JPS61220446A - Resin sealed electronic device - Google Patents

Resin sealed electronic device

Info

Publication number
JPS61220446A
JPS61220446A JP60060818A JP6081885A JPS61220446A JP S61220446 A JPS61220446 A JP S61220446A JP 60060818 A JP60060818 A JP 60060818A JP 6081885 A JP6081885 A JP 6081885A JP S61220446 A JPS61220446 A JP S61220446A
Authority
JP
Japan
Prior art keywords
water
pps
acid
hot water
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60060818A
Other languages
Japanese (ja)
Inventor
Hirokazu Kobayashi
裕和 小林
Akihiko Kishimoto
岸本 彰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP60060818A priority Critical patent/JPS61220446A/en
Publication of JPS61220446A publication Critical patent/JPS61220446A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain highly reliable resin sealed devices, by performing oxidation treatment of polyphenylene sulfide, washing the material with hot water, and decreasing the amount of inclusion of water-soluble electrolytic component. CONSTITUTION:An inorganic filler such as dissolved silica is compounded in polyphenylene sulfide PPS. Silane and Ti coupling agents are compounded as required, and the adhesion of the resin and the part is increased. At first the PPS is immersed in a water solution of hydrochloric acid and acetic acid. Then, remaining acid and salt are removed by several times of washings using water or hot water. Thereafter, the material is treated by the hot water at 170 deg.C or higher, and the water-soluble electrolytic component, which is present in a form of acid or salt, is physically removed. The chemical denaturation of the end of polymer, which has the electrolytic component that can undergo hydrolysis is efficiently performed. The electric conductivity of the washing water is made to be 5muS/cm. The bath ratio of 200gr of the PPS with respect to 1l of water is specified. The granule is washed in an O2 atmosphere several times. When the resin sealing is performed by the PPS having this constitution, highly reliable devices having especially good moisture resistance are obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリフェニレンスルフィド樹脂で被覆または封
止された樹脂封止電子部品に関し、更に詳しくは、水溶
性の電解質成分含有量の低減されたポリフェニレンスル
フィド樹脂で被覆または封止された樹脂封止電子部品に
関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a resin-sealed electronic component coated or sealed with a polyphenylene sulfide resin, and more specifically relates to a polyphenylene sulfide resin with a reduced content of water-soluble electrolyte components. This invention relates to resin-sealed electronic components coated or sealed with sulfide resin.

〔従来の技術〕[Conventional technology]

電子部品封止用樹脂として、従来の熱硬化性樹脂に代り
材料収率、成形速度に特徴を有する熱可塑性樹脂が注目
され、特tこポリフェニレンスルフィド樹脂により電子
部品を封止することは、特開昭52−14958号公報
等でよ(知られている。更に、ポリフェニレンスルフィ
ド樹脂中に含有される水溶性電解質成分に起因する電子
部品の電極や配線の腐蝕による断線、漏れ電流の増大等
の故障を低減させる目的では、水溶性’tyy<解質成
分含有量が100 ppm以下のボリフエニレンス〃フ
ィトを用いて封止された電子部品が特開昭55−156
542号公報に開示されている。
Thermoplastic resins, which have characteristics such as material yield and molding speed, are attracting attention in place of conventional thermosetting resins as resins for encapsulating electronic components. This is known from Japanese Patent Publication No. 52-14958 (known).Furthermore, it is known that the water-soluble electrolyte component contained in the polyphenylene sulfide resin can cause corrosion of the electrodes and wiring of electronic components, resulting in wire breakage, increased leakage current, etc. For the purpose of reducing failures, electronic components encapsulated using water-soluble 'tyy < 100 ppm or less of phytochemicals containing solute components are disclosed in Japanese Patent Application Laid-Open No. 55-156.
It is disclosed in Japanese Patent No. 542.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記特開昭55−156542号公報で開示されている
樹脂封止電子部品に3いては、用いられるポリフェニレ
ンスルフィド樹脂中の水溶性電解質成分含有量を低減さ
せる方法として、120℃以下の熱水で洗浄することが
提案されているが、この方法に8いては、水溶性電解質
成分の低減に多大の時間を要するという欠点がある。
In the resin-sealed electronic component disclosed in JP-A-55-156542, as a method of reducing the content of water-soluble electrolyte components in the polyphenylene sulfide resin used, hot water of 120° C. or lower is used. Although cleaning has been proposed, this method has the disadvantage that it takes a lot of time to reduce the water-soluble electrolyte components.

そこで、本発明者らは、ポリフェニレンヌルフィト中の
水溶性の電解質成分含有量を短時間で効率的に低減させ
ることを目的として鋭意検討を行い、ポリフェニレン7
、/I/フィトin 酸M 埋を施したのち熱水で洗浄
することにより水溶性の成解質成分含有量、特に該用途
で問題となるナトリウム・イオン、塩素イオン含有量が
極めて短時間で低減されることを見出し本発明に到達し
た。
Therefore, the present inventors conducted extensive studies with the aim of reducing the content of water-soluble electrolyte components in polyphenylene ulphite in a short time and efficiently.
, /I/Phytoin Acid M By washing with hot water after embedding, the content of water-soluble solute components, especially the content of sodium ions and chloride ions, which are problematic in this application, can be reduced in an extremely short time. We have found that this can be reduced and have arrived at the present invention.

〔問題を解決するための手段〕[Means to solve the problem]

すなわち、本発明は酸処理を施したのち熱水tこより洗
浄されたポリフェニレンスルフィド樹脂で被覆または封
止されたことを特徴とする樹脂封止電子部品を提供する
ものである。
That is, the present invention provides a resin-sealed electronic component characterized by being coated or sealed with a polyphenylene sulfide resin that has been acid-treated and then washed with hot water.

本発明で用いるボリフエニレンス〃フィト(以下pps
と略 する]とは、  ゛構造式÷()−8千で示され
る繰返し単位を7O−Th4796以上、より好ましく
はqaモtv96以上を含む重合体であり、上記繰返し
単位が70モtv96未満では耐熱性が損なわれるため
好ましくない。
Borifene phyto (hereinafter pps) used in the present invention
"abbreviated as" is a polymer containing repeating units represented by the structural formula ÷ () - 8,000 at 7O-Th4796 or more, more preferably at least qa mo tv96, and where the repeating unit is less than 70 mo tv96. This is not preferred because heat resistance is impaired.

ppsは一般に、特公昭45−5568号公報で代表さ
れる製造法により得られる比較的分子量の小さい重合体
と特公昭52−12240号公報で代表される製造法に
より得られる本質的tこ線状で比較的高分子量の重合体
等があり、前記の重合体Cおいては、重合後酸素雰囲気
下會こおいて加熱することにより、あるいは過酸化物等
の架橋剤を添加して加熱することにより高重合度化して
用いることも可能であり、本発明1こおいてはいかなる
方法により得られたppsを用いることも可能である。
Generally, pps is a polymer with a relatively small molecular weight obtained by the production method typified by Japanese Patent Publication No. 45-5568, and an essentially t-linear polymer obtained by the production method typified by Japanese Patent Publication No. 52-12240. There are relatively high molecular weight polymers, etc., and for the above-mentioned polymer C, it is possible to heat it in an oxygen atmosphere after polymerization, or by adding a crosslinking agent such as peroxide and heating it. It is also possible to increase the degree of polymerization and use it by increasing the degree of polymerization, and in the present invention 1, it is also possible to use pps obtained by any method.

また、ppsはその繰返し単位の50モル%未満を下記
の構造式を有する繰返し単位等で構成することが可能で
ある。
Furthermore, less than 50 mol% of the repeating units of pps can be composed of repeating units having the following structural formula, etc.

本発明で用いられるppsの溶融粘度は、電子素子を破
損することなく成形することが可能であれば特に制限は
ないが、特にトランジスタ、1O等ポンディングワイヤ
を有する素子を封止する場合は素子の破損を回避するた
め溶融粘度の低いものが好ましく用いられる。
The melt viscosity of pps used in the present invention is not particularly limited as long as it is possible to mold the electronic device without damaging it. In order to avoid damage to the resin, those with low melt viscosity are preferably used.

また本発明で用いられるPPBには、酸化防止剤、熱安
定剤、滑剤、結晶核剤、紫外線防止剤、銅害防止剤、着
色剤、離型剤などの通常の添加剤を添加することができ
、更c p p sの架橋度を制御する目的で、過酸化
剤等の架橋促進剤、または特開昭58−204045.
特開昭58−204046号公報等tこ記載されている
シアtv*tvmrシカ〃ボキシレート、アミノトリア
シーμ等の架橋防止剤を配合することも可能である。
Further, the PPB used in the present invention may contain conventional additives such as antioxidants, heat stabilizers, lubricants, crystal nucleating agents, ultraviolet inhibitors, copper damage inhibitors, colorants, and mold release agents. Furthermore, for the purpose of controlling the degree of crosslinking of C P P S, a crosslinking accelerator such as a peroxidant, or JP-A-58-204045.
It is also possible to incorporate crosslinking inhibitors such as sia tv * tv mr cica boxylate and amino triacy .mu. described in JP-A-58-204046 and the like.

更に1本発明で用いられるppsには、封止された電子
部品の寸法安定性、機械特性あるいは熱伝導特性等の改
善の目的で、溶融シリカ、結晶性シリカ、流酸力/l/
!/ウム、硫酸力〃シウム、り〃り、ガラス繊維、ガラ
スピーズ等の無−充填材を配合することが好ましく、こ
れら充填剤中の水溶性電解質成分含有量も小さいことが
望ましい。、これら充填材は2種以上を併用することも
可能であり、必要によりシラン系およびチタン系のカッ
プリング剤で予備処理して使用することができる。また
、これらカップリング剤は封止樹脂と電子素子との密着
性を改善する目的で、PPSに直接配合することも可能
である。
Furthermore, the pps used in the present invention includes fused silica, crystalline silica, and hydrochloric acid/l/l for the purpose of improving the dimensional stability, mechanical properties, or thermal conductivity properties of sealed electronic components.
! It is preferable to include non-fillers such as lithium sulfate, lithium sulfate, glass fibers, and glass peas, and it is desirable that the content of water-soluble electrolyte components in these fillers is also small. Two or more of these fillers can be used in combination, and if necessary, they can be pretreated with a silane-based and titanium-based coupling agent before use. Moreover, these coupling agents can also be directly blended into PPS for the purpose of improving the adhesion between the sealing resin and the electronic device.

本発明でppsの酸処理に用いる酸は、ppsを分解す
る作用を有しないものであれば特に制限はな(、塩酸、
硫酸、酢酸、りん酸、rL酸、炭酸、プロピル酸等が挙
げられ、なかで゛も塩酸、酢酸等がより好ましく用いら
れ得るが、硝酸のよ5なppsを分解、劣化させるもの
は好ましくない。
The acid used in the acid treatment of pps in the present invention is not particularly limited as long as it does not have the effect of decomposing pps (hydrochloric acid,
Examples include sulfuric acid, acetic acid, phosphoric acid, rL acid, carbonic acid, propylic acid, etc. Among them, hydrochloric acid, acetic acid, etc. can be used more preferably, but those that decompose and deteriorate pps such as nitric acid are not preferred. .

酸処理の方法は、酸または酸の水溶液tこppsを浸漬
せしめる等の方法があり、必要により適宜攪拌または加
熱することも可能であり、塩酸を用いる場合、pH2の
水溶液中に約30分間浸漬せしめることにより十分な効
果が得られる。
Methods for acid treatment include immersion in an acid or an aqueous solution of an acid, and it is also possible to stir or heat as necessary. When using hydrochloric acid, immersion in an aqueous solution with a pH of 2 for about 30 minutes. Sufficient effects can be obtained by letting it grow.

更に酸処理後、残留している酸、塩等を物理的に除去す
るため水または温水で数回洗浄することが、引き続き行
う熱水洗浄の効率を改善する意味で好ましい。
Furthermore, after the acid treatment, it is preferable to wash with water or hot water several times to physically remove residual acids, salts, etc., in order to improve the efficiency of subsequent hot water washing.

引き続く熱水洗浄は、熱水の温度が高い程、ppsct
lIce、塩の形で存在する水溶性成解質成分の物理的
除去の効率がすぐれ、更に加水分解可能な電解質成分を
有するポリマ末端等の化学的変性の効率もすぐれ好まし
く、熱水の温度は好ましくは100℃以上、より好まし
くは150℃以上、さらに好ましくは170℃以上が選
択される。
In the subsequent hot water cleaning, the higher the temperature of the hot water, the higher the ppsct.
lIce is preferable because it has excellent physical removal efficiency of water-soluble electrolyte components present in the form of salts, and also excellent efficiency of chemical modification of polymer terminals having hydrolyzable electrolyte components, and the temperature of the hot water is Preferably, the temperature is selected to be 100°C or higher, more preferably 150°C or higher, and still more preferably 170°C or higher.

洗浄に使用する水は蒸留水あるいは脱イオン水等の水溶
性の電解質成分含有量の少ないものが好ましく、水の電
気伝導度が1μ3/ax以下より好ましくは15μS/
at以下のものが用いられる。
The water used for cleaning is preferably distilled water or deionized water with a low content of water-soluble electrolyte components, and the electrical conductivity of the water is 1 μ3/ax or less, preferably 15 μS/ax.
Those below at are used.

洗浄操作は、通常所定量の水に所定量のppsを投入し
、圧力容器中で加熱、攪拌することにより行われる。P
PSと水との割合は、水の多い方が好ましいが通常水1
1に対し、pps200g以下の浴゛比が選択される。
The cleaning operation is usually performed by adding a predetermined amount of pps to a predetermined amount of water, heating and stirring in a pressure vessel. P
As for the ratio of PS to water, more water is better, but usually water is 1 part.
1, a bath ratio of less than 200 g pps is selected.

また洗浄の雰囲気は不活性雰囲気とする必要はなく、p
ps未満の好ましい化学変性のためには酸素雰囲気下で
洗浄を行うことが望ましい。
Furthermore, the cleaning atmosphere does not need to be an inert atmosphere;
For preferred chemical modification below ps, it is desirable to perform the cleaning under an oxygen atmosphere.

更會こ洗浄操作を終えたppsは、残留している塩等を
物理的に除去するため温水で数回洗浄するのが好ましい
It is preferable to wash the pps after the washing operation several times with warm water in order to physically remove residual salts and the like.

本発明で酸処理、熱水洗浄に供するppsは粉粒体であ
ることが好ましく、特にamな粉体であることが酸処理
、洗浄の効率上好ましい。
The pps to be subjected to acid treatment and hot water washing in the present invention is preferably a powder or granule, and particularly preferably an am powder from the viewpoint of efficiency of acid treatment and washing.

通常公知の方法で製造されるppsは粉粒体の形で得ら
れるため、これらをぺVタイズ等することなく用いて酸
処理、洗浄するのが好ましく、特に水溶性電解質成分含
有量を極めて小さな値とすることが要求される場合は、
分級あるいは粉砕して用いることも可能である。
Since pps produced by a known method is usually obtained in the form of powder or granules, it is preferable to use these without pe-V-izing, acid treatment, and washing. If required to be a value,
It is also possible to use it by classifying or pulverizing it.

かくして得られた、水溶性の電解質成分が低減されたp
psは、必要により充填剤とドライブVソドしてそのま
ま、あるいはぺVタイズしたのち成形に供される。
The thus obtained p containing reduced water-soluble electrolyte components
If necessary, the PS is mixed with a filler and used for molding, either as it is or after pe-V tizing.

本発明の電子部品は、通常電子部品の概念で考えられる
ものであれば特に制限はないが、例えば、コンデンサー
、抵抗器、集積回路(工CJ。
The electronic component of the present invention is not particularly limited as long as it can be considered as an ordinary electronic component, but examples include a capacitor, a resistor, and an integrated circuit (Engineering CJ).

トランジスター、ダイオード、トライオード、サイリス
ター、コイル、バリスター、コネクター、変換器、マイ
クロスイッチ!!!およびこれらの複合部品が挙げられ
る。
Transistors, diodes, triodes, thyristors, coils, varistors, connectors, converters, microswitches! ! ! and composite parts thereof.

本発明に8けるppscよる被覆または封止方法にも特
に制限はな(、金型中に電子素子を固定してSき射出成
形あるいはトランスファー成形で成形する方法、あるい
はあらかじめフィルム状に成形しであるpps tl−
用いて、加熱、加圧下に封包する方法等が挙げられる。
There are no particular limitations on the method of covering or sealing with ppsc according to the present invention. Some pps tl-
Examples include a method of packaging under heat and pressure.

更に、本発明の樹脂封止電子部品は、成形後過酸化水素
水等の過酸化物で処理すること、あるいはppsの融点
以下の温度で熱処理することにより、架橋度または結晶
化度を増大させ、械械特性等を改督することが可能であ
る。
Further, the resin-sealed electronic component of the present invention can be treated with a peroxide such as a hydrogen peroxide solution after molding, or heat treated at a temperature below the melting point of pps to increase the degree of crosslinking or crystallinity. , mechanical properties, etc. can be revised.

以下に実施例を挙げて本発明を更に詳報に説明する。The present invention will be explained in more detail with reference to Examples below.

〔実施例〕〔Example〕

参考例+ (ppsの置台〕 オートクレーブに50%水硫化ナトリウム水溶液4.6
7 kg (水硫化ナトリウム25七μ)、505M水
酸化ナトリウム2.0 okg(水酸化ナトリウム25
モfi/)’jdよびN−メチA/−2−ピロリドンと
以下IMPと4群するJ8kgを仕込み。
Reference example + (pps stand) 50% sodium hydrogen sulfide aqueous solution in autoclave 4.6
7 kg (sodium hydrosulfide 257μ), 505M sodium hydroxide 2.0 kg (sodium hydroxide 25μ
Mofi/)'jd, N-MethiA/-2-pyrrolidone, and IMP below, and 4 groups of J8kg were prepared.

攪拌しながら徐々に205℃まで昇温し、水18kgを
含む留出水4. I lを除去した。残留混合物ic1
.4−ジクロ〜ヘンゼンi75kg(25,5モ/l/
 ) #よびIMP 2 kgを加え250℃で2時間
、さらに260℃で1時間加熱した。
4. Gradually raise the temperature to 205°C while stirring and distilled water containing 18 kg of water. I l was removed. residual mixture ic1
.. 4-Diclo~Hensen i75kg (25,5 mo/l/
) and 2 kg of IMP were added and heated at 250°C for 2 hours, and further heated at 260°C for 1 hour.

反応生成物を、水で2回、70℃の温水で5回洗浄し、
湿潤状態のまま以下の実施例に使用した。
The reaction product was washed twice with water and five times with warm water at 70°C,
It was used in the following examples in a wet state.

なS、傅られたppsの量は乾燥状顛で約2.5−に相
当し、一部を120℃で24時間減圧乾燥して得た粉末
について測定した溶融粘度は40ポアズ(520℃、剪
断速度1000秒−1)であった。また、同様に乾燥し
た粉末20gと100a−のイオン交換水および湿潤剤
(片山化学(株)製トリトンx−too)α02(Cと
を耐圧容器に封入して、120℃で20時間保持した抽
出液について測定したナトリウムおよび塩素含有量はp
psの重量基準で、それぞれ224ppm、516pp
mであり、抽出液の電気伝導度は557μS/mであっ
た。
The amount of pps achieved in dry form corresponds to about 2.5-S, and the melt viscosity measured on the powder obtained by drying a portion under reduced pressure at 120°C for 24 hours was 40 poise (520°C, The shear rate was 1000 seconds-1). In addition, 20 g of similarly dried powder, 100 a- ion-exchanged water, and a wetting agent (Triton The sodium and chlorine content measured in the liquid is p
Based on the weight of ps, 224 ppm and 516 ppm, respectively.
m, and the electrical conductivity of the extract was 557 μS/m.

実施例1 参考例1で得られた湿潤状態のpps約2確(約50%
の水を含む)を室温に保持しであるpFI2の塩酸c5
0分間浸漬せしめたのち、−過し、更にF液のpHが7
となるまで室温のイオン交換水で洗浄した。この湿潤状
態のppsとイオン交換水とをオート・クレープに仕込
み、常圧で密閉したのち、攪拌しつつ180℃に昇温し
、約2時間保温したのち冷却した。オートクレーブから
内容物を取り出し一過し、更にP液のpRが7となるま
で室温のイオン交換水で洗浄したのち120℃で24時
間減圧乾燥して粉末状とした。
Example 1 Approximately 2 pps (approximately 50%) in the wet state obtained in Reference Example 1
(containing water) was kept at room temperature and the pFI2 containing hydrochloric acid c5 was
After immersing for 0 minutes, it was filtered and the pH of solution F was 7.
It was washed with ion-exchanged water at room temperature until . The wet pps and ion-exchanged water were placed in an autoclave, which was sealed at normal pressure, heated to 180° C. with stirring, kept at this temperature for about 2 hours, and then cooled. The contents were taken out from the autoclave, passed through, and further washed with ion-exchanged water at room temperature until the pR of the P solution reached 7, and then dried under reduced pressure at 120° C. for 24 hours to form a powder.

酸処理、水洗浄後のppsを120℃で24時間減圧乾
燥して粉末状としたもの、および、更に熱水洗浄をして
粉末状としたものについて参考例1と全く同様の方法で
抽出操作を行い評価した水溶性ナトリウム、塩素含有量
および抽出液の電気伝導度は第1表に記載の通りであっ
た。
After acid treatment and water washing, the pps was dried under reduced pressure at 120°C for 24 hours to form a powder, and the powder was further washed with hot water and extracted in the same manner as in Reference Example 1. The water-soluble sodium and chlorine contents and the electrical conductivity of the extract were as shown in Table 1.

引き続き、熱水洗浄後の粉末状のppsと溶融クリ力(
東芝セラミック(株〕製an−80Jとを30対700
菫量比でトライブレンドし、310℃に設定しである4
0震φのスクリュー押出機に供給し、溶融混練してスト
ランド状で引き取り、ストランド・カッターでペレタイ
ズした。
Subsequently, the powdered pps after hot water washing and the melting force (
30:700 with an-80J manufactured by Toshiba Ceramic Co., Ltd.
Tri-blend with violet weight ratio and set at 310℃ 4
The mixture was supplied to a screw extruder with a zero vibration diameter, melted and kneaded, taken out in the form of a strand, and pelletized using a strand cutter.

次にこのペレットを520℃に設定したスクリューイン
ライン型射出成形41!IC供給し、リード線を取りつ
けたP型MO9)ツンジスタ素子(ソース・ドレイン間
最大定格電圧20Y。
Next, this pellet was heated to 520°C for screw in-line injection molding 41! P-type MO9) Tunsistor element supplied with IC and attached with lead wire (maximum rated voltage between source and drain 20Y).

しきい値電圧!L5V)をインサートし、160〜17
0℃の温度に設定しである金型を用い、射出圧力40〜
70■/a11で封止成形を行った。
Threshold voltage! L5V), insert 160-17
Using a mold set at a temperature of 0℃, the injection pressure was 40~
Sealing molding was performed at 70 cm/a11.

得られたpps封止トランジスタを121℃。The resulting pps sealed transistor was heated to 121°C.

2気圧の加圧水蒸気中に24時間放置した後、(以下P
CT後と略記する)ソース・ドレイン間に127の成圧
を叩加してリーク電流を測定したところ第1表1こ記載
の結果が得られた。
After being left in pressurized steam at 2 atm for 24 hours, (hereinafter P
When a pressure of 127 was applied between the source and drain (abbreviated as "after CT") and the leakage current was measured, the results shown in Table 1 were obtained.

実施例2 実施例鵞で熱水洗浄に用いた熱水の温度を150℃とし
たことのほかは実施例1と全く同様の方法でpps封止
トランジスタを得た。評価結果は第1表に記載の通りで
あった。
Example 2 A pps sealed transistor was obtained in exactly the same manner as in Example 1, except that the temperature of the hot water used for hot water cleaning was 150°C. The evaluation results were as shown in Table 1.

実施例3 実施例1で酸処理CpH2の塩酸を用いた代りに、pF
I2の酢酸で処理したことのほかは実施例1と全く同様
の方法でppB、封止トランジスタを得た。評価結果は
第1表に記載の通りであった。
Example 3 Instead of using acid treatment CpH2 hydrochloric acid in Example 1, pF
A ppB sealed transistor was obtained in exactly the same manner as in Example 1 except that it was treated with I2 acetic acid. The evaluation results were as shown in Table 1.

比較例1 実施例1でppsをpt12の塩酸処理を行なわず、熱
水処理の温度を120℃としたことのほかは、実施例1
と全く同様の方法でpps封止トランジスタを得た。評
価結果は第1表tこ記載の通りであった。
Comparative Example 1 Example 1 except that the pps in Example 1 was not treated with PT12 hydrochloric acid and the temperature of the hot water treatment was 120°C.
A pps sealed transistor was obtained in exactly the same manner as described above. The evaluation results were as described in Table 1.

実施例4 実施例1で参考例1で得られたppsを用いた代りに、
溶融粘度100ポアズのpps(米1フィリップス・ペ
トッリアム社fi 11ライドンII y −1を用い
、射出成形圧力を70〜I 10 q/lx ”とした
ことのほかは、実施例盲と全く同様の方法でpps封止
トランジスタを得た。評価結果は第1表に記載の通りで
あった。
Example 4 Instead of using the pps obtained in Reference Example 1 in Example 1,
The method was exactly the same as in the example blind, except that the melt viscosity was 100 poise pps (US 1 Phillips Petrium Inc. fi 11 Lydon II y-1 was used, and the injection molding pressure was 70 to I 10 q/lx". A pps sealed transistor was obtained.The evaluation results were as shown in Table 1.

な8.ここで用いたpps”ライドン“1v−1につい
て、参考例1と全く同様の方法で評価した水溶性ナトリ
ウム、塩素含有量はそれぞれ265ppm、555pp
mであり、抽出液の電気伝導度は389μF3/exで
あった。
8. Regarding the pps "Rydon" 1v-1 used here, the water-soluble sodium and chlorine contents evaluated in exactly the same manner as in Reference Example 1 were 265 ppm and 555 ppm, respectively.
m, and the electrical conductivity of the extract was 389 μF3/ex.

〔発明の効果〕〔Effect of the invention〕

本発明のpps樹脂封止電子部品は、樹脂中の水溶性の
電解質含有成分量が極めて少く、耐湿性に代表される言
頼性が極めてすぐれる。
The pps resin-sealed electronic component of the present invention has an extremely small amount of water-soluble electrolyte-containing components in the resin, and has extremely high reliability as represented by moisture resistance.

Claims (1)

【特許請求の範囲】[Claims] 酸処理を施したのち熱水により洗浄されたポリフエニレ
ンスルフイド樹脂で被覆または封止されたことを特徴と
する樹脂封止電子部品。
A resin-sealed electronic component characterized by being coated or sealed with a polyphenylene sulfide resin that has been acid-treated and then washed with hot water.
JP60060818A 1985-03-27 1985-03-27 Resin sealed electronic device Pending JPS61220446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60060818A JPS61220446A (en) 1985-03-27 1985-03-27 Resin sealed electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60060818A JPS61220446A (en) 1985-03-27 1985-03-27 Resin sealed electronic device

Publications (1)

Publication Number Publication Date
JPS61220446A true JPS61220446A (en) 1986-09-30

Family

ID=13153309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60060818A Pending JPS61220446A (en) 1985-03-27 1985-03-27 Resin sealed electronic device

Country Status (1)

Country Link
JP (1) JPS61220446A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223232A (en) * 1986-03-24 1987-10-01 Toto Kasei Kk Purification of polyphenylene sulfide
JPS62241961A (en) * 1986-04-14 1987-10-22 Tosoh Corp Polyphenylene sulfide composition
JPH01146955A (en) * 1987-12-03 1989-06-08 Kureha Chem Ind Co Ltd Polyphenylene sulfide resin composition and its production
EP0326958A2 (en) * 1988-01-29 1989-08-09 Phillips Petroleum Company Acid wash of polyarylene sulfides
JPH0649356A (en) * 1992-11-30 1994-02-22 Toray Ind Inc Polyphenylene sulfide resin composition
JPH08157719A (en) * 1994-12-09 1996-06-18 Idemitsu Petrochem Co Ltd Polyarylene sulfide resin composition
JP2003096298A (en) * 2001-09-25 2003-04-03 Toray Ind Inc Polyphenylene sulfide resin composition and condenser part
WO2017217235A1 (en) * 2016-06-14 2017-12-21 デンカ株式会社 High-purity barium titanate powder, method for producing same, resin composition, and fingerprint sensor
US11597800B2 (en) 2018-10-19 2023-03-07 Lg Chem, Ltd. Separation and recovery method of polyarlene sulfide
US11661482B2 (en) 2018-10-19 2023-05-30 Lg Chem, Ltd. Separation and purification method of polyarylene sulfide

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223232A (en) * 1986-03-24 1987-10-01 Toto Kasei Kk Purification of polyphenylene sulfide
JPS62241961A (en) * 1986-04-14 1987-10-22 Tosoh Corp Polyphenylene sulfide composition
JPH01146955A (en) * 1987-12-03 1989-06-08 Kureha Chem Ind Co Ltd Polyphenylene sulfide resin composition and its production
JPH0551633B2 (en) * 1987-12-03 1993-08-03 Kureha Chemical Ind Co Ltd
EP0326958A2 (en) * 1988-01-29 1989-08-09 Phillips Petroleum Company Acid wash of polyarylene sulfides
JPH0649356A (en) * 1992-11-30 1994-02-22 Toray Ind Inc Polyphenylene sulfide resin composition
JPH08157719A (en) * 1994-12-09 1996-06-18 Idemitsu Petrochem Co Ltd Polyarylene sulfide resin composition
JP2003096298A (en) * 2001-09-25 2003-04-03 Toray Ind Inc Polyphenylene sulfide resin composition and condenser part
WO2017217235A1 (en) * 2016-06-14 2017-12-21 デンカ株式会社 High-purity barium titanate powder, method for producing same, resin composition, and fingerprint sensor
CN109415222A (en) * 2016-06-14 2019-03-01 电化株式会社 High-purity barium titanate powder and its manufacturing method and resin combination and fingerprint sensor
JPWO2017217235A1 (en) * 2016-06-14 2019-04-11 デンカ株式会社 High-purity barium titanate-based powder, method for producing the same, resin composition, and fingerprint sensor
US11472716B2 (en) 2016-06-14 2022-10-18 Denka Company Limited High-purity barium titanate powder, method for producing same, resin composition, and fingerprint sensor
US11597800B2 (en) 2018-10-19 2023-03-07 Lg Chem, Ltd. Separation and recovery method of polyarlene sulfide
US11661482B2 (en) 2018-10-19 2023-05-30 Lg Chem, Ltd. Separation and purification method of polyarylene sulfide

Similar Documents

Publication Publication Date Title
JPS61220446A (en) Resin sealed electronic device
JPS59132506A (en) Sealing of electronic part with poly(arylene sulfide) composition containing calsium silicate
JPS62150752A (en) Resin-sealed electronic parts
EP2682967B1 (en) Electrolytic capacitor
JP2780271B2 (en) Electronic component sealing composition and resin-sealed electronic component
JPS61220445A (en) Resin sealed electronic device
US4798863A (en) Zinc titanate in poly (arylene sulfide) compositions
JPS61214452A (en) Resin sealed electronic part
JPS62150751A (en) Polyphenylene sulfide resin-sealed electronic parts
JPS63189458A (en) Polyarylene sulfide resin composition for sealing electronic part and electric part
US5064895A (en) Polyarylene sulfide molding compounds and their use as an encapsulating compound for active and passive electronic components
JPH0798901B2 (en) Polyphenylene sulfide composition
JPS63146963A (en) Poly(arylene thioether) composition for sealing and molded products therefrom
JPS6317549A (en) Resin-sealed electronic part
JPS62138528A (en) Production of polyphenylene sulfide
JPH0532417B2 (en)
JP2969655B2 (en) Composition for sealing electronic parts
JPH10158527A (en) Resin composition for sealing electronic part
JPS61200156A (en) Epoxy resin composition
JPS62158754A (en) Thermoplastic resin composition for use in sealing electronic component
JPH0350277A (en) Resin composition for sealing electronic part
JPS6051712A (en) Epoxy resin composition
JPS6036221B2 (en) Thermosetting resin composition for semiconductor encapsulation
JPS6031518A (en) Epoxy resin composition for semiconductor sealing
JPS62192458A (en) Polyphenylene sulfide resin composition