JP2780271B2 - Electronic component sealing composition and resin-sealed electronic component - Google Patents

Electronic component sealing composition and resin-sealed electronic component

Info

Publication number
JP2780271B2
JP2780271B2 JP63195590A JP19559088A JP2780271B2 JP 2780271 B2 JP2780271 B2 JP 2780271B2 JP 63195590 A JP63195590 A JP 63195590A JP 19559088 A JP19559088 A JP 19559088A JP 2780271 B2 JP2780271 B2 JP 2780271B2
Authority
JP
Japan
Prior art keywords
pps
electronic component
water
sealed
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63195590A
Other languages
Japanese (ja)
Other versions
JPH0245560A (en
Inventor
英夫 松岡
安志 久保
晶 門井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16343678&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2780271(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63195590A priority Critical patent/JP2780271B2/en
Publication of JPH0245560A publication Critical patent/JPH0245560A/en
Application granted granted Critical
Publication of JP2780271B2 publication Critical patent/JP2780271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Details Of Resistors (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はポリフェニレンスルフィド樹脂を必須成分と
する電子部品封止用組成物およびポリフェニレンスルフ
ィド樹脂で被覆または封止された樹脂封止電子部品に関
し、さらに詳しくは、含窒素極性有機溶媒洗浄および酸
処理を必須とする処理により、水溶性の電解質含有量の
低減されたポリフェニレンスルフィド樹脂を必須成分と
する電子部品封止用組成物および含窒素極性有機溶媒洗
浄および酸処理を必須とする処理により、水溶性の電解
質成分含有量の低減されたポリフェニレンスルフィド樹
脂で被覆または封止された樹脂封止電子部品に関する。
Description: TECHNICAL FIELD The present invention relates to a composition for sealing an electronic component containing a polyphenylene sulfide resin as an essential component, and a resin-sealed electronic component covered or sealed with a polyphenylene sulfide resin. More specifically, a composition for encapsulating an electronic component containing a polyphenylene sulfide resin having a reduced content of a water-soluble electrolyte as an essential component and a nitrogen-containing polar organic solvent by a treatment that requires washing with a nitrogen-containing polar organic solvent and an acid treatment. The present invention relates to a resin-sealed electronic component covered or sealed with a polyphenylene sulfide resin in which the content of a water-soluble electrolyte component is reduced by a process that essentially requires solvent washing and acid treatment.

<従来の技術> 電子部品封止用樹脂として、従来の熱硬化性樹脂に代
わりに材料収率、成形速度に特徴を有する熱可塑性樹脂
が注目され、特にポリフェニレンスルフィド樹脂により
電子部品を封止することは、特開昭52−14938号公報な
どでよく知られている。さらに、ポリフェニレンスルフ
ィド樹脂中に含有される水溶性電解質成分に起因する電
子部品の電極や,配線の腐蝕による漏れ電流の増大など
の故障を低減させる目的では、水溶性の電解質成分含有
量が100ppm以下のポリフェニレンスルフィドを用いて封
止された電子部品が特開昭55−156342号公報に開示され
ている。
<Prior art> As a resin for electronic component sealing, a thermoplastic resin having characteristics in material yield and molding speed has been attracting attention instead of a conventional thermosetting resin, and in particular, electronic components are sealed with polyphenylene sulfide resin. This is well known in JP-A-52-14938. Furthermore, in order to reduce failures such as an increase in leakage current due to corrosion of the electrodes and wiring of electronic components due to the water-soluble electrolyte component contained in the polyphenylene sulfide resin, the content of the water-soluble electrolyte component is 100 ppm or less. An electronic component sealed using polyphenylene sulfide is disclosed in Japanese Patent Application Laid-Open No. 55-156342.

また、ポリフェニレンスルフィド樹脂中のオリゴマを
除去する目的で、一般成形用高粘度PPSを有機溶媒洗浄
することも知られている。(例えば特開昭62−148567号
公報、特開昭62−151462号公報)。
It is also known to wash high-viscosity PPS for general molding with an organic solvent in order to remove oligomers in the polyphenylene sulfide resin. (For example, JP-A-62-148567 and JP-A-62-151462).

<発明が解決しようとする課題> 前記特開昭55−156342号公報で開示されている樹脂封
止電子部品においては、用いられるポリフェニレンスル
フィド樹脂中の水溶性電解質成分含有量を低減させる方
法として、120℃以下の熱水で洗浄することことが提案
されているが、この方法においては、水溶性電解質成分
の低減に多大の時間を要するという欠点がある。
<Problems to be Solved by the Invention> In the resin-sealed electronic component disclosed in the above-mentioned JP-A-55-156342, as a method for reducing the content of a water-soluble electrolyte component in a polyphenylene sulfide resin used, Although washing with hot water of 120 ° C. or lower has been proposed, this method has a drawback that it takes a long time to reduce the amount of the water-soluble electrolyte component.

そこで、本発明は、ポリフェニレンスルフィド中の水
溶性の電解質成分含有量を短時間で効率的に低減させる
ことを課題とする。
Therefore, an object of the present invention is to efficiently reduce the content of a water-soluble electrolyte component in polyphenylene sulfide in a short time.

<課題を解決するための手段> 本発明者らは上記課題を解決すべく鋭意検討を行なっ
た結果、封止用に適した低粘度ポリフェニレンスルフィ
ドに、従来高粘度ポリフェニレンスルフィドの脱オリゴ
マ化に公知であった、含窒素極性有機溶媒および酸処理
による洗浄を施すことにより、特異的に水溶性の電解質
成分含有量、特に該用途で問題となる、ナトリウム・イ
オン、塩素イオン含有量が極めて短時間で低減されるこ
とおよび酸処理と組合わさるとさらに効果が大きいこと
を見出し本発明に到達した。
<Means for Solving the Problems> The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have known low-viscosity polyphenylene sulfide suitable for sealing and conventionally known for de-oligomerization of high-viscosity polyphenylene sulfide. Washing with a nitrogen-containing polar organic solvent and an acid treatment resulted in a very short time reduction of the content of water-soluble electrolyte components specifically, especially the content of sodium ion and chloride ion, which is a problem in this application. The present invention has been found that the effect is further reduced when combined with an acid treatment, and the effect is further enhanced.

すなわち、本発明は、(1)含窒素極性有機溶媒によ
る洗浄および酸処理を施されたポリフェニレンスルフィ
ド樹脂を必須成分とする電子部品封止用組成物、(2)
上記(1)においてポリフェニレンスルフィド樹脂が溶
融粘度290ポイズ以下(300℃、剪断速度500秒-1)のポ
リフェニレンスルフィド樹脂である電子部品封止用組成
物および(3)含窒素極性有機溶媒による洗浄および酸
処理を施されたポリフェニレンスルフィド樹脂で被覆ま
たは封止された樹脂封止電子部品である。
That is, the present invention provides (1) a composition for sealing electronic components, which comprises, as an essential component, a polyphenylene sulfide resin which has been washed with a nitrogen-containing polar organic solvent and subjected to an acid treatment;
In the above (1), the composition for sealing electronic parts, wherein the polyphenylene sulfide resin is a polyphenylene sulfide resin having a melt viscosity of 290 poise or less (300 ° C., shear rate 500 sec- 1 ), and (3) washing with a nitrogen-containing polar organic solvent It is a resin-sealed electronic component covered or sealed with an acid-treated polyphenylene sulfide resin.

本発明で使用するポリフェニレンスルフィド(以下PP
Sと称する)とは構造式 で示される繰返し単位を70モル%以上、より好ましくは
90モル%以上を含む重合体であり、上記繰返し単位が70
モル%以上未満では耐熱性が損なわれるため好ましくな
い。
The polyphenylene sulfide used in the present invention (hereinafter referred to as PP
S) is a structural formula At least 70 mol%, more preferably
A polymer containing at least 90 mol%, wherein the repeating unit is 70
If it is less than mol%, heat resistance is impaired, which is not preferable.

PPSは一般に、特公昭45−3368号公報で代表される製
造法により選られる比較的分子量の小さい重合体と、特
公昭52−12240号公報で代表される製造法により得られ
る本質的に線状で比較的高分子量の重合体等があり、前
記特公昭45−3368号公報記載の方法で得られた重合体に
おいては、重合後、酸素雰囲気下において加熱すること
により、あるいは過酸化物の架橋剤を添加して加熱する
ことにより高重合度化して用いることも可能であり、本
発明においてはいかなる方法により得られたPPSを用い
ることも可能である。
PPS is generally a polymer having a relatively small molecular weight selected by the production method represented by JP-B-45-3368 and an essentially linear polymer obtained by the production method represented by JP-B-52-12240. In the polymer obtained by the method described in JP-B-45-3368, by heating in an oxygen atmosphere after polymerization, or by crosslinking of peroxide. It is also possible to increase the degree of polymerization by adding an agent and heating it. In the present invention, it is possible to use PPS obtained by any method.

また、PPSはその繰返し単位の30モル%未満を下記の
構造式を有する繰返し単位等で構成することが可能であ
る。
In addition, the PPS can constitute less than 30 mol% of the repeating unit with a repeating unit having the following structural formula.

本発明で用いられるPPSの溶融粘度は、電子素子を破
損することなく成形するために低粘度である必要があ
る。通常、290ポイズ以下(300℃、剪断速度500秒-1
のPPSが用いられる。特にトランジスタ、ICなどボンデ
ングワイヤを有する素子を封止する場合は素子の破損を
回避するために溶融粘度の低いものが好ましく用いられ
る。
The melt viscosity of the PPS used in the present invention needs to be low in order to form the electronic element without damaging it. Normally, 290 poise or less (300 ° C, shear rate 500 sec- 1 )
PPS is used. In particular, when sealing a device having a bonding wire such as a transistor or an IC, a device having a low melt viscosity is preferably used in order to avoid breakage of the device.

また、本発明で用いるPPSには、本発明の効果を損な
わない範囲、酸化防止剤、熱安定剤、滑剤、結晶核剤、
紫外線防止剤、銅害防止剤、着色剤、離型剤等の通常の
添加剤を添加することができ、更に、PPSの架橋度を制
御する目的で、過酸化剤等の架橋促進剤、または特開58
−204045号公報、特開昭58−204046号公報などに記載さ
れているジアルキル錫ジカルボキシレート、アミノトリ
アゾールなどの架橋促進剤を配合することも可能であ
る。
Further, in the PPS used in the present invention, a range that does not impair the effects of the present invention, an antioxidant, a heat stabilizer, a lubricant, a crystal nucleating agent,
Usual additives such as an ultraviolet ray inhibitor, a copper damage inhibitor, a coloring agent, and a release agent can be added, and further, for the purpose of controlling the degree of crosslinking of PPS, a crosslinking accelerator such as a peroxide agent, or JP 58
It is also possible to add a crosslinking accelerator such as dialkyltin dicarboxylate and aminotriazole described in JP-A-204045 and JP-A-58-204046.

本発明において、PPSを含窒素極性有機溶媒による洗
浄および酸処理をすることが必須であり、両者を組合わ
せる場合、有機溶媒による洗浄と酸処理の順序は特に制
限はない。
In the present invention, it is essential to wash and acidify PPS with a nitrogen-containing polar organic solvent, and when both are combined, the order of washing with an organic solvent and acid treatment is not particularly limited.

本発明でPPSの洗浄に用いる含窒素極性有機溶媒、PPS
を分解する作用を有しないものでなければ特に制限はな
く、例えばN−メチルピロリドン、ジメチルホルムアミ
ド、ジメチルアセトアミド、1,3−ジメチルイミダゾリ
ジノン、ヘキサメチルホスホラスアミド、ピペラジノン
類などの含窒素極性溶媒が挙げられる。これらの含窒素
極性有機溶媒のうちでも、N−メチルピロリドン、ジメ
チルホルムアミドなどの使用が特に好ましい。また、こ
れらの有機溶媒は、1種または2種以上の混合で使用さ
れる。
Nitrogen-containing polar organic solvent used for cleaning PPS in the present invention, PPS
There is no particular limitation as long as it does not have the action of decomposing N-methylpyrrolidone, dimethylformamide, dimethylacetamide, 1,3-dimethylimidazolidinone, hexamethylphosphorasamide, nitrogen-containing polarities such as piperazinones Solvents. Among these nitrogen-containing polar organic solvents, use of N-methylpyrrolidone, dimethylformamide and the like is particularly preferable. These organic solvents are used alone or in combination of two or more.

有機溶媒による洗浄の方法としては、有機溶媒中にPP
Sを浸漬しせめる等の方法があり、必要により適宜撹拌
または加熱することも可能である。
As a method of washing with an organic solvent, PP in an organic solvent is used.
There are methods such as immersion of S, and if necessary, stirring or heating can also be performed.

また、有機溶媒による洗浄の時期についてはPPSの重
合後なら特に制限はなく、重合後、後処理/乾燥を終え
たPPSを有機溶媒洗浄に供することも可能であるし、重
合後の重合溶媒で湿潤状態のPPSをそのまま有機溶媒洗
浄することも可能であり、さらにはPPS重合終了後の反
応混合物を洗浄用有機溶媒中に投入あるいは反応混合物
中に洗浄用有機溶媒を添加して洗浄することも可能であ
る。
The timing of washing with an organic solvent is not particularly limited as long as it is after the polymerization of PPS, and after polymerization, it is possible to subject the post-treated / dried PPS to organic solvent washing, and use a polymerization solvent after polymerization. The PPS in a wet state can be washed with an organic solvent as it is, and furthermore, the reaction mixture after the completion of the PPS polymerization can be poured into the washing organic solvent or washed by adding the washing organic solvent into the reaction mixture. It is possible.

有機溶媒でPPSを洗浄する際の洗浄温度については特
に制限はなく、常温〜300℃程度の任意の温度が選択で
きる。洗浄温度が高くなる程洗浄効率が高くなる傾向が
あるが、通常は常温〜150℃の洗浄温度で十分効果が得
られる。
The washing temperature when washing PPS with an organic solvent is not particularly limited, and an arbitrary temperature from ordinary temperature to about 300 ° C. can be selected. Although the cleaning efficiency tends to increase as the cleaning temperature increases, a sufficient effect is usually obtained at a cleaning temperature of room temperature to 150 ° C.

圧力容器中で、有機溶媒の沸点以上の温度で加圧下に
洗浄することも可能である。また、洗浄時間についても
特に制限はない。洗浄条件にもよるが、バッチ式洗浄の
場合、通常5分間以上洗浄することにより、十分な効果
が得られる。また連続式で洗浄することも可能である。
It is also possible to wash under pressure at a temperature equal to or higher than the boiling point of the organic solvent in a pressure vessel. There is no particular limitation on the cleaning time. Although depending on the washing conditions, in the case of batch washing, a sufficient effect is usually obtained by washing for 5 minutes or more. It is also possible to wash in a continuous manner.

重合により生成したPPSを有機溶媒で洗浄するのみで
十分であるが、本発明の効果をさらに発揮させるため
に、水洗浄または温水洗浄と組合わせるのが好ましい。
また、N−メチルピロリドンなどの高沸点水溶性有機溶
媒を用いた場合は、有機溶媒洗浄後、水または温水で洗
浄することにより、残存有機溶媒の除去が容易に行なえ
て好ましい。これらの洗浄に用いる水は蒸溜水、脱イオ
ン水であることが好ましい。
It is sufficient only to wash the PPS produced by the polymerization with an organic solvent, but it is preferable to combine the PPS with water washing or warm water washing in order to further exert the effects of the present invention.
When a high-boiling water-soluble organic solvent such as N-methylpyrrolidone is used, it is preferable to wash the organic solvent and then wash it with water or warm water because the remaining organic solvent can be easily removed. The water used for these washings is preferably distilled water or deionized water.

本発明でPPSの酸処理に用いる酸は、PPSを分解する作
用を有しないものであれば特に制限はなく、塩酸、硫
酸、酢酸、リン酸、珪酸、炭酸、プロピル酸などがあげ
られ、中でも塩酸、酢酸がより好ましく用いられ得る
が、硝酸のようなPPSを分解、劣化させるものは好まし
くない。酸処理の方法は、酸または酸の水溶液にPPSを
浸漬せしめるなどの方法があり、必要により適宜撹拌ま
たは加熱することも可能であり、塩酸を用いる場合、pH
2の水溶液中に約30分間浸漬せしめることにより十分な
効果が得られる。さらに酸処理後、残留している酸、塩
などを物理的に除去するため水または温水で数回洗浄す
ることが好ましい。
The acid used for the acid treatment of PPS in the present invention is not particularly limited as long as it does not have an action of decomposing PPS, and examples thereof include hydrochloric acid, sulfuric acid, acetic acid, phosphoric acid, silicic acid, carbonic acid, and propyl acid. Hydrochloric acid and acetic acid can be more preferably used, but those which decompose and degrade PPS such as nitric acid are not preferred. Examples of the acid treatment method include a method of immersing PPS in an acid or an aqueous solution of an acid, and it is also possible to appropriately stir or heat if necessary.
A sufficient effect can be obtained by immersing in the aqueous solution of No. 2 for about 30 minutes. Further, after the acid treatment, it is preferable to wash several times with water or warm water in order to physically remove the remaining acids and salts.

PPSを有機溶媒洗浄および酸処理することにより本発
明の効果は十分に発揮されるが、さらに熱水洗浄と組み
合わせるとよりよい効果が得られて好ましい。
Although the effects of the present invention are sufficiently exhibited by washing the PPS with an organic solvent and treating with an acid, it is preferable to combine PPS with hot water washing to obtain better effects.

熱水洗浄は熱水の温度が高いほど、PPS中に酸、塩な
どの形で存在する水溶性電解質成分の物理的除去の効率
が優れ、さらに加水分解可能な電解質成分を有するポリ
マ末端などの化学的変性の効率も優れ好ましい。熱水の
温度は好ましくは100℃以上、より好ましくは150℃以
上、さらに好ましくは170℃以上が選択される。
In hot water washing, the higher the temperature of hot water, the higher the efficiency of physical removal of the water-soluble electrolyte component present in the form of acids, salts, etc. in PPS, and furthermore, such as polymer termination having a hydrolyzable electrolyte component The efficiency of chemical denaturation is also excellent and preferred. The temperature of the hot water is preferably selected to be 100 ° C. or higher, more preferably 150 ° C. or higher, and further preferably 170 ° C. or higher.

洗浄に使用する水は蒸溜水あるいは、脱イオン水など
の水溶性の電解質成分含有量の少ないものが好ましく、
水の電気伝導度が1μs/cm以下、より好ましくは0.5μs
/cm以下のものが用いられる。
The water used for washing is preferably distilled water or one having a low content of water-soluble electrolyte components such as deionized water,
Electric conductivity of water is 1 μs / cm or less, more preferably 0.5 μs
/ cm or less is used.

洗浄操作は、通常所定量の水に所定量のPPSを投入
し、圧力容器中で加熱、撹拌することにより行われる。
PPSと水との割合は、水の多いほうが好ましいが通常水
1に対し、PPS200g以下の浴比が選択される。また洗
浄の雰囲気は不活性雰囲気とする必要はなく、PPS未満
の好ましい化学変性のためには酸素雰囲気下で洗浄を行
なうことが望ましい。
The washing operation is usually performed by adding a predetermined amount of PPS to a predetermined amount of water, heating and stirring in a pressure vessel.
The ratio of PPS to water is preferably as high as possible, but a bath ratio of 200 g or less of PPS to 1 water is usually selected. The cleaning atmosphere does not need to be an inert atmosphere, and it is desirable to perform the cleaning in an oxygen atmosphere for a preferable chemical modification below PPS.

さらに洗浄操作を終えたPPSは、残留している塩など
を物理的に除去するため温水で数回洗浄するのが好まし
い。
Further, the PPS after the washing operation is preferably washed several times with warm water in order to physically remove remaining salts and the like.

本発明で酸処理に供するPPSは粉粒体であることが好
ましく、特に微細な粉体であることが酸処理の効率上好
ましい。通常公知の方法で製造されるPPSは粉粒体の形
で得られるため、これらをペレタイズすることなく用い
て酸処理を行なうのが好ましく、特に水溶性の電解質成
分含有量を極めて小さな値とすることが要求される場合
は、分級あるいは粉砕して用いることも可能である。
The PPS to be subjected to the acid treatment in the present invention is preferably in the form of a powder, and particularly preferably a fine powder in terms of the efficiency of the acid treatment. Usually, PPS produced by a known method is obtained in the form of powder and granules, and therefore, it is preferable to perform acid treatment using these without pelletizing, and particularly to make the content of the water-soluble electrolyte component extremely small. If required, it can be classified or crushed before use.

さらに本発明においては有機溶媒による洗浄および酸
処理を施されたPPSを必須成分として封止された電子部
品の寸法安定性、機械特性あるいは熱伝導特性などの改
善の目的で、溶融シリカ、結晶製シリカ、珪酸カルシウ
ム、硫酸カルシウム、マイカ、タルク、ガラス繊維、ガ
ラスビーズなどの無機充填剤を配合することが好まし
く、これら充填剤中の水溶性電解質成分含有量も小さい
ことが望ましい。これら充填剤は2種以上を併用するこ
とも可能であり、必要によりシラン系およびチタン系の
カップリング剤で予備処理して使用することができる。
また、これらカップリング剤で予備処理して供すること
ができる。また、これらカップリング剤は封止樹脂と電
子素子との密着性を改善する目的で、PPSに直接配合す
ることも可能である。
Furthermore, in the present invention, for the purpose of improving the dimensional stability, mechanical properties, heat conduction properties, etc. of electronic components sealed with PPS that has been washed with an organic solvent and subjected to acid treatment as an essential component, fused silica and crystals are used. It is preferable to mix inorganic fillers such as silica, calcium silicate, calcium sulfate, mica, talc, glass fiber and glass beads, and it is also desirable that the content of the water-soluble electrolyte component in these fillers is small. Two or more of these fillers can be used in combination, and if necessary, can be used after being pretreated with a silane-based and titanium-based coupling agent.
Moreover, it can presuppose with these coupling agents and can provide. Further, these coupling agents can be directly mixed with PPS for the purpose of improving the adhesion between the sealing resin and the electronic element.

本発明の組成物の調製手段は特に制限はないが、PPS
と無機充填剤とをPPSの融点以上の温度で、押出機内で
溶融混練後ペレタイズする方法が代表的である。
The means for preparing the composition of the present invention is not particularly limited.
A typical method is to melt-knead the mixture with an inorganic filler at a temperature not lower than the melting point of PPS in an extruder and then pelletize.

本発明の電子部品は、通常電子部品の概念で考えられ
るものであれば特に制限はないが、例えば、コンデンサ
ー、抵抗器、集積回路(IC)、トランジスター、ダイオ
ード、トライオード、サイリスター、コイル、バリスタ
ー、コネクター、変換器、マイクロスイッチなどおよび
これらの複合部品が挙げられる。
The electronic component of the present invention is not particularly limited as long as it can be generally considered in the concept of an electronic component. For example, a capacitor, a resistor, an integrated circuit (IC), a transistor, a diode, a triode, a thyristor, a coil, and a varistor , Connectors, transducers, microswitches, and the like, and composite parts thereof.

本発明におけるPPSによる被覆または封止方法にも特
に制限はなく、金型中に電子素子を固定しておき射出成
形あるいはトランスファー成形で成形する方法、あるい
は、あらかじめフィルム状に成形してあるPPSを用い
て、加熱、加圧下に封包する方法等が挙げられる。
There is no particular limitation on the method of coating or sealing with PPS in the present invention, and a method in which an electronic element is fixed in a mold and molded by injection molding or transfer molding, or a PPS previously molded into a film is used. And a method of sealing under heat and pressure.

さらに、本発明の樹脂封止電子部品は、成形後過酸化
水素水などの過酸化物で処理すること、あるいはPPSの
融点以下の温度で熱処理することにより、架橋度または
結晶化度を増大させ、機械特性などを改善することが可
能である。
Further, the resin-encapsulated electronic component of the present invention may be treated with a peroxide such as hydrogen peroxide solution after molding, or heat-treated at a temperature equal to or lower than the melting point of PPS to increase the degree of crosslinking or crystallinity. It is possible to improve mechanical characteristics and the like.

以下に実施例を挙げて本発明をさらに詳細に説明す
る。
Hereinafter, the present invention will be described in more detail with reference to Examples.

<実施例> 参考例1(PPSの重合) オートクレーブに30%水硫化ナトリウム水溶液4.67kg
(水硫化ナトリウム25モル)、30%水酸化ナトリウム2.
00kg(水酸化ナトリウム25モル)およびN−メチル−2
−ピルリドン(以下NMPと略する)8kgを仕込み、撹拌し
ながら徐々に205℃まで昇温し、水3.8kgを含む留出水4.
1を除去した。残留混合物に1,4−ジクロルベンゼン3.
75kg(25.5モル)およびNMP2kgを加え230℃で2時間、
さらに260℃で1時間加熱した。
<Example> Reference Example 1 (Polymerization of PPS) 4.67 kg of 30% aqueous sodium hydrosulfide solution in an autoclave
(25 mol of sodium hydrosulfide), 30% sodium hydroxide 2.
00 kg (25 mol of sodium hydroxide) and N-methyl-2
-Charge 8 kg of pyridone (hereinafter abbreviated as NMP), gradually raise the temperature to 205 ° C. while stirring, and distillate containing 3.8 kg of water 4.
One was removed. 1,4-Dichlorobenzene 3.
75 kg (25.5 mol) and 2 kg of NMP were added and the mixture was added at 230 ° C for 2 hours.
Further heating was performed at 260 ° C. for 1 hour.

反応生成物を、水で2回、70℃の温水で5回洗浄し、
80℃で24時間減圧乾燥して、以下の実施例に使用した。
The reaction product was washed twice with water and five times with 70 ° C. hot water,
It dried under reduced pressure at 80 degreeC for 24 hours, and was used for the following Examples.

なお、得られた粉末状PPSの量は約2.5kgあり、溶融粘
度は70ポイズ(300℃剪断速度500秒-1であった。また、
乾燥した粉末20gと100ccのイオン交換水を耐圧容器に封
入して、160℃で20時間保持した抽出液について測定し
たナトリウムおよび塩素含有量はPPSの重量基準で、そ
れぞれ724ppm、755ppmであり、抽出液の電気伝導度は52
3μs/cmであった。
In addition, the amount of the obtained powdered PPS was about 2.5 kg, and the melt viscosity was 70 poise (300 ° C. shear rate was 500 sec- 1 .
20 g of dried powder and 100 cc of ion-exchanged water were sealed in a pressure-resistant container, and the sodium and chlorine contents measured for the extract kept at 160 ° C. for 20 hours were 724 ppm and 755 ppm, respectively, based on the weight of PPS. Liquid conductivity is 52
It was 3 μs / cm.

実施例1 参考例1で得られた粉末約2kgを100℃に加熱したNMP2
0リットル中に投入し、約30分間撹拌した後、濾過し、
続いて約90℃のイオン交換水で洗浄した。
Example 1 About 2 kg of the powder obtained in Reference Example 1 was heated to 100 ° C. NMP2
0 liter, stirred for about 30 minutes, filtered,
Subsequently, the substrate was washed with ion-exchanged water at about 90 ° C.

次に上記で得られた湿潤状態のPPSを室温に保持して
あるpH2の塩酸に30分間浸漬せしめた後、濾過し、さら
に濾液のpHが7となるまで室温のイオン交換水で洗浄し
た。この湿潤状態のPPSとイオン交換水とをオート・ク
レーブに仕込み、常圧で密閉した後、撹拌しつつ180℃
に昇温し、約2時間保温した後冷却した。オート・クレ
ーブから内容物を取り出し濾過し、さらに濾液のpHが7
となるまで室温のイオン交換水で洗浄した後120℃で24
時間減圧乾燥して粉末状とした。
Next, the wet PPS obtained above was immersed in hydrochloric acid of pH 2 kept at room temperature for 30 minutes, filtered, and further washed with ion-exchanged water at room temperature until the pH of the filtrate reached 7. This wet PPS and ion-exchanged water were charged into an autoclave, sealed at normal pressure, and then stirred at 180 ° C.
, And after keeping the temperature for about 2 hours, it was cooled. The contents were taken out of the autoclave and filtered.
After washing with ion-exchanged water at room temperature until
The mixture was dried under reduced pressure for hours to obtain a powder.

引き続き、粉末状PPSとシラッカップリング剤(トー
レ・シリコーン(株)製AY43−031)で処理(対溶融シ
リカ1重量%)しか溶融シリカ(東芝セラミックス
(株)製GR−80)との40対60の重量比でドライブレンド
し、310℃に設定してある30mmφの2軸スクリュー押出
機に供給し、溶融混練してペレット化した。
Subsequently, the powder PPS was treated with a scillar coupling agent (AY43-031 manufactured by Toray Silicone Co., Ltd.) (1% by weight based on fused silica), and only 40% of fused silica (GR-80 manufactured by Toshiba Ceramics Co., Ltd.) was used. The dry blend was carried out at a weight ratio of 60, supplied to a twin screw extruder of 30 mmφ set at 310 ° C., melt-kneaded and pelletized.

次に、このペレットを320℃に設定したスクリューイ
ンライン型射出成形機に供給し、160〜180℃の温度に設
定してある金型に、第1図の電子部品の概略図に示すア
ルミ回路を装着したシリコーンチップをインサートし、
射出圧力50〜100kgf/cmで封止成形を行ない、16ピンDIP
型ICを得た。
Next, the pellets are supplied to a screw in-line type injection molding machine set at 320 ° C., and the aluminum circuit shown in the schematic diagram of the electronic component in FIG. 1 is placed in a mold set at a temperature of 160 to 180 ° C. Insert the attached silicone chip,
Encapsulation molding with injection pressure of 50-100kgf / cm, 16-pin DIP
Type IC was obtained.

なお、第1図は電子部品の概略図であり、アイランド
(17)上にアルミ回路(19,20)を蒸着したシリコーン
チップ(18)が外部リード(1〜16)から構成されてお
り、外部リード3−6及び11−14間がボンディング・ワ
イヤ(3a,6a,11a,14a)により、アルミ回路と接続され
導通した状態となっている。
FIG. 1 is a schematic view of an electronic component, in which a silicon chip (18) on which an aluminum circuit (19, 20) is deposited on an island (17) is composed of external leads (1 to 16). The leads 3-6 and 11-14 are connected to the aluminum circuit by bonding wires (3a, 6a, 11a, 14a) and are in a conductive state.

得られたPPS封止DIP型ICの外部リード3−11間(1
図)にDC20Vのバイアス電圧を印加し、121℃、2気圧の
加圧水蒸気中に100時間放置した後、アルミ回路の腐食
による断線数を測定し不良品率を調べたところ第1表に
記載の通りであった。
Between the external leads 3-11 of the obtained PPS sealed DIP type IC (1
After applying a bias voltage of DC 20V to the sample and leaving it in pressurized steam at 121 ° C and 2 atm for 100 hours, the number of disconnections due to corrosion of the aluminum circuit was measured and the defective product ratio was determined. It was right.

実施例2 実施例1で酸処理にpH2の塩酸を用いた代わりにpH2の
酢酸で処理したことのほかは、実施例1と全く同様の方
法でPPS封止DIP型ICを得た。
Example 2 A PPS-sealed DIP-type IC was obtained in exactly the same manner as in Example 1 except that the acid treatment was performed with acetic acid at pH2 instead of using hydrochloric acid at pH2.

評価結果は第1表に記載の通りであった。 The evaluation results were as described in Table 1.

実施例3 実施例1でNMP洗浄に続いて塩酸処理の順序で行なわ
ず、塩酸処理に続いてNMP洗浄の順序で行なったことの
他は実施例1と全く同様の方法でPPS封止DIP型ICを得
た。評価結果は第1表に記載の通りであった。
Example 3 A PPS-encapsulated DIP type was manufactured in exactly the same manner as in Example 1 except that the NMP cleaning was not performed in the order of the hydrochloric acid treatment in Example 1 but the hydrochloric acid treatment was performed in the order of the NMP cleaning. I got an IC. The evaluation results were as described in Table 1.

実施例4 実施例1で有機溶媒洗浄に100℃のNMPを使用した代わ
りに参考例1と全く同様に重合操作を行ない、得られた
反応混合物をNMP20中に投入し、約30分間撹拌後、
過して生成PPSを単離し、70℃の温水で5回洗浄したこ
とのほかは、実施例1と全く同様の方法でPPS封止DIP型
ICを得た。評価結果は第1表に記載の通りであった。
Example 4 Instead of using NMP at 100 ° C. for washing the organic solvent in Example 1, a polymerization operation was performed in exactly the same manner as in Reference Example 1, and the obtained reaction mixture was poured into NMP20, and stirred for about 30 minutes.
PPS-encapsulated DIP type was performed in exactly the same manner as in Example 1, except that the produced PPS was isolated and washed five times with 70 ° C. hot water.
I got an IC. The evaluation results were as described in Table 1.

実施例5、6 実施例1と同様の方法で有機溶媒洗浄および酸処理を
行なったPPS粉末、溶融シリカおよびガラス繊維(日本
電子硝子(株)製TN−103)とを第1表に記載の割合で
実施例1と同様の方法で、溶融混練、封止成形を行な
い、PPS封止DIP型ICを得た。評価結果は第1表に記載の
通りであった。
Examples 5 and 6 PPS powder, fused silica and glass fibers (TN-103 manufactured by JEOL Ltd.), which had been washed with an organic solvent and treated with an acid in the same manner as in Example 1, were listed in Table 1 Melt kneading and sealing molding were performed in the same manner as in Example 1 to obtain a PPS sealed DIP type IC. The evaluation results were as described in Table 1.

比較例1 実施例1でPPSに有機溶媒洗浄および酸処理を行なわ
ず、参考例1で得られたPPS粉末をそのまま用いたこと
の他は、実施例1と全く同様の方法でPPS封止DIP型ICを
得た。評価結果は第1表に記載の通りであった。
Comparative Example 1 PPS-encapsulated DIP was performed in exactly the same manner as in Example 1, except that the PPS was not subjected to organic solvent washing and acid treatment in Example 1, but the PPS powder obtained in Reference Example 1 was used as it was. Type IC was obtained. The evaluation results were as described in Table 1.

比較例2 参考例1と全く同様に重合操作を行ない、反応混合物
を得た。この反応混合物から生成PPSを単離し、水で2
回、70℃の温水で5回洗浄した後、湿潤状態のPPSとイ
オン交換水とをオート・クレーブに仕込み、常圧で密閉
した後、撹拌しつつ180℃に昇温し、約2時間保温した
後冷却した。オートクレーブから内容物を取り出し過
し、室温のイオン交換水で洗浄した後120℃で24時間減
圧乾燥して粉末状とした。
Comparative Example 2 A polymerization operation was performed in exactly the same manner as in Reference Example 1 to obtain a reaction mixture. The resulting PPS is isolated from the reaction mixture and
After washing 5 times with hot water at 70 ° C 5 times, wet PPS and ion-exchanged water were charged into an autoclave, sealed at normal pressure, and then heated to 180 ° C with stirring and kept warm for about 2 hours. After cooling. The contents were taken out of the autoclave, washed with ion-exchanged water at room temperature, and dried under reduced pressure at 120 ° C. for 24 hours to obtain a powder.

このようにして得られたPPS粉末を実施例1のPPS粉末
の代わりに用いたことの他は、実施例1と全く同様の方
法でPPS封止DIP型ICを得た。評価結果は第1表に記載の
通りであった。
A PPS-sealed DIP IC was obtained in exactly the same manner as in Example 1, except that the PPS powder thus obtained was used in place of the PPS powder of Example 1. The evaluation results were as described in Table 1.

比較例3 参考例1と全く同様に重合操作を行ない、反応混合物
を得た。この反応混合物から生成PPSを単離し、水で2
回、70℃の温水で5回洗浄した後、湿潤状態のPPSを室
温に保持してあるpH2の塩酸に30分間浸漬せしめた後、
過し、さらに、液のpHが7となるまで120℃で24時
間減圧乾燥して粉末状とした。
Comparative Example 3 A polymerization operation was performed in exactly the same manner as in Reference Example 1 to obtain a reaction mixture. The resulting PPS is isolated from the reaction mixture and
After washing 5 times with warm water at 70 ° C., the wet PPS was immersed in hydrochloric acid of pH 2 kept at room temperature for 30 minutes,
The solution was further dried under reduced pressure at 120 ° C. for 24 hours until the pH of the solution reached 7, to obtain a powder.

このようにして得られたPPS粉末を実施例1のPPS粉末
の代わりに用いたことのほかは、実施例1と全く同様の
方法でPPS封止DIP型ICを得た。評価結果は第1表に記載
の通りであった。
A PPS-sealed DIP IC was obtained in exactly the same manner as in Example 1, except that the PPS powder thus obtained was used in place of the PPS powder of Example 1. The evaluation results were as described in Table 1.

比較例4 比較例2と同様の方法で得られたPPS粉末、溶融シリ
カおよびガラス繊維とを第1表に記載の割合で実施例1
と同様の方法で溶融混練、封止成形を行ない、PPS封止D
IP型ICを得た。評価結果は第1表に記載の通りであっ
た。
Comparative Example 4 PPS powder, fused silica and glass fiber obtained in the same manner as in Comparative Example 2 were mixed in the proportions shown in Table 1 in Example 1.
Perform melt-kneading and seal molding in the same manner as in
IP type IC was obtained. The evaluation results were as described in Table 1.

比較例5 比較例3と同様の方法で得られたPPS粉末、溶融シリ
カおよびガラス繊維とを、第1表に記載の割合で実施例
1と同様の方法で溶融混練、防止成形を行ない、PPS封
止DIP型ICを得た。評価結果は第1表に記載の通りであ
った。
Comparative Example 5 PPS powder, fused silica and glass fibers obtained by the same method as in Comparative Example 3 were melt-kneaded and preventively molded in the same manner as in Example 1 at the ratios shown in Table 1 to give PPS. A sealed DIP type IC was obtained. The evaluation results were as described in Table 1.

比較例6 参考例1で得られた粉末約2kgを100℃に加熱したNMP2
0リットル中に投入し、約30分間撹拌した後、濾過し、
続いて約90℃のイオン交換水で洗浄した。
Comparative Example 6 NMP2 obtained by heating about 2 kg of the powder obtained in Reference Example 1 to 100 ° C.
0 liter, stirred for about 30 minutes, filtered,
Subsequently, the substrate was washed with ion-exchanged water at about 90 ° C.

次に上記で得られた湿潤状態のPPSとイオン交換水と
をオート・クレーブに仕込み、常圧で密閉した後、撹拌
しつつ180℃に昇温し、約2時間保温した後冷却した。
オートクレーブから内容物を取り出し濾過し、さらに濾
液のpHが7となるまで室温のイオン交換水で洗浄した後
120℃で24時間減圧乾燥して粉末状とした。
Next, the wet PPS and ion-exchanged water obtained above were charged into an autoclave, sealed at normal pressure, heated to 180 ° C. with stirring, kept warm for about 2 hours, and cooled.
The contents were taken out of the autoclave, filtered and washed with ion-exchanged water at room temperature until the pH of the filtrate reached 7.
The powder was dried under reduced pressure at 120 ° C. for 24 hours.

得られたPPSについて参考例1と全く同様の方法で抽
出操作を行ない得られた粉末を230℃で3時間空気雰囲
気中でキュアリングを行なった。得られたPPS粉末の溶
融粘度は350ポイズ(300℃、剪断速度500秒-1)であっ
た。引き続いき、実施例1と同様の方法でPPS封止DIP型
ICを得たが、インサート素子の金線に断線が発生した。
The obtained PPS was subjected to an extraction operation in exactly the same manner as in Reference Example 1, and the obtained powder was cured at 230 ° C. for 3 hours in an air atmosphere. The melt viscosity of the obtained PPS powder was 350 poise (300 ° C., shear rate 500 sec- 1 ). Subsequently, in the same manner as in Example 1, the PPS sealed DIP type
IC was obtained, but the gold wire of the insert element was broken.

<発明の効果> 本発明の電子部品封止用ポリフェニレンスルフィド組
成物およびPPS樹脂封止電子部品は、封止樹脂中の水溶
性の電解質成分含有量が極めて少なく、耐湿性に代表さ
れる信頼性が極めて優れる。
<Effects of the Invention> The polyphenylene sulfide composition for sealing electronic parts and the PPS resin-sealed electronic parts of the present invention have a very low content of water-soluble electrolyte components in the sealing resin, and have reliability represented by moisture resistance. Is extremely excellent.

【図面の簡単な説明】 第1図は本発明の各実施例で使用したアルミ回路を蒸着
させたシリコーンチップの概略図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a silicon chip on which an aluminum circuit is deposited, used in each embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 3/28 (56)参考文献 特開 昭62−253626(JP,A) 特開 昭62−150752(JP,A) 特開 昭63−146963(JP,A) 特開 昭61−55148(JP,A) 特開 昭58−185627(JP,A) 特開 昭62−172026(JP,A) 特開 昭62−252430(JP,A) 特開 昭62−549(JP,A) 特開 平1−240529(JP,A) (58)調査した分野(Int.Cl.6,DB名) C08L 81/02 C08G 75/02 - 75/10──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI H05K 3/28 (56) References JP-A-62-253626 (JP, A) JP-A-62-150752 (JP, A) JP-A-63-146963 (JP, A) JP-A-61-55148 (JP, A) JP-A-58-185627 (JP, A) JP-A-62-172026 (JP, A) JP-A-62-252430 (JP, A) JP, A) JP-A-62-549 (JP, A) JP-A-1-240529 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C08L 81/02 C08G 75/02 -75/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】含窒素極性有機溶媒による洗浄および酸処
理を施されたポリフェニレンスルフィド樹脂を必須成分
とする電子部品封止用組成物。
An electronic component sealing composition comprising a polyphenylene sulfide resin, which has been washed with a nitrogen-containing polar organic solvent and subjected to an acid treatment, as an essential component.
【請求項2】ポリフェニレンスルフィド樹脂が溶融粘度
290ポイズ以下(300℃、剪断速度500秒-1)のポリフェ
ニレンスルフィド樹脂である請求項(1)記載の電子部
品封止用組成物。
2. The melt viscosity of the polyphenylene sulfide resin
The composition for sealing electronic parts according to claim 1, wherein the composition is a polyphenylene sulfide resin having a 290 poise or less (300 ° C, shear rate 500 sec- 1 ).
【請求項3】含窒素極性有機溶媒による洗浄および酸処
理を施されたポリフェニレンスルフィド樹脂で被覆また
は封止された樹脂封止電子部品。
3. A resin-sealed electronic component coated or sealed with a polyphenylene sulfide resin which has been washed with a nitrogen-containing polar organic solvent and subjected to an acid treatment.
JP63195590A 1988-08-04 1988-08-04 Electronic component sealing composition and resin-sealed electronic component Expired - Lifetime JP2780271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63195590A JP2780271B2 (en) 1988-08-04 1988-08-04 Electronic component sealing composition and resin-sealed electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63195590A JP2780271B2 (en) 1988-08-04 1988-08-04 Electronic component sealing composition and resin-sealed electronic component

Publications (2)

Publication Number Publication Date
JPH0245560A JPH0245560A (en) 1990-02-15
JP2780271B2 true JP2780271B2 (en) 1998-07-30

Family

ID=16343678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63195590A Expired - Lifetime JP2780271B2 (en) 1988-08-04 1988-08-04 Electronic component sealing composition and resin-sealed electronic component

Country Status (1)

Country Link
JP (1) JP2780271B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200025208A (en) * 2018-08-29 2020-03-10 주식회사 엘지화학 Method for purifying polyarylene sulfide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157719A (en) * 1994-12-09 1996-06-18 Idemitsu Petrochem Co Ltd Polyarylene sulfide resin composition
JP2003096298A (en) * 2001-09-25 2003-04-03 Toray Ind Inc Polyphenylene sulfide resin composition and condenser part
JP2003292623A (en) * 2002-03-29 2003-10-15 Idemitsu Petrochem Co Ltd Polyarylene sulfide resin and sealing material for electronic part comprising the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185627A (en) * 1982-04-23 1983-10-29 Asahi Glass Co Ltd Production of polyarylene sulfide
JPS6155148A (en) * 1984-08-27 1986-03-19 Kureha Chem Ind Co Ltd Composition for sealing electronic part and use thereof
JPH0713186B2 (en) * 1985-03-26 1995-02-15 大日本インキ化学工業株式会社 Resin composition for electronic component encapsulation
JP2525357B2 (en) * 1985-12-25 1996-08-21 東レ株式会社 Resin-sealed electronic components
JPS62172026A (en) * 1986-01-23 1987-07-29 Dainippon Ink & Chem Inc Polyphenylene sulfide
JPH072846B2 (en) * 1986-04-24 1995-01-18 大日本インキ化学工業株式会社 Method for producing polyphenylene sulfide
JPH0717750B2 (en) * 1986-04-28 1995-03-01 呉羽化学工業株式会社 Method for producing polyarylene sulfide
JPS63146963A (en) * 1986-12-10 1988-06-18 Kureha Chem Ind Co Ltd Poly(arylene thioether) composition for sealing and molded products therefrom
US4801664A (en) * 1988-01-29 1989-01-31 Phillips Petroleum Company Acid wash of polyarylene sulfides

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200025208A (en) * 2018-08-29 2020-03-10 주식회사 엘지화학 Method for purifying polyarylene sulfide
KR102296583B1 (en) 2018-08-29 2021-08-31 주식회사 엘지화학 Method for purifying polyarylene sulfide

Also Published As

Publication number Publication date
JPH0245560A (en) 1990-02-15

Similar Documents

Publication Publication Date Title
JPS59132506A (en) Sealing of electronic part with poly(arylene sulfide) composition containing calsium silicate
JPS6363722A (en) Rapidly crystallizable polyarylene thioether and its production
TW412569B (en) Polyarylene sulfide composition
JP2525357B2 (en) Resin-sealed electronic components
JP2780271B2 (en) Electronic component sealing composition and resin-sealed electronic component
JPS61220446A (en) Resin sealed electronic device
JPS62197451A (en) Resin composition for use in sealing electronic component
US5064895A (en) Polyarylene sulfide molding compounds and their use as an encapsulating compound for active and passive electronic components
JPH06104773B2 (en) Polyphenylene sulfide resin composition
JP2511282B2 (en) Epoxy resin composition
JPS61220445A (en) Resin sealed electronic device
JPS62150751A (en) Polyphenylene sulfide resin-sealed electronic parts
JPS63146963A (en) Poly(arylene thioether) composition for sealing and molded products therefrom
EP0244188B1 (en) Polyarylene thioether molding product
JPS61214452A (en) Resin sealed electronic part
JPS6317549A (en) Resin-sealed electronic part
JP2969654B2 (en) Resin composition for sealing electronic parts
JP2969655B2 (en) Composition for sealing electronic parts
JPH0759667B2 (en) Polyarylene sulfide resin composition and molded article thereof
US5239054A (en) Treatment of polyarylene sulfide resins with zinc compound
JPS63268740A (en) Polyarylene sulfide resin for sealing electronic part
JPH0369128A (en) Sealing of electronic component
KR920006218B1 (en) Polyarylene sulfide resin compositions and molded article thereof
JP3484772B2 (en) Polyphenylene sulfide resin composition
JPS62158754A (en) Thermoplastic resin composition for use in sealing electronic component