisting of iron, the first aging treatment is aged at 520 ° C. to 630 ° C. and welded The material is put in a container made of a metal plate, and the material is heated together with the container at a rate of 100 ° C./hour or less to perform a second solution treatment. 730-840 ° C., and then cooled in the furnace to room temperature at a cooling rate of 100 ° C./hour or less,
A method for producing a structural member, further comprising performing a second aging treatment at a temperature of 520 ° C. or more and 630 ° C. or less, and thereafter cooling to room temperature in a furnace at a cooling rate of 100 ° C./hour or less.

【0014】(9)第2の溶体化処理の昇温工程におい
て素材の温度が550℃〜620℃に達したときに当該
温度で30分〜2時間保定し、素材各部位の温度が均一
化するのを待った後第2の溶体化処理温度まで昇温を行
う(5)から(8)までのいずれか1項記載の構造材の
製造方法。
(9) When the temperature of the raw material reaches 550 ° C. to 620 ° C. in the temperature raising step of the second solution treatment, the temperature is maintained for 30 minutes to 2 hours, and the temperature of each part of the raw material is made uniform. The method for producing a structural material according to any one of (5) to (8), wherein the temperature is raised to a second solution heat treatment temperature after waiting to perform.

【0015】(10)第2の溶体化処理の降温工程にお
いて素材の温度が300℃〜220℃に達したときに当
該温度で30分〜2時間保定し、素材各部位の温度が均
一化するのを待った後室温まで降温を行う(5)から
(8)までのいずれか1項記載の構造材の製造方法。
(10) In the temperature lowering step of the second solution treatment, when the temperature of the material reaches 300 ° C. to 220 ° C., the temperature is maintained for 30 minutes to 2 hours, and the temperature of each part of the material becomes uniform. The method for producing a structural material according to any one of (5) to (8), wherein the temperature is lowered to room temperature after waiting.

【0016】(11)第2の溶体化処理の降温工程にお
いて素材の温度が300℃〜220℃に達したときに当
該温度で30分〜2時間保定し、素材各部位の温度が均
一化するのを待った後室温まで降温を行う(9)記載の
構造材の製造方法。
(11) When the temperature of the material reaches 300 ° C. to 220 ° C. in the temperature lowering step of the second solution treatment, the temperature is kept at that temperature for 30 minutes to 2 hours, so that the temperature of each part of the material becomes uniform. The method for producing a structural material according to (9), wherein the temperature is lowered to room temperature after waiting.

【0017】[0017]

【作用】本発明者らは、本発明の対象とする析出硬化型
マルテンサイトステンレス鋼の熱処理条件を厳選するこ
とにより熱処理時に変形がなく、従来得ることができな
いほどの優れた材料特性を有する溶接構造部材を得るこ
とができた。以下に本発明の限定理由を述べる。まず、
本発明の対象とする合金組成については次のとおりであ
る。
The present inventors have carefully selected the heat treatment conditions for the precipitation hardening type martensitic stainless steel, which is the object of the present invention, so that there is no deformation during the heat treatment and the welding has excellent material properties that cannot be obtained conventionally. A structural member was obtained. The reasons for limiting the present invention are described below. First,
The alloy composition targeted by the present invention is as follows.

【0018】(炭素):0.07%を超えると母地のマ
ルテンサイトが硬化し、硬く脆くなる。このため、0.
07%以下とする。
(Carbon): If it exceeds 0.07%, the base martensite hardens and becomes hard and brittle. Therefore, 0.
07% or less.

【0019】(シリコン):シリコンは脱酸剤であり、
1%以下で有効に働く。1%を超えると脆化をもたらす
ので1%以下とする。
(Silicon): Silicon is a deoxidizing agent,
It works effectively at 1% or less. If it exceeds 1%, embrittlement is caused, so the content is made 1% or less.

【0020】(マンガン):マンガンも脱酸剤であり、
1%以下で有効に働く。1%を超えると靱性を低下さ
せ、また母地のマルテンサイトを不安定にするので1%
以下とする。
(Manganese): Manganese is also a deoxidizing agent,
It works effectively at 1% or less. If it exceeds 1%, the toughness is reduced, and the martensite of the base is destabilized.
The following is assumed.

【0021】(銅):銅は、金属間化合物として時効時
に微細に析出し、材料強度を向上させる。2.5%未満
ではその効果は十分ではなく、また5%を超える量を含
有させると靱性を低下させるので2.5〜5%とする。
(Copper): Copper is finely precipitated during aging as an intermetallic compound to improve the material strength. If the content is less than 2.5%, the effect is not sufficient, and if the content exceeds 5%, the toughness is reduced.

【0022】(ニッケル):ニッケルは母地に固溶する
とともに銅と一緒になって金属間化合物を形成する。ニ
ッケルが3%よりも少ないとマトリックス中にデルタフ
ェライトが析出し靱性・延性を低下させる。一方、5.
5%を超える量を含有させるとマトリックス中に残留オ
ーステナイトが常温で存在するようになるため、十分な
強度は得られない。このため、3〜5.5%とする。
(Nickel): Nickel forms a solid solution with the matrix and forms an intermetallic compound together with copper. If the content of nickel is less than 3%, delta ferrite precipitates in the matrix and lowers toughness and ductility. On the other hand, 5.
If the content exceeds 5%, the residual austenite will be present in the matrix at room temperature, so that sufficient strength cannot be obtained. For this reason, it is set to 3 to 5.5%.

【0023】(クロム):クロムは耐食性を保つうえで
不可欠な元素であり、本材料の主要元素である。14%
未満では十分な耐食性が得られない。また、17.5%
を超える量を含有させるとデルタフェライトが析出する
ため、14〜17.5%とする。
(Chromium): Chromium is an essential element for maintaining corrosion resistance, and is a main element of the present material. 14%
If it is less than this, sufficient corrosion resistance cannot be obtained. In addition, 17.5%
When the content exceeds 0.1%, delta ferrite is precipitated, so that the content is set to 14 to 17.5%.

【0024】(モリブデン):モリブデンは耐孔食性に
有効な元素である。しかし、0.5%を超える量を含有
させると脆化をもたらすので0.5%以下とする。
(Molybdenum): Molybdenum is an element effective for pitting corrosion resistance. However, if the content exceeds 0.5%, embrittlement is caused, so the content is set to 0.5% or less.

【0025】(ニオブ):ニオブは結晶粒度を微細化
し、強度の向上、延性、靱性の向上に効果がある。0.
15%未満ではその効果は十分ではなく、0.45%を
超えると凝固時に炭化物として多く晶出するようになる
ため、延性、靱性の低下をもたらす。したがって、0.
15〜0.45%とする。残部はステンレス鋼の基本元
素である鉄が実質的にしめる。
(Niobium): Niobium has the effect of reducing the crystal grain size and improving the strength, ductility and toughness. 0.
If it is less than 15%, the effect is not sufficient, and if it exceeds 0.45%, a large amount of carbide is crystallized at the time of solidification, so that ductility and toughness are reduced. Therefore, 0.
15 to 0.45%. The balance is substantially reduced by iron, a basic element of stainless steel.

【0026】本発明の構造部材は、上記組成に加えて更
に次の組織を有する。
The structural member of the present invention has the following structure in addition to the above composition.

【0027】(オーステナイト相):逆変態オーステナ
イト相としてマトリクスのマルテンサイト相中に生じる
もので、オーステナイト相自身の靱性にすぐれる性質に
よりマトリクス全体の靱性を向上させるほか、更にオー
ステナイト相がマルテンサイト相に析出することにより
マルテンサイトの粒を細かくする複合効果により更なる
靱性向上が得られる。6体積%未満では靱性向上が充分
ではなく、30%を超えるとマトリクスの強度不十分と
なるので、オーステナイト相は6〜30体積%とする。
尚、好ましくは10〜25体積%がよい。
(Austenite phase): Generated in the martensite phase of the matrix as a reverse-transformed austenite phase. The austenitic phase itself has excellent toughness, thereby improving the toughness of the entire matrix. The toughness can be further improved by a composite effect of making the martensite grains finer by precipitating the particles. If the amount is less than 6% by volume, the toughness is not sufficiently improved, and if it exceeds 30%, the strength of the matrix becomes insufficient. Therefore, the austenite phase is 6 to 30% by volume.
Preferably, the content is 10 to 25% by volume.

【0028】(マルテンサイト相):本発明部材のマト
リクスを構成する基本的な組織であり、機械的性質等の
マトリクスの基本特性を与えるものである。
(Martensite phase): This is a basic structure constituting the matrix of the member of the present invention, and gives basic properties of the matrix such as mechanical properties.

【0029】(ε相):本発明部材のマトリクスに微細
に析出して、本発明部材を析出強化する。
(Ε phase): Precipitates finely in the matrix of the member of the present invention to strengthen the precipitation of the member of the present invention.

【0030】次に、本発明の熱処理方法について述べ
る。第1の溶体化処理及び時効処理は通常本発明の対象
とする材料の熱処理方法であり、JIS規格G4303
にSUS630の熱処理法として規定されているものと
同じ趣旨である。この熱処理は1010〜1050℃の
溶体化処理によって鋼中に存在する溶質原子を一度マト
リックス中に溶かし、加えてミクロ的な偏析(成分の偏
り)を是正した後、520〜630℃の時効処理によっ
て銅に富んだ金属間化合物(ε相)を析出させ、高強度
の材料を得ることとなる。本発明では、第2の溶体化処
理と時効処理が特に重要なポイントでありこれらによっ
て素材に対して高い靱性と溶接部に対して均質な機械的
特性と高い靱性が付与されることになる。加えて、第1
の溶体化処理温度よりも第2の溶体化処理温度が低いこ
とならびにその熱処理における昇温、降温度速度を制御
することにより、素材の熱処理による変形を極めて低く
抑えることが可能となった。
Next, the heat treatment method of the present invention will be described. The first solution heat treatment and the aging treatment are usually heat treatment methods for the material of the present invention, and are JIS standard G4303.
The purpose is the same as that specified in the SUS630 heat treatment method. In this heat treatment, the solute atoms present in the steel are once dissolved in the matrix by solution treatment at 1010 to 1050 ° C., and micro segregation (component bias) is corrected, and then aging at 520 to 630 ° C. A copper-rich intermetallic compound (ε phase) is precipitated to obtain a high-strength material. In the present invention, the second solution treatment and the aging treatment are particularly important points, and these impart high toughness to the material and uniform mechanical properties and high toughness to the weld. In addition, the first
By controlling that the second solution heat treatment temperature is lower than the solution heat treatment temperature and controlling the rate of temperature rise and fall in the heat treatment, the deformation of the material due to the heat treatment can be kept extremely low.

【0031】溶接は、第1の溶体化処理と時効処理の後
又は第1の溶体化処理の後に施工されるが、この時溶金
部や熱影響部は、本来この材料に施されるべき熱処理が
何も行われていない部分(溶金部)もしくはそれまでに
施された熱処理が全てキャンセルされた部位(熱影響
部)となるため、必要とする強度や靱性、その他種々の
特性が損なわれており、再度熱処理を行う必要がある。
The welding is performed after the first solution treatment and the aging treatment or after the first solution treatment. At this time, the molten metal portion and the heat-affected zone should be originally applied to this material. Since it is a part where no heat treatment is performed (molten metal part) or a part where all the heat treatments performed so far are canceled (heat affected zone), the required strength, toughness, and other various properties are impaired. It is necessary to perform heat treatment again.

【0032】そこで第2の溶体化処理を行うこととな
る。本処理は730〜840℃で行うが、この処理は通
常の溶体化処理に比べて素材の強度を保ちながら行うこ
とができるので、特に大型の溶接構造部材に対してこの
熱処理を施したとしても、第1の溶体化処理に比べて変
形量は少なく製品に対して容易に熱処理が行える。本発
明の熱処理では、熱処理時の変形量を可能なかぎり低く
するために、上述のような低温での溶体化処理を採用す
るとともに、熱処理時の温度制御を行うことにより素材
各部位の温度差を少なくし、素材の変形を極めて低くす
ることを可能とした。なお、本発明における温度制御法
については、後述することとする。更に加えて、この第
2の溶体化処理処理及び第2の時効処理によって素材に
対して、通常の熱処理では得られない優れた靱性を寄与
することができる。
Therefore, a second solution treatment is performed. Although this treatment is performed at 730 to 840 ° C., since this treatment can be performed while maintaining the strength of the material as compared with a normal solution treatment, even if this heat treatment is performed particularly on a large welded structural member. In addition, the amount of deformation is smaller than that of the first solution treatment, so that the product can be easily heat-treated. In the heat treatment of the present invention, in order to minimize the amount of deformation during the heat treatment, the solution treatment at a low temperature as described above is employed, and the temperature difference between the respective parts of the material is controlled by controlling the temperature during the heat treatment. And the deformation of the material can be made extremely low. The temperature control method in the present invention will be described later. In addition, the second solution treatment and the second aging can contribute to the material excellent toughness that cannot be obtained by ordinary heat treatment.

【0033】溶接ままの溶接部は、熱影響部(HAZ)
に軟化域ができる。これは溶接によって高温に保持され
ることにより時効析出が進み、過時効軟化(金属間化合
物の析出が進み、析出物が凝集粗大化し強度が低下する
現象)を起こすためである。この場合、使用中に本来こ
の部材がもつ寿命よりも早い時期にこの弱い熱影響部か
ら亀裂が発生し壊れることになる。このような不具合を
解消するためには通常再溶体化処理を施すことになる。
この通常の再溶体化処理は、本発明の第1の溶体化処理
温度と同一温度になるが、この場合前述のように高温に
保持されるために溶接の残留応力や自重による応力のた
めに変形を起こし、製品の形状に作り上げることが困難
となる。
The as-welded weld is a heat-affected zone (HAZ)
A softening zone is formed. This is because aging precipitation progresses by being maintained at a high temperature by welding, and overaging softening (precipitation of an intermetallic compound proceeds, precipitates are coarsened and coarsened, and strength is reduced) occurs. In this case, during use, the weak heat-affected zone cracks and breaks earlier than the life of the member. In order to solve such a problem, a re-solution treatment is usually performed.
In this ordinary re-solution treatment, the temperature is the same as the first solution treatment temperature of the present invention. However, in this case, since the temperature is maintained at a high temperature as described above, the residual stress of welding and the stress due to its own weight cause the stress. Deformation occurs, making it difficult to produce a product shape.

【0034】本発明の溶接後の溶体化処理、すなわた第
2の溶体化処理では第1の溶体化処理温度よりもかなり
低い熱処理温度で溶体化処理を行うことから、第1の溶
体化処理よりも少ない変形量で熱処理を行うことができ
る。またこの溶体化処理温度はAc3変態点(低温相の
マルテンサイト相から高温相のオーステナイト相に全て
変態する温度)を越えているため、溶質原子のほとんど
は固溶し、溶体化処理と同等の効果を得ることができ
る。ただし、溶体化処理温度としては低温であるため、
析出物から溶けた溶質原子の拡散は十分でないことか
ら、ミクロ偏析が残存する。このミクロ偏析は、オース
テナイト相生成元素である銅およびニッケルに富むため
後工程での時効処理において材料全体の平均的なAc1
変態温度よりも低い温度でオーステナイト変態を起こし
(逆変態オーステナイトという)、靱性の向上に寄与す
る。
In the solution treatment after welding of the present invention, that is, in the second solution treatment, since the solution treatment is performed at a heat treatment temperature considerably lower than the first solution treatment temperature, the first solution treatment is performed. The heat treatment can be performed with a smaller deformation amount than the treatment. In addition, since the solution treatment temperature exceeds the Ac3 transformation point (the temperature at which all of the transformation from the low-temperature phase martensite phase to the high-temperature phase austenite phase) occurs, most of the solute atoms form a solid solution, and are equivalent to the solution treatment. The effect can be obtained. However, since the solution treatment temperature is low,
Microsegregation remains because diffusion of solute atoms dissolved from the precipitate is not sufficient. This micro-segregation is rich in the austenite phase-forming elements copper and nickel, so that the average Ac1
Austenite transformation occurs at a temperature lower than the transformation temperature (referred to as reverse transformation austenite), which contributes to improvement in toughness.

【0035】前記のオーステナイト相は耐食性にも優
れ、またマルテンサイト相との境界での耐食性の劣化を
伴わないため、海水中等の腐食環境下で使用されること
についても何ら問題はない。この第2の溶体化処理温度
は、840℃を超える温度で行うと、大型の構造部材に
おいて熱処理中に著しい変形を伴うため、大型の拘束治
具が必要となり、工数増加に伴うコストアップや工期増
加につながる。また、730℃未満では溶体化処理とし
て必要な溶質原子の十分な固溶を行うことができない。
このため、この第2の溶体化処理温度を730〜840
℃に限定した。
Since the austenitic phase has excellent corrosion resistance and does not involve deterioration of the corrosion resistance at the boundary with the martensite phase, there is no problem in use in a corrosive environment such as seawater. If the second solution heat treatment temperature is higher than 840 ° C., a large structural member is significantly deformed during heat treatment, so a large restraining jig is required, and cost and time required for the increase in man-hours are increased. Leads to an increase. On the other hand, when the temperature is lower than 730 ° C., a sufficient solid solution of solute atoms required for the solution treatment cannot be performed.
Therefore, the second solution treatment temperature is set to 730 to 840.
° C.

【0036】第2の時効処理は、第2の溶体化処理によ
って焼入れマルテンサイト組織を焼き戻しマルテンサイ
ト組織とし、加えて固溶した溶質原子を銅及びニッケル
に富んだε相とよばれる金属間化合物として析出させ適
度な強度を得るために行うものである。また、この熱処
理によって前述のように逆変態オーステナイトが出現
し、高い靱性を得ることが可能となる。この時効処理温
度は、630℃を超えると過時効軟化を起こして強度が
低くなり、必要な十分な強度が得られない。また、52
0℃よりも低い温度では、時効析出が不十分なために必
要以上の高い強度となり、延性の低下をもたらす。
In the second aging treatment, the quenched martensitic structure is turned into a tempered martensitic structure by the second solution treatment, and the solute atoms dissolved in the solid solution are mixed with a metal called an ε phase rich in copper and nickel. This is performed in order to precipitate as a compound and obtain an appropriate strength. In addition, as described above, reverse transformation austenite appears by this heat treatment, and high toughness can be obtained. If the aging treatment temperature exceeds 630 ° C., overaging softening occurs and the strength becomes low, so that necessary and sufficient strength cannot be obtained. Also, 52
At a temperature lower than 0 ° C., the aging precipitation is insufficient, resulting in an unnecessarily high strength and a decrease in ductility.

【0037】次に、本発明における第2のポイントとし
ての温度制御法の限定理由を述べる。通常本発明の対象
とする材料の熱処理方法では、溶体化処理や時効処理に
おいて昇温ならびに降温の速度に関する規定はなく、燃
料費を節約するために急速に昇温したり、水もしくは油
などの焼入れや空冷など比較的速い速度での冷却が適用
されている。しかし、本発明が主に対象とする構造部材
の場合、溶接構造体であることが多く、また溶接構造で
ない場合でも薄肉の大型構造物である場合もあり、急速
な温度変化に対して所定の形状を保持できないという不
具合があった。そこで、本発明では上述に示すように第
2の溶体化処理においては構造部材の変形を防止するた
めに、従来よりも低い温度での熱処理を選定するととも
に昇温、降温速度を規定し、素材各部位での温度差をで
きるだけ少なくすることにより構造部材の変形を防止で
きるようになった。このとき、昇温、降温速度が100
℃/時間を超える速い速度で熱処理を行うと例え加熱温
度が従来よりも低い第2の溶体化処理温度においても熱
処理に伴う変形が著しくなる。そこで、昇温、降温速度
を100℃/時間以下とすべきである。
Next, the reason for limiting the temperature control method as the second point in the present invention will be described. Normally, in the heat treatment method of the material of the present invention, there is no regulation on the rate of temperature increase and temperature decrease in the solution treatment and the aging treatment, and the temperature is raised rapidly to save fuel cost, or water or oil. Cooling at a relatively high speed such as quenching or air cooling is applied. However, in the case of a structural member mainly targeted by the present invention, it is often a welded structure, and even if it is not a welded structure, it may be a thin large-sized structure. There was a problem that the shape could not be maintained. Therefore, in the present invention, as described above, in order to prevent deformation of the structural member in the second solution treatment, a heat treatment at a lower temperature than the conventional one is selected, and the rate of temperature rise and fall is specified. The deformation of the structural member can be prevented by minimizing the temperature difference between the parts. At this time, the rate of temperature rise and fall was 100
If the heat treatment is performed at a high rate exceeding ℃ / hour, the deformation accompanying the heat treatment becomes remarkable even at the second solution treatment temperature where the heating temperature is lower than the conventional one. Therefore, the rate of temperature rise and fall should be 100 ° C./hour or less.

【0038】また、熱処理を行う素材を直接加熱炉に入
れた場合、素材が大きいと加熱炉からの輻射熱により局
部的に加熱されてしまう。このために、輻射熱による局
部的な素材の加熱を防ぐため金属製の板(マッフルと言
う)によって素材を包み、そのマッフル全体を加熱し温
度差を少なくすることにより材料の変形をより一層防止
できる。このマッフルを用いることは昇温過程における
輻射熱を防ぐことができるだけでなく、冷却時に炉外か
らの送風による局部的な冷却をも防ぐことができ、素材
各部位の温度差を極めて小さく抑えることができる。
When the material to be subjected to the heat treatment is directly placed in a heating furnace, if the material is large, the material is locally heated by radiant heat from the heating furnace. For this reason, the material is wrapped in a metal plate (referred to as a muffle) to prevent local heating of the material due to radiant heat, and the entire muffle is heated to reduce the temperature difference, thereby further preventing deformation of the material. . The use of this muffle not only prevents radiant heat during the heating process, but also prevents local cooling due to air blown from outside the furnace during cooling, minimizing the temperature difference between each part of the material. it can.

【0039】更に、本発明においては昇温及び高温の途
中で温度の保定を行うことにより、それまでの温度変化
によって生じた各部位の温度差を是正し、組織の変態に
伴う体積変化による変形を最小限に抑えることを可能と
している。昇温過程では、650℃に近傍にAc1変態
点(低温のマルテンサイト相から高温のオーステナイト
相が現われ始める温度)があり、この変態に伴い体積収
縮を起こす。このとき素材各部位で温度差が大きい場
合、変態する部分と変態しない部分で体積変化に差が現
われそれが応力となって素材自体に加わり、その結果変
形を生じることになる。そのため、変態開始温度よりも
下の550〜620℃の範囲で一度昇温を停止し、素材
各部位の温度が均一になるのを待ってその後工程の昇温
に移るようにする。このとき、この保定温度が550℃
よりも低い温度であると、変態温度まで昇温する間に素
材各部位で温度差が生じてしまい、保定することの効果
が得られないことがある。また、620℃を超える温度
で保定すると、本発明の成分の中にはAc1変態点を超
えてしまうものがある。そこで、昇温時の保定温度は5
50〜620℃が好ましい。降温過程では200℃近傍
にMs点(高温のオーステナイト相から低温のマルテン
サイト相が現われ始める温度)があり、この変態に伴い
体積膨張を起こす。このとき、昇温時と同様に降温時に
おいても素材各部位で温度差が大きい場合、変態する部
分と変態しない部分で体積変化に差が現われ、それが応
力となって素材自体に加わり、その結果変形を生じるこ
とになる。そのため、変態開始温度よりも高い温度の3
00〜220℃の範囲で一度降温を停止し、素材各部位
の温度が均一になるのを待ってその後工程の降温に移る
ようにする。このとき、この保定温度が300℃よりも
高い温度であると、変態温度まで降温する間に素材各部
位で温度差が生じてしまい、保定することの効果が得ら
れないことがある。また、220℃未満の温度で保定す
ると、本発明の成分の中にはMs変態点を超えてしまう
ものもあり、保定の効果が得られないことがある。そこ
で、降温時の保定温度は300〜220℃が好ましい。
Further, in the present invention, by maintaining the temperature in the middle of the temperature rise and the high temperature, the temperature difference of each part caused by the temperature change up to that time is corrected, and the deformation due to the volume change accompanying the transformation of the structure. Can be minimized. In the temperature rising process, there is an Ac1 transformation point (a temperature at which a high-temperature austenite phase starts to appear from a low-temperature martensite phase) near 650 ° C., and volume transformation is caused by this transformation. At this time, if the temperature difference is large in each part of the material, a difference appears in the volume change between the transformed part and the non-transformed part, which becomes stress and is applied to the material itself, resulting in deformation. For this reason, the temperature is once stopped in the range of 550 to 620 ° C. below the transformation start temperature, and after the temperature of each part of the material becomes uniform, the temperature is raised in the subsequent process. At this time, the retention temperature is 550 ° C.
If the temperature is lower than the above, a temperature difference occurs in each part of the material while the temperature is raised to the transformation temperature, and the effect of maintaining the temperature may not be obtained. Further, when the temperature is maintained at a temperature exceeding 620 ° C., some components of the present invention exceed the Ac1 transformation point. Therefore, the retention temperature during heating is 5
50-620 ° C is preferred. In the temperature-falling process, there is an Ms point (a temperature at which a high-temperature austenite phase starts to appear at a low-temperature martensite phase) near 200 ° C., and volume expansion is caused by this transformation. At this time, when the temperature difference is large at each part of the material at the time of temperature decrease as well as at the time of temperature rise, a difference appears in the volume change between the transformed part and the non-transformed part, which becomes stress and is added to the material itself, As a result, deformation will occur. Therefore, the temperature of 3 which is higher than the transformation start temperature
The temperature is stopped once in the range of 00 to 220 ° C., and after the temperature of each part of the material becomes uniform, the temperature is lowered to the subsequent step. At this time, if the retention temperature is higher than 300 ° C., a temperature difference occurs in each part of the material while the temperature is lowered to the transformation temperature, and the effect of retaining may not be obtained. Further, if the temperature is kept at a temperature lower than 220 ° C., some of the components of the present invention may exceed the Ms transformation point, and the effect of the retention may not be obtained. Therefore, the holding temperature at the time of cooling is preferably 300 to 220 ° C.

【0040】[0040]

【実施例】以下、本発明の一実施例について説明する。An embodiment of the present invention will be described below.

【0041】(素材)試験材は表1に示す成分について
25トン電気炉で溶解し、30トンの取鍋精練炉で精練
を行い、下注ぎ法にて2次溶解用の電極とした。次いで
エレクトロスラグ再溶解炉(ESR炉)にて再溶解を行
い、鍜造用の素材とした。その後、鍜造にて65mm厚
さの板材とし試験に供した。素材に対する熱処理は10
40℃で1時間保持する第1の溶体化処理後595℃で
4時間保持する時効処理を行った。以下、この処理を施
した素材を本素材という。
(Materials) The test materials were melted for the components shown in Table 1 in a 25-ton electric furnace, refined in a 30-ton ladle refining furnace, and used as an electrode for secondary melting by a downward pouring method. Then, remelting was performed in an electroslag remelting furnace (ESR furnace) to obtain a material for forging. Then, it was made into a plate material having a thickness of 65 mm by forging and subjected to a test. Heat treatment for the material is 10
After the first solution treatment at 40 ° C. for 1 hour, an aging treatment at 595 ° C. for 4 hours was performed. Hereinafter, the material subjected to this processing is referred to as the present material.

【0042】(実験1)このようにして得られた本素材
の機械的性質を表2に示す。また、本素材1に対して図
1に示す形状に加工し、表3の溶接施工条件にてTIG
溶接を行い、溶接継手を得た。なお、図1中のL1 は6
5mm、L2 は20mm、L3 は0.5mm、θ1 は5
°、θ2 は20°である。このようにして得られた溶接
継手に対して第2の溶体化処理及び時効処理を行った
上、確性試験を行い、表4、表5の試験結果を得た。こ
こでの第2の溶体化処理及び時効処理では、加熱・冷却
速度をあえて制御せず、急速加熱と空冷を用いている。
(Experiment 1) Table 2 shows the mechanical properties of the material thus obtained. The material 1 was processed into the shape shown in FIG.
Welding was performed to obtain a welded joint. Note that L 1 in FIG.
5 mm, L 2 is 20 mm, L 3 is 0.5 mm, θ 1 is 5
° and θ 2 are 20 °. The welded joint thus obtained was subjected to a second solution treatment and an aging treatment, followed by a reliability test, and the test results in Tables 4 and 5 were obtained. In the second solution treatment and aging treatment, rapid heating and air cooling are used without intentionally controlling the heating / cooling rate.

【0043】上記表4、表5から明らかのように、本発
明法を施した試験材は比較熱処理に比べて高い靱性が安
定して得られており、優れた熱処理方法と言える。
As is clear from Tables 4 and 5, the test material subjected to the method of the present invention can stably obtain high toughness as compared with the comparative heat treatment, and can be said to be an excellent heat treatment method.

【0044】(実験2)また、長さ500mm、巾20
0mm、厚さ27mmの本素材の板2枚の長辺どうしを
つきあわせ、ビーム電流160mmA、加速電圧70K
V、収束電流1205mmA、溶接速度200mm/m
inの条件で電子ビーム溶接を施して溶接継手を作り、
前記例と同じ第2の溶体化処理及び時効処理を施して確
性試験を行い、表6の試験結果を得た。
(Experiment 2) A length of 500 mm and a width of 20 mm
The long sides of two plates of this material having a thickness of 0 mm and a thickness of 27 mm were joined together, and a beam current of 160 mmA and an acceleration voltage of 70 K
V, convergence current 1205 mmA, welding speed 200 mm / m
In the condition of in, electron beam welding is performed to make a welded joint,
The same solution treatment and aging treatment as in the above example were performed to perform a reliability test, and the test results in Table 6 were obtained.

【0045】(実験3)更に、熱処理時の加熱・冷却に
伴う熱処理歪を緩和させるため、第2の溶体化処理及び
時効処理での昇温速度・降温速度を50℃/時間目標に
制御しつつ、本素材に対し前記のものと同じ熱処理及び
溶接を行った。こうして得られた部材に対し、前記同様
の機械試験を行った。その結果を表7に示す。表7か
ら、従来のものよりはるかに靱性がすぐれ、表4及び表
6のものと比しても実務上、同等の特性の得られること
がわかる。
(Experiment 3) Further, in order to alleviate the heat treatment distortion caused by heating and cooling during the heat treatment, the heating rate and the cooling rate in the second solution treatment and the aging treatment were controlled to the target of 50 ° C./hour. Meanwhile, the same heat treatment and welding as described above were performed on the material. The member thus obtained was subjected to the same mechanical test as described above. Table 7 shows the results. From Table 7, it can be seen that the toughness is much better than the conventional one, and that the same properties as those in Tables 4 and 6 can be obtained in practice.

【0046】(実験4)次に、更に大型の部材でも熱処
理歪を低減させるために、本素材を長さ:3m、幅:5
0cm、板厚:60mmの板状に成形し、間口:5m8
0cm、高さ:4m、奥行:25mの石油燃焼加熱炉に
装入し、第2の溶体化処理及び第2の時効処理を施し、
熱処理前後での素材の変形量を測定した。その測定結果
を表8に示す。この表中のマッフルとは、金属製の板で
作られた容器のことである。本実験では、図2に示すと
おり、JIS SUS 304ステンレス鋼製で縦横各
2m長さ15mのマッフル2を用い、マッフル2内にベ
ース4を設け、両側を試験材保持用治具3により挟んで
試験素材1を固定した。
(Experiment 4) Next, in order to reduce the heat treatment distortion even in a larger member, the material was length: 3 m, width: 5
Formed into a plate shape of 0 cm, thickness: 60 mm, frontage: 5 m8
0 cm, height: 4 m, depth: 25 m, placed in an oil-fired heating furnace, subjected to a second solution treatment and a second aging treatment,
The amount of deformation of the material before and after the heat treatment was measured. Table 8 shows the measurement results. The muffle in this table is a container made of a metal plate. In this experiment, as shown in FIG. 2, a muffle 2 made of JIS SUS 304 stainless steel and having a length of 2 m and a length of 15 m and a length of 15 m was used, a base 4 was provided in the muffle 2, and both sides were sandwiched by jigs 3 for holding test materials. Test material 1 was fixed.

【0047】試験素材は、図3に示すとおり、長さ3
m、幅600mm、厚さ50mmのものを用い、変形量
としては板厚方向についての第2の溶体化処理及び時効
処理の処理前1aから処理後1bへの変位量δを測定し
た。
The test material has a length of 3 as shown in FIG.
m, a width of 600 mm, and a thickness of 50 mm were used, and the amount of deformation was measured as the amount of displacement δ from 1a before the second solution treatment and aging treatment to 1b after the treatment in the plate thickness direction.

【0048】表8の結果から明らかなように、熱処理時
における温度制御やマッフルの適用により、素材の熱処
理による変形量は極めて低く抑えられることがわかる。
As is clear from the results shown in Table 8, the amount of deformation of the raw material due to the heat treatment can be suppressed to a very low level by applying the temperature control and the muffle during the heat treatment.

【0049】(実験5)最後に、溶接済の材料につき前
記のマッフルの効果を確認するため、本素材に対し表3
と同一の溶接条件にてTIG溶接を行った。更に前記と
同様の寸法にこの溶接板材を切り出して、前記のマッフ
ルに入れ前記の石油燃焼加熱炉に装入して、790℃x
3時間の第2の溶体化処理と570℃x4時間の第2の
時効処理を行った。尚、この熱処理の昇温及び降温速度
とも50℃/時間を目標に制御し、更に第2の溶体化処
理後の冷却に際し、念のためサブゼロ処理を行った。
(Experiment 5) Finally, in order to confirm the effect of the above-mentioned muffle on the welded material, Table 3 was used for the present material.
TIG welding was carried out under the same welding conditions as in. Further, the welded plate was cut out to the same size as above, put into the muffle, charged into the oil-fired heating furnace, and heated at 790 ° C.
A second solution treatment for 3 hours and a second aging treatment at 570 ° C. for 4 hours were performed. In addition, the heating rate and the cooling rate of this heat treatment were both controlled so as to be 50 ° C./hour, and a sub-zero treatment was performed for cooling just after the second solution treatment.

【0050】この結果、本発明法にて溶接施行及びマッ
フル処理の両方を行ったものについての熱処理による変
形は前記の表8と同程度に極めて小さく、かつ表9に示
すとおり所期のすぐれた機械的性質の得られることが確
認できた。
As a result, the deformation caused by the heat treatment in the case where both welding and muffle treatment were performed by the method of the present invention was as small as that of Table 8 and excellent as shown in Table 9. It was confirmed that mechanical properties were obtained.

【0051】(組織観察)更に、この部材の金属組織を
調査した。光学顕微鏡による組織を図4(100倍)及
び図5(300倍)に示す。光学顕微鏡では図4及び図
5のとおり、マルテンサイト相しか見あたらなかった。
この部材を更にX線回折法により調査したところ、本発
明材には表10のとおり6%以上の逆変態オーステナイ
ト相(γ)が含まれていることを確認した。これら逆変
態オーステナイト相はマルテンサイトのラスの一部に微
細に形成されている。更にこの部材を電子顕微鏡にて観
察したところ微細なε相の析出が確認しうる。
(Microstructure Observation) Further, the metal structure of this member was examined. The structures by an optical microscope are shown in FIGS. 4 (100 ×) and 5 (300 ×). As shown in FIGS. 4 and 5, only a martensite phase was found under an optical microscope.
When this member was further investigated by X-ray diffraction, it was confirmed that the material of the present invention contained 6% or more of the reverse transformed austenite phase (γ) as shown in Table 10. These reverse transformed austenite phases are finely formed on a part of the martensite lath. Further, when this member is observed with an electron microscope, fine ε-phase precipitation can be confirmed.

【0052】(客艇)図6〜図9に本発明構造部材の適
用される高速客艇の例を説明する。
(Passenger Boat) An example of a high-speed passenger boat to which the structural member of the present invention is applied will be described with reference to FIGS.

【0053】本客艇は、船体11の前後部にそれぞれ翼
支柱17を介して、翼16が設けられている。船体11
には、船尾側の翼支柱17から連通する通水管20が設
けられ、翼支柱17の通水管20の入口側端部にはポッ
ト型吸込口15を、また、船体11側端部にはジェット
ノズル21をそれぞれ備えている。水流は、通水管20
に設けられたポンプ12により加速され、このポンプ1
2は、推進機関13により駆動されている。
In this passenger boat, wings 16 are provided on the front and rear portions of the hull 11 via wing columns 17 respectively. Hull 11
Is provided with a water pipe 20 communicating with the wing column 17 on the stern side. The pot-type suction port 15 is provided at the inlet end of the water pipe 20 of the wing column 17, and the jet is provided at the end of the hull 11 side. Each has a nozzle 21. The water flow is
Is accelerated by a pump 12 provided in the
2 is driven by a propulsion engine 13.

【0054】図7に示すとおり、本実施例では双胴船型
となっており、翼支柱17は船の前後部にそれぞれ2本
ずつ設けられ、これら1対の翼支柱17によって翼16
が固定されている。船首側及び船尾側の翼16及び翼支
柱17の拡大図を図8及び図9に示す。翼16及び翼支
柱17の断面形状はほぼレンズ状もしくは流線形であ
る。船首側の翼支柱17の後部はラダーフラップ18と
なっており、それぞれ左右に回動することにより高速客
艇を左右に旋回させることができる。前後の翼16の後
部はそれぞれフラップ19となっており、上下に回動す
ることにより、高速客艇を上下にコントロールする。
As shown in FIG. 7, this embodiment is of a catamaran type, and two wing supports 17 are provided at each of the front and rear portions of the ship.
Has been fixed. 8 and 9 show enlarged views of the wing 16 and the wing column 17 on the bow side and the stern side. The cross-sectional shapes of the wing 16 and the wing column 17 are substantially lens-shaped or streamlined. The rear part of the wing column 17 on the bow side is a rudder flap 18, and the high-speed passenger boat can be turned left and right by turning left and right respectively. The rear portions of the front and rear wings 16 are flaps 19, respectively, and rotate up and down to control the high-speed passenger boat up and down.

【0055】上記の翼16として実験5と同じ方法によ
り製造した構造部材を使用する。本方法により、得られ
る構造部材は、熱処理中の変形が防止され、靱性にすぐ
れるので、これを翼16として用いることにより高速客
艇に次のメリットを与える。
A structural member manufactured by the same method as in Experiment 5 is used as the wing 16 described above. According to this method, the structural member obtained is prevented from being deformed during the heat treatment and has excellent toughness. The use of this as the wing 16 provides the following advantages to the high-speed passenger boat.

【0056】(1)長尺であるので翼に不均一な変形が
あると翼の途中でピッチが変わり発生する揚力が不均一
となったり、はなはだしい場合は揚力が逆向きとなった
りして翼のコントロールに不具合が生じかねないが、本
発明の均一性にすぐれる翼を用いることにより、ピッチ
及び揚力も均一となり、揚力制御すなわち艇の上下方向
の運動性がすぐれることとなる。
(1) Since the blades are long, if the wings have an uneven deformation, the pitch changes in the middle of the wings, and the generated lift becomes uneven. In extreme cases, the lift is reversed. However, by using the wings of the present invention having excellent uniformity, the pitch and the lift become uniform, and the lift control, that is, the boat's vertical mobility is improved.

【0057】(2)設計上流体抵抗を極力低下させてい
る翼の形状が不均一となれば、流体抵抗が増すこととな
るが、本発明の翼を用いれば、流体抵抗を低下でき推進
効率を向させることができる。
(2) Fluid resistance increases if the shape of the wing that reduces the fluid resistance as much as possible becomes non-uniform, but the wing according to the present invention can reduce the fluid resistance and propulsion efficiency. Can be turned.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】[0060]

【表3】 [Table 3]

【0061】[0061]

【表4】 [Table 4]

【0062】[0062]

【表5】 [Table 5]

【0063】[0063]

【表6】 [Table 6]

【0064】[0064]

【表7】 [Table 7]

【0065】[0065]

【表8】 [Table 8]

【0066】[0066]

【表9】 [Table 9]

【0067】[0067]

【表10】 [Table 10]

【0068】[0068]

【発明の効果】本発明の構造部材及びその製造方法によ
れば、従来からの熱処理方法では実施することのできな
い大型溶接構造部材の溶接後の熱処理を可能とし、また
熱処理後の溶接部の硬さ分布は均質となり、加えて従来
の熱利用方法では得ることのできない優れた靱性を有す
ることを可能とした。加えて、本発明を適用することに
より、熱処理時における素材の変形を極めて低くするこ
とが可能となった。
According to the structural member and the method of manufacturing the same of the present invention, it is possible to heat-treat a large welded structural member after welding, which cannot be performed by a conventional heat-treating method, and to harden a welded portion after heat-treating. The thickness distribution became homogeneous, and in addition, it was possible to have excellent toughness that could not be obtained by conventional heat utilization methods. In addition, by applying the present invention, the deformation of the material during the heat treatment can be extremely reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】TIG溶接試験片の溶接前開先形状を示す説明
図。
FIG. 1 is an explanatory view showing a groove shape before welding of a TIG welding test piece.

【図2】マッフル例の形状を示す図。FIG. 2 is a diagram illustrating a shape of a muffle example.

【図3】試験片の変形量を説明する図。FIG. 3 is a diagram illustrating a deformation amount of a test piece.

【図4】光学顕微鏡による断面金属組織写真。FIG. 4 is a cross-sectional metal structure photograph by an optical microscope.

【図5】光額顕微鏡による断面金属組織写真。FIG. 5 is a cross-sectional metallographic photograph by a light microscope.

【図6】水中翼船の構造模式図。FIG. 6 is a schematic structural view of a hydrofoil.

【図7】水中翼船の正面図。FIG. 7 is a front view of a hydrofoil.

【図8】船首翼の斜視図。FIG. 8 is a perspective view of a bow wing.

【図9】船尾翼の斜視図。FIG. 9 is a perspective view of a stern wing.

【符号の説明】[Explanation of symbols]

1 試験素材 16 水中翼 1 test material 16 hydrofoil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大場 真助 長崎県長崎市深掘町5丁目717番1号 三菱重工業株式会社長崎研究所内 (72)発明者 中村 誠 東京都千代田区丸の内二丁目5番1号 三菱重工業株式会社内 (72)発明者 末岡 英利 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (72)発明者 坂井 文和 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (72)発明者 木村 学 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (56)参考文献 特開 昭63−53246(JP,A) 特開 昭61−147855(JP,A) 特開 昭51−49117(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 - 38/60 C21D 6/00──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shinsuke Oba 5-717-1 Fukadori-cho, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Research Laboratory (72) Inventor Makoto Nakamura 2-5-2 Marunouchi, Chiyoda-ku, Tokyo No. 1 Inside Mitsubishi Heavy Industries, Ltd. (72) Inventor Hidetoshi Sueoka 1-1, Akunouracho, Nagasaki City, Nagasaki Prefecture Inside Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Fumikazu Sakai 1-1, Akunouracho, Nagasaki City, Nagasaki Prefecture No. Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Manabu Kimura 1-1, Akunouramachi, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (56) References JP-A-63-53246 (JP, A) JP-A-61-147855 (JP, A) JP-A-51-49117 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 38/00-38/60 C21D 6/00

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比で炭素:0.07%以下、シリコ
ン:1%以下、マンガン:1%以下、銅:2.5〜5
%、ニッケル:3〜5.5%、クロム:14〜17.5
%、モリブデン:0.5%以下、ニオブ:0.15〜
0.45%及び残部が実質的に鉄からなる組成で、オー
ステナイト相が6〜30体積%及び残りが実質的にマル
テンサイト相からなる基地中にε相が析出している事を
特徴とする高靱性で熱処理歪の小さい構造部材。
1. Carbon: 0.07% or less, silicon: 1% or less, manganese: 1% or less, copper: 2.5 to 5 by weight
%, Nickel: 3 to 5.5%, chromium: 14 to 17.5
%, Molybdenum: 0.5% or less, niobium: 0.15-
0.45% and a balance substantially composed of iron, and an ε phase is precipitated in a matrix composed of an austenite phase of 6 to 30% by volume and a balance substantially composed of a martensite phase. Structural member with high toughness and small heat distortion.
【請求項2】 船体と、該船体の後方に設けられる推進
装置と、実質的に水平向きに前記船体の下方に設けら
れ、重量比で炭素:0.07%以下、シリコン:1%以
下、マンガン:1%以下、銅:2.5〜5%、ニッケ
ル:3〜5.5%、クロム:14〜17.5%、モリブ
デン:0.5%以下、ニオブ:0.15〜0.45%及
び残部が実質的に鉄からなる組成で、オーステナイト相
が6〜30体積%及び残りが実質的にマルテンサイト相
からなる基地中にε相が析出してなる組織とを有するス
テンレス鋼からなる水中翼とを備えた船舶。
2. A hull, a propulsion device provided at the rear of the hull, and provided substantially below the hull in a substantially horizontal orientation, the weight ratio of carbon: 0.07% or less, silicon: 1% or less, Manganese: 1% or less, Copper: 2.5 to 5%, Nickel: 3 to 5.5%, Chromium: 14 to 17.5%, Molybdenum: 0.5% or less, Niobium: 0.15 to 0.45 % And a balance substantially consisting of iron, and a stainless steel having a structure in which an austenite phase is 6 to 30% by volume and the remainder is substantially a martensite phase in which a ε phase is precipitated in a matrix. A ship with hydrofoils.
【請求項3】 重量比で炭素:0.07%以下、シリコ
ン:1%以下、マンガン:1%以下、銅:2.5〜5
%、ニッケル:3〜5.5%、クロム:14〜17.5
%、モリブデン:0.5%以下、ニオブ:0.15〜
0.45%及び残部が実質的に鉄からなるステンレス鋼
に、1010〜1050℃にて第1の溶体化処理を行っ
た後、第1の時効処理を520℃以上630℃以下で時
効する構造部材の製造方法において、さらに第2の溶体
化処理を730〜840℃で行った後、第2の時効処理
を520℃以上630℃以下で行うことを特徴とする構
造部材の製造方法。
3. A weight ratio of carbon: 0.07% or less, silicon: 1% or less, manganese: 1% or less, copper: 2.5 to 5
%, Nickel: 3 to 5.5%, chromium: 14 to 17.5
%, Molybdenum: 0.5% or less, niobium: 0.15-
A structure in which a first solution treatment is performed at 1010 to 1050 ° C on stainless steel of 0.45% and the balance substantially consisting of iron, and then the first aging treatment is performed at 520 ° C to 630 ° C. A method for manufacturing a structural member, further comprising performing a second solution treatment at 730 to 840 ° C. and then performing a second aging treatment at a temperature of 520 ° C. to 630 ° C. in the member manufacturing method.
【請求項4】 重量比で炭素:0.07%以下、シリコ
ン:1%以下、マンガン:1%以下、銅:2.5〜5
%、ニッケル:3〜5.5%、クロム:14〜17.5
%、モリブデン:0.5%以下、ニオブ:0.15〜
0.45%及び残部が実質的に鉄からなるステンレス鋼
に、1010〜1050℃にて第1の溶体化処理を行っ
た後、第1の時効処理を520℃以上630℃以下で時
効する構造部材の製造方法において、溶接施工により任
意の形状の構造部材とし、その後第2の溶体化処理を7
30〜840℃で行った後、第2の時効処理を520℃
以上630℃以下で行うことを特徴とする構造部材の製
造方法。
4. A weight ratio of carbon: 0.07% or less, silicon: 1% or less, manganese: 1% or less, copper: 2.5 to 5
%, Nickel: 3 to 5.5%, chromium: 14 to 17.5
%, Molybdenum: 0.5% or less, niobium: 0.15-
A structure in which a first solution treatment is performed at 1010 to 1050 ° C on stainless steel of 0.45% and the balance substantially consisting of iron, and then the first aging treatment is performed at 520 ° C to 630 ° C. In the method of manufacturing a member, a structural member having an arbitrary shape is formed by welding, and then the second solution treatment is carried out in 7
After performing at 30 to 840 ° C, the second aging treatment is performed at 520 ° C.
A method for producing a structural member, which is performed at a temperature of 630 ° C. or lower.
【請求項5】 重量比で炭素:0.07%以下、シリコ
ン:1%以下、マンガン:1%以下、銅:2.5〜5
%、ニッケル:3〜5.5%、クロム:14〜17.5
%、モリブデン:0.5%以下、ニオブ:0.15〜
0.45%及び残部実質的に鉄からなるステンレス鋼
に、第1の溶体化処理を1010〜1050℃で行った
後、第1の時効処理を520℃以上630℃以下で時効
し、さらに100℃/時間以下の速度で昇温し、第2の
溶体化処理を730〜840℃で行い、その後炉内にお
いて100℃/時間以下の冷却速度で室温まで冷却し、
更に第2の時効処理を520℃以上630℃以下で行
い、その後炉内において100℃/時間以下の冷却速度
で室温まで冷却することを特徴とする構造部材の製造方
法。
5. A weight ratio of carbon: 0.07% or less, silicon: 1% or less, manganese: 1% or less, copper: 2.5 to 5
%, Nickel: 3 to 5.5%, chromium: 14 to 17.5
%, Molybdenum: 0.5% or less, niobium: 0.15-
After performing a first solution treatment at 1010 to 1050 ° C. on stainless steel of 0.45% and the balance substantially consisting of iron, a first aging treatment is performed at 520 ° C. to 630 ° C. The temperature is raised at a rate of not more than ℃ / hour, a second solution treatment is performed at 730-840 ° C., and then cooled to room temperature at a cooling rate of not more than 100 ° C./hour in a furnace;
A method for producing a structural member, further comprising performing a second aging treatment at a temperature of 520 ° C. or more and 630 ° C. or less, and thereafter cooling to room temperature in a furnace at a cooling rate of 100 ° C./hour or less.
【請求項6】 重量比で炭素:0.07%以下、シリコ
ン:1%以下、マンガン:1%以下、銅:2.5〜5
%、ニッケル:3〜5.5%、クロム:14〜17.5
%、モリブデン:0.5%以下、ニオブ:0.15〜
0.45%及び残部実質的に鉄からなるステンレス鋼
に、第1の溶体化処理を1010〜1050℃で行った
後、第1の時効処理を520℃以上630℃以下で時効
し、溶接施工により任意の形状の構造部材として、さら
に100℃/時間以下の速度で昇温し、第2の溶体化処
理を730〜840℃で行い、その後炉内において10
0℃/時間以下の冷却速度で室温まで冷却した後、第2
の時効処理を520℃以上630℃以下で行い、その後
炉内において100℃/時間以下の冷却速度で室温まで
冷却することを特徴とする構造部材の製造方法。
6. A weight ratio of carbon: 0.07% or less, silicon: 1% or less, manganese: 1% or less, copper: 2.5 to 5
%, Nickel: 3 to 5.5%, chromium: 14 to 17.5
%, Molybdenum: 0.5% or less, niobium: 0.15-
After performing a first solution treatment at 1010 to 1050 ° C. on stainless steel of 0.45% and the balance substantially consisting of iron, the first aging treatment is aged at 520 ° C. to 630 ° C. and welded As a structural member having an arbitrary shape, the temperature is further increased at a rate of 100 ° C./hour or less, a second solution treatment is performed at 730-840 ° C.
After cooling to room temperature at a cooling rate of 0 ° C./hour or less, the second
Aging treatment at 520 ° C. or more and 630 ° C. or less, and thereafter cooling to room temperature at a cooling rate of 100 ° C./hour or less in a furnace.
【請求項7】 重量比で炭素:0.07%以下、シリコ
ン:1%以下、マンガン:1%以下、銅:2.5〜5
%、ニッケル:3〜5.5%、クロム:14〜17.5
%、モリブデン:0.5%以下、ニオブ:0.15〜
0.45%及び残部実質的に鉄からなるステンレス鋼
に、第1の溶体化処理を1010〜1050℃で行った
後、第1の時効処理を520℃以上630℃以下で時効
し、金属製の板で作られた容器内に当該材料を入れ、容
器と共に素材に対して100℃/時間以下の速度で昇温
し、第2の溶体化処理を730〜840℃で行い、その
後炉内において100℃/時間以下の冷却速度で室温ま
で冷却した後、第2の時効処理を520℃以上630℃
以下で行い、その後炉内において100℃/時間以下の
冷却速度で室温まで冷却することを特徴とする構造部材
の製造方法。
7. Carbon: 0.07% or less, silicon: 1% or less, manganese: 1% or less, copper: 2.5 to 5 by weight ratio
%, Nickel: 3 to 5.5%, chromium: 14 to 17.5
%, Molybdenum: 0.5% or less, niobium: 0.15-
After performing a first solution treatment at 1010 to 1050 ° C. on stainless steel of 0.45% and the balance substantially composed of iron, the first aging treatment is aged at 520 ° C. to 630 ° C. The material is put in a container made of a plate of the above, and the temperature of the material together with the container is raised at a rate of 100 ° C./hour or less, a second solution treatment is performed at 730 to 840 ° C., and then in a furnace After cooling to room temperature at a cooling rate of 100 ° C./hour or less, the second aging treatment is performed at 520 ° C. to 630 ° C.
A method for producing a structural member, comprising the steps of: performing cooling in a furnace at a cooling rate of 100 ° C./hour or less;
【請求項8】 重量比で炭素:0.07%以下、シリコ
ン:1%以下、マンガン:1%以下、銅:2.5〜5
%、ニッケル:3〜5.5%、クロム:14〜17.5
%、モリブデン:0.5%以下、ニオブ:0.15〜
0.45%及び残部実質的に鉄からなるステンレス鋼
に、第1の溶体化処理を1010〜1050℃で行った
後、第1の時効処理を520℃以上630℃以下で時効
し、溶接施工により任意の形状の構造部材とし、金属製
の板で作られた容器内に当該材料を入れ、容器と共に素
材に対して100℃/時間以下の速度で昇温し、第2の
溶体化処理を730〜840℃で行い、その後炉内にお
いて100℃/時間以下の冷却速度で室温まで冷却し、
更に第2の時効処理を520℃以上630℃以下で行
い、その後炉内において100℃/時間以下の冷却速度
で室温まで冷却する構造部材の製造方法。
8. Carbon: 0.07% or less, silicon: 1% or less, manganese: 1% or less, copper: 2.5 to 5 by weight ratio
%, Nickel: 3 to 5.5%, chromium: 14 to 17.5
%, Molybdenum: 0.5% or less, niobium: 0.15-
After performing a first solution treatment at 1010 to 1050 ° C. on stainless steel of 0.45% and the balance substantially consisting of iron, the first aging treatment is aged at 520 ° C. to 630 ° C. and welded The material is put in a container made of a metal plate, and the material is heated together with the container at a rate of 100 ° C./hour or less to perform a second solution treatment. 730-840 ° C., and then cooled in the furnace to room temperature at a cooling rate of 100 ° C./hour or less,
Further, a method for producing a structural member, wherein a second aging treatment is performed at 520 ° C. or more and 630 ° C. or less, and then cooled to room temperature in a furnace at a cooling rate of 100 ° C./hour or less.
【請求項9】 第2の溶体化処理の昇温工程において素
材の温度が550℃〜620℃に達したときに当該温度
で30分〜2時間保定し、素材各部位の温度が均一化す
るのを待った後第2の溶体化処理温度まで昇温を行う請
求項5から請求項8までのいずれか1の請求項記載の構
造材の製造方法。
9. When the temperature of the material reaches 550.degree. C. to 620.degree. C. in the temperature raising step of the second solution treatment, the temperature is maintained for 30 minutes to 2 hours to equalize the temperature of each part of the material. The method for producing a structural material according to any one of claims 5 to 8, wherein the temperature is raised to a second solution heat treatment temperature after waiting.
【請求項10】第2の溶体化処理の降温工程において素
材の温度が300℃〜220℃に達したときに当該温度
で30分〜2時間保定し、素材各部位の温度が均一化す
るのを待った後室温まで降温を行う請求項5から請求項
8までのいずれか1の請求項記載の構造材の製造方法。
10. When the temperature of the raw material reaches 300 ° C. to 220 ° C. in the temperature lowering step of the second solution treatment, the temperature is maintained for 30 minutes to 2 hours to equalize the temperature of each part of the raw material. The method for producing a structural material according to any one of claims 5 to 8, wherein the temperature is lowered to room temperature after waiting.
【請求項11】第2の溶体化処理の降温工程において素
材の温度が300℃〜220℃に達したときに当該温度
で30分〜2時間保定し、素材各部位の温度が均一化す
るのを待った後室温まで降温を行う請求項9記載の構造
材の製造方法。
11. When the temperature of the raw material reaches 300.degree. C. to 220.degree. C. in the temperature lowering step of the second solution treatment, the temperature is maintained for 30 minutes to 2 hours to make the temperature of each part of the raw material uniform. The method for producing a structural material according to claim 9, wherein the temperature is lowered to room temperature after waiting.
JP26315892A 1992-02-14 1992-09-04 Structural members and their manufacturing methods Expired - Fee Related JP2786568B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP94908809A EP0625586B1 (en) 1992-09-04 1993-08-12 Structural member and process for producing the same
DE69317265T DE69317265T2 (en) 1992-09-04 1993-08-12 CONSTRUCTION ELEMENT AND THEIR PRODUCTION
KR1019940701465A KR0149740B1 (en) 1992-09-04 1993-08-12 Structural member and process for producing the same
PCT/JP1993/001137 WO1994005824A1 (en) 1992-09-04 1993-08-12 Structural member and process for producing the same
DK94908809T DK0625586T3 (en) 1992-09-04 1993-08-12 Structural element and method for making this
US08/232,191 US5599408A (en) 1992-09-04 1993-08-12 Method of producing a structural member
FI942014A FI103585B1 (en) 1992-09-04 1994-04-29 Design part and a manufacturing process for this

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4-28125 1992-02-14
JP2812592 1992-02-14

Publications (2)

Publication Number Publication Date
JPH05287461A JPH05287461A (en) 1993-11-02
JP2786568B2 true JP2786568B2 (en) 1998-08-13

Family

ID=12240072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26315892A Expired - Fee Related JP2786568B2 (en) 1992-02-14 1992-09-04 Structural members and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP2786568B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105219939B (en) * 2014-06-04 2018-05-15 沈阳透平机械股份有限公司 The double aging heat treatment process of cryogenic compressor S520B materials
CN104451422A (en) * 2014-11-14 2015-03-25 无锡信大气象传感网科技有限公司 Stainless steel elastomer material for weighing sensor
CN115029524B (en) * 2022-04-29 2024-01-19 沈阳鼓风机集团往复机有限公司 Cryogenic treatment process for S51740 material

Also Published As

Publication number Publication date
JPH05287461A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
KR0149740B1 (en) Structural member and process for producing the same
CN111492085B (en) High-strength steel material for polar environment having excellent fracture resistance at low temperature and method for producing same
CN110629102B (en) 580 MPa-level low-stress corrosion sensitivity steel for ocean engineering and production method thereof
CN110791702A (en) Marine steel plate with good welding performance and low yield ratio and manufacturing method thereof
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
CN114250416A (en) 56 kg-grade low-yield-ratio ultrahigh-strength marine steel plate and preparation method thereof
KR20230172017A (en) Corrosion-resistant high-strength steel plate for marine engineering capable of high heat input welding and method of manufacturing the same
CN112251670A (en) 690 MPa-grade steel plate with good extensibility and manufacturing method thereof
JP4754362B2 (en) Austenitic stainless hot-rolled steel with good corrosion resistance, proof stress, and low-temperature toughness, and method for producing the same
JP2786568B2 (en) Structural members and their manufacturing methods
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JPH05171341A (en) Production of thick steel plate excellent in toughness in welding heat-affected zone
WO2022054866A1 (en) Steel sheet and method for producing same
EP4071261A1 (en) Normalizing heat treated steel sheet having good low impact toughness and method for manufacturing same
JP2537118B2 (en) Method of manufacturing stress corrosion corrosion resistant ultra high strength steel
JP3192799B2 (en) Manufacturing method of structural member
JP2011052243A (en) Method for manufacturing thick high-strength steel sheet superior in characteristics of stopping propagation of brittle crack
KR930007141B1 (en) High-strength martensitic stainless steel and manufacturing method thereof
JP4673788B2 (en) Steel excellent in toughness of weld heat-affected zone and method for producing the same
JPS60181229A (en) Production of low-yield ratio high-tension thick steel plate
JP3238271B2 (en) Method for producing low temperature steel with excellent heat-affected zone toughness in large heat input welding
CN117165872B (en) Single titanium microalloyed corrosion-resistant high-strength steel with high hole expansion rate
JP3367388B2 (en) High ductility and high toughness steel sheet and manufacturing method thereof
JPH10121131A (en) Manufacture of thick high tensile steel plate excellent in brittle fracture propagation stop characteristic and weldability
CN116493756A (en) Manufacturing method of hydrogen induced cracking resistant laser welding joint of aluminum-silicon coating hot forming steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980428

LAPS Cancellation because of no payment of annual fees