JPS62158754A - Thermoplastic resin composition for use in sealing electronic component - Google Patents

Thermoplastic resin composition for use in sealing electronic component

Info

Publication number
JPS62158754A
JPS62158754A JP80386A JP80386A JPS62158754A JP S62158754 A JPS62158754 A JP S62158754A JP 80386 A JP80386 A JP 80386A JP 80386 A JP80386 A JP 80386A JP S62158754 A JPS62158754 A JP S62158754A
Authority
JP
Japan
Prior art keywords
weight
composition
resin composition
thermoplastic resin
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP80386A
Other languages
Japanese (ja)
Inventor
Akira Yoshioka
章 吉岡
Hirokazu Kobayashi
裕和 小林
Akihiko Kishimoto
岸本 彰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP80386A priority Critical patent/JPS62158754A/en
Publication of JPS62158754A publication Critical patent/JPS62158754A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled compsn. having excellent sealing moldability and moisture resistance, by blending a specified polyphenylene sulfide with a fibrous filler, an epoxysilane and silica. CONSTITUTION:35-50wt% polyphenylene sulfide (A) having a melt flow index of 2,000g/10min or above, composed of at least 70mol% of a repeating unit of formula I and less than 30mol% of repeating units of formulas III, IV, V, VI, VII and VIII is blended with 8-30wt% fibrous filler (B) having a fiber length of 0.03-1.0mm (e.g., glass fiber) after kneading and extrusion, 0.3-3wt% epoxysilane (C) (e.g., gamma-glycidoxypropoyltrimethoxysilane) and 30-65wt% fused and/or crystalline silica (D).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子部品封止用熱可塑性樹脂組成物に関し、
更゛に詳しくは封止成形性、および耐湿性の改善された
、電子部品封止用熱可塑性樹脂組成物であり、主として
IC等の半導体の封止材として利用されるものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a thermoplastic resin composition for encapsulating electronic components,
More specifically, it is a thermoplastic resin composition for encapsulating electronic components that has improved encapsulation moldability and moisture resistance, and is mainly used as a encapsulation material for semiconductors such as ICs.

C従来の技術〕 電子部品封止用熱可塑性樹脂組成物として、耐熱性、難
燃性に特徴を有する、ポリフェニレンスルフィド樹脂組
成物を用いることは、特開昭52−149348号公報
で知られている。また特定の有機シランを含有せしめた
、メルトフロー指数が、100ないし10,000g/
10分のポリフェニレンスルフィドを用いた組成物が電
子部品封止材として特開昭57−158256号公報に
開示されている。
C. Prior Art] The use of a polyphenylene sulfide resin composition, which is characterized by heat resistance and flame retardancy, as a thermoplastic resin composition for encapsulating electronic components is known from JP-A-52-149348. There is. Also, the melt flow index is 100 to 10,000g/
A composition using 10% polyphenylene sulfide is disclosed in Japanese Patent Application Laid-Open No. 158256/1983 as an electronic component encapsulating material.

〔発明が解決しようとする問題点〕  。[Problem that the invention seeks to solve].

しかしながら前記特開昭57−158256号公報に開
示されている、メルトフロー指数が100ないし10.
000g/10分のポリフェニレンスルフィドを用いた
組成物においては、流動性が不十分であるため、リード
線の変位、損傷が著しいという欠点がある。またかかる
流動性の劣る組成物で、リード線の変位又は損傷を回避
しようとした場合、成形時の充填圧力を極めて低い値に
制御することが必要であり、充填が不十分となる。
However, the melt flow index disclosed in JP-A-57-158256 is 100 to 10.
Compositions using polyphenylene sulfide of 000g/10min have the disadvantage that the lead wires are significantly displaced and damaged due to insufficient fluidity. Furthermore, when attempting to avoid displacement or damage to the lead wire with such a composition with poor fluidity, it is necessary to control the filling pressure during molding to an extremely low value, resulting in insufficient filling.

更に、かかる流動性の劣る組成物で電子部品を封止した
場合、リード線の変形にも顕在化しているように、封止
素子あるいは、リード線接合部への成形時の応力および
成形後の封止部品の状態での残留応力が大きいため、高
温使用等の熱履歴により、電子部品に故障が生じやすく
、耐熱性が劣り好ましくない。
Furthermore, when an electronic component is sealed with such a composition with poor fluidity, the stress during molding and the stress on the sealing element or the lead wire joint during molding, as is evident in the deformation of the lead wire. Since the residual stress in the state of the sealed component is large, the electronic component is likely to fail due to thermal history such as high temperature use, and the heat resistance is poor, which is undesirable.

本発明者らは上記従来技術の欠点を解決すべく検討し、
本発明に至った。
The present inventors studied to solve the drawbacks of the above-mentioned conventional technology,
This led to the present invention.

したがって本発明の目的は、電子部品の封止成形時にお
けるリード線変位または損傷を防止し、高温でも使用で
きる耐熱性の優れた電子部品封止用熱可塑性樹脂組成物
を提供するものである。
Therefore, an object of the present invention is to provide a thermoplastic resin composition for encapsulating electronic components that prevents lead wire displacement or damage during encapsulation molding of electronic components and has excellent heat resistance and can be used even at high temperatures.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するための、本発明の手段はメルトフ
ロー指数12.000g/10分量上のポリフェニレン
スルフィド30〜50重量%、繊維状充填剤8〜30重
量%、エポキシシラン0.3〜3重量%およびシリカ3
0〜65重量%から成る電子部品封止用熱可塑性樹脂組
成物である。
In order to solve the above problems, the means of the present invention consists of 30 to 50% by weight of polyphenylene sulfide, 8 to 30% by weight of fibrous filler, and 0.3 to 3% of epoxy silane on a melt flow index of 12.000 g/10 parts. wt% and silica3
This is a thermoplastic resin composition for encapsulating electronic components, comprising 0 to 65% by weight.

本発明で用いるポリフェニレンスルフィド(以下pps
と略する)とは、構造式 +S+ で示される繰返し単位を70モル%以上、より
好ましくは90モル%以上を含む重合体であり、上記繰
返し単位が70モル%未満では、耐熱性が損なわれるた
め好ましくない。
Polyphenylene sulfide (hereinafter pps) used in the present invention
) is a polymer containing 70 mol% or more, more preferably 90 mol% or more of repeating units represented by the structural formula +S+; if the repeating unit is less than 70 mol%, heat resistance will be impaired. Therefore, it is undesirable.

またPPSはその繰返し単位の30モル%未満を、下記
の構造式を有する繰返し単位等で構成することが可能で
ある。
Further, less than 30 mol% of the repeating units of PPS can be composed of repeating units having the following structural formula, etc.

本発明で用いられるPPSのメルトフロー指数は、12
.000g/10分量上である必要があり、好ましくは
13,000g/10分量上、さらに好ましくは15、
000g/10分量上のものが用いられる。このメルト
フロー指数が12.000g/10分未満では最終組成
物の流動性が劣る。
The melt flow index of PPS used in the present invention is 12
.. 000 g/10 portions, preferably 13,000 g/10 portions, more preferably 15,000 g/10 portions.
000 g/10 portions are used. If this melt flow index is less than 12.000 g/10 minutes, the fluidity of the final composition will be poor.

本発明におけるPPSのメルトフロー指数は、ASTM
法D−1238−74に準じて行ない、温度316℃、
荷重5 kgの条件で測定した値である。
The melt flow index of PPS in the present invention is ASTM
Performed according to method D-1238-74, temperature 316°C,
This is a value measured under the condition of a load of 5 kg.

かかるPPSの組成物中における配合割合は、30〜5
0!量%、好ましくは35〜40ffiffi%のもの
が用いられる。30重量%未満では封止成形時における
流動性が悪<、50重重景を超えると充填剤含有量が過
少になるため封止成形品の線膨張率が大きくなる。なお
使用するPPSには酸化防止剤、熱安定剤、滑剤、紫外
線吸水剤、着色剤、離型剤などの通常の添加剤を添加す
ることが可能である。
The blending ratio of such PPS in the composition is 30 to 5
0! %, preferably 35 to 40 ffiffi%. If it is less than 30% by weight, the fluidity during encapsulation molding will be poor; if it exceeds 50% by weight, the filler content will be too small and the coefficient of linear expansion of the encapsulation molded product will increase. It is possible to add ordinary additives such as antioxidants, heat stabilizers, lubricants, ultraviolet water absorbers, colorants, and mold release agents to the PPS used.

本発明で用いる繊維状充填剤としては、ガラス繊維、セ
ラミックス繊維、石綿、チタン酸カリウム繊維、その他
の無機質繊維、ポリアミド、ポリエステル、その他の有
機合成繊維が適しており、この中では特にガラス繊維が
好ましい。
As the fibrous filler used in the present invention, glass fibers, ceramic fibers, asbestos, potassium titanate fibers, other inorganic fibers, polyamides, polyesters, and other organic synthetic fibers are suitable, and among these, glass fibers are particularly suitable. preferable.

かかる繊維状充填剤の組成物中における配合量は、8〜
30重量%、好ましくは、10〜20重量%の範囲が選
択される。8重量%未満では、組成物の機械強度が不十
分であり、30重量%を超1えると、封止成形時におけ
る流動性が悪くなる。
The amount of such fibrous filler in the composition is 8 to 8.
A range of 30% by weight is selected, preferably from 10 to 20% by weight. If it is less than 8% by weight, the mechanical strength of the composition will be insufficient, and if it exceeds 30% by weight, the fluidity during sealing molding will be poor.

また、該繊維状充填剤の繊維長は、組成物の機械強度及
び、封止成形時における流動性の面から、押出混練後に
おいて、0.03mm〜1.0■lであることが好まし
い。
Further, the fiber length of the fibrous filler after extrusion kneading is preferably 0.03 mm to 1.0 l from the viewpoint of mechanical strength of the composition and fluidity during sealing molding.

本発明に用いられるエポキシシランは、組成物の機械的
補強と同時に耐湿性を改善する目的で用いられる。具体
例としてはT−グリシドキシプロビルトリメトキシシラ
ン、T−グリシドキシプロビルトリエトキシシラン、β
−(3,4−シクロヘキシル)エチルトリメトキシシラ
ンなどが挙げられ、これらは2種以上を併用することが
できる。本発明の組成物の場合特にこれらのエポキシシ
ランは、上記改善効果が著しく、他の代表的なシラン化
合物、たとえば不飽和シランやアミノシランを用いても
同様な改善効果は得られない。すなわち本発明のエポキ
シシランは、PPSと繊維状充填剤あるいはシリカの境
面の接着強度を強めて封止成形品の機械的性質を改善す
ると同時に耐湿性も改良するものである。
The epoxy silane used in the present invention is used for the purpose of mechanically reinforcing the composition as well as improving moisture resistance. Specific examples include T-glycidoxypropyltrimethoxysilane, T-glycidoxypropyltriethoxysilane, β
Examples include -(3,4-cyclohexyl)ethyltrimethoxysilane, and two or more of these can be used in combination. In the case of the composition of the present invention, these epoxysilanes in particular have a remarkable improvement effect, and the same improvement effect cannot be obtained even if other typical silane compounds such as unsaturated silanes and aminosilanes are used. That is, the epoxy silane of the present invention strengthens the adhesive strength at the interface between PPS and the fibrous filler or silica, improves the mechanical properties of the encapsulated molded product, and at the same time improves the moisture resistance.

エポキシシランの組成物中における配合量は0.3〜3
重量%が必要である。0.3重量%未満では、十分に耐
水性、機械特性の改良効果が発現しな(、また3重量%
を超えると、上記改良効果が飽和に達するばかりでな(
、組成物の流動性を損う。
The amount of epoxysilane in the composition is 0.3 to 3
Weight % is required. If it is less than 0.3% by weight, the effect of improving water resistance and mechanical properties will not be sufficiently achieved (and if it is less than 3% by weight)
If it exceeds, the above improvement effect will reach saturation (
, impairing the fluidity of the composition.

また、これらのエポキシシランを配合する方法としては
一定pHに調整されたエポキシシランの溶液(水溶液、
水/有機溶媒混合溶液)に繊維状充填剤あるいは溶融シ
リカ、結晶シリカを浸漬後乾燥する方法、あるいはヘン
シェル混合Jatとのミキサーにより、繊維状充填剤あ
るいはシリカとエポキシシランを混合し、配合する方法
などがあるが、これらは特に限定されるものではない。
In addition, as a method for blending these epoxysilanes, a solution of epoxysilane (aqueous solution,
A method in which fibrous filler, fused silica, or crystalline silica is immersed in water/organic solvent mixed solution) and then dried, or a method in which fibrous filler or silica and epoxy silane are mixed and blended using a mixer with Henschel Mixture Jat. etc., but these are not particularly limited.

本発明で用いる溶融シリカ及び/または結晶シリカは、
組成物の線膨張率および熱伝導率を改善する目的で用い
られる。該用途に用いられる組成物は、素子への熱応力
を低減するため線膨張率の小さいことが要求され、また
素子の発生する熱の蓄積を回避するため熱伝導率の大き
いことが要求される。シリカの種類は溶融シリカと結晶
性シリカに分けることができ、いずれもこの目的に好適
な充填剤である。溶融シリカと結晶性シリカを比較する
と、前者は特に線膨張率が小さく、後者は特に熱伝導率
が大きいという特徴を有する。従って、比較的線膨張率
に対する要求が厳しい場合には溶融シリカを使用するこ
とが好ましく、また熱伝導率に対する要求が厳しい場合
には結晶性のシリカを使用することが好ましい。なおこ
れらのシリカは場合によっては併用することも可能であ
る。
The fused silica and/or crystalline silica used in the present invention is
It is used for the purpose of improving the coefficient of linear expansion and thermal conductivity of the composition. The composition used for this purpose is required to have a low coefficient of linear expansion in order to reduce thermal stress on the element, and is also required to have high thermal conductivity in order to avoid accumulation of heat generated by the element. . Types of silica can be divided into fused silica and crystalline silica, both of which are suitable fillers for this purpose. Comparing fused silica and crystalline silica, the former has a particularly low linear expansion coefficient, and the latter has a particularly high thermal conductivity. Therefore, it is preferable to use fused silica when the requirement for linear expansion coefficient is relatively strict, and it is preferable to use crystalline silica when the requirement for thermal conductivity is relatively strict. Note that these silicas can be used in combination depending on the case.

溶融シリカ及び/または結晶シリカの組成物中における
配合量は、30〜65重量%、好ましくは45〜60重
量%の範囲が選択される。30重量%未満では、線膨張
率、熱伝導率の改善効果が不十分であり、また65重量
%を超えると、封止成形時における流動性が悪くなる。
The amount of fused silica and/or crystalline silica in the composition is selected from 30 to 65% by weight, preferably from 45 to 60% by weight. If it is less than 30% by weight, the effect of improving linear expansion coefficient and thermal conductivity will be insufficient, and if it exceeds 65% by weight, fluidity during sealing molding will deteriorate.

本発明の組成物の製造方法は、一般的な方法が用いられ
特に限定されるものでない。例えば、室温においてリボ
ン羽根型混合機、ドラム型回転混合機を用いて各成分を
一緒に混合した後、単軸押出機、多軸押出機またはニー
ダ−などにより溶融混練を行ない、ペレット化すること
により製造することができる。ペレット化した組成物は
射出成形装置に導入し、半導体部品、たとえばチップを
封止することができる。
The method for producing the composition of the present invention is not particularly limited and may be a general method. For example, after mixing each component together at room temperature using a ribbon blade type mixer or a drum type rotary mixer, the components are melt-kneaded using a single screw extruder, multi-screw extruder, or kneader, and then pelletized. It can be manufactured by The pelletized composition can be introduced into an injection molding machine to encapsulate a semiconductor component, such as a chip.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

参考例1〜5 (PPSの重合) オートクレーブに30%水硫化ナトリウム水溶液3.7
4kg、 50%水酸化ナトリウム1.60kgおよび
N−メチル−2−ピロリドン(以下NMPと略する)4
kgを仕込み、攪拌しながら徐々に205℃まで昇温し
、水3.5 kgを含む留出水3.81を除去した。残
留混合物に1.4−ジクロルベンゼン3.00kgおよ
びN M P 0.5 kgを加え230℃まで昇温し
、それぞれ表1中に記載の時間保持したのち、反応生成
物を、水で2回、70℃の温、水で2回洗浄した。これ
を3倍量のイオン交換水とともにオートクレーブに仕込
み、常圧で密閉したのち撹拌しつつ180℃に昇温し、
約2時間保持後冷却した。オートクレーブから内容物を
取り出して濾過し、更に濾液のpHが7となるまで室温
のイオン交換水で洗浄したのち、120℃で24時間減
圧乾燥してそれぞれ粉末状のPPS約2 kgを得た。
Reference Examples 1 to 5 (Polymerization of PPS) 30% sodium hydrogen sulfide aqueous solution 3.7 in an autoclave
4 kg, 1.60 kg of 50% sodium hydroxide and N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) 4
kg was charged, and the temperature was gradually raised to 205° C. while stirring, and 3.81 kg of distilled water containing 3.5 kg of water was removed. 3.00 kg of 1,4-dichlorobenzene and 0.5 kg of NMP were added to the residual mixture, and the temperature was raised to 230°C and held for the time indicated in Table 1. The reaction product was diluted with water for 2 hours. Washed twice with water at a temperature of 70°C. This was placed in an autoclave with three times the amount of ion-exchanged water, sealed at normal pressure, and heated to 180°C while stirring.
After holding for about 2 hours, it was cooled. The contents were taken out from the autoclave, filtered, and washed with ion-exchanged water at room temperature until the pH of the filtrate reached 7, and then dried under reduced pressure at 120° C. for 24 hours to obtain about 2 kg of powdered PPS.

得られたPPSのメルト・フローは表1に記載の通りで
あった。
The melt flow of the obtained PPS was as shown in Table 1.

(水兵以下余白) 表   1 実施例1 参考例1のPPS粉末とチョツプド状のガラス繊維(日
本電気ガラス■製、TN−101、直径13ミクロン、
長さ約10 vm )と溶融シリカ(東芝セラミックス
■GR−80、平均粒径20ミクロン)及び、エポキシ
シラン(γ−グリシドキシプロビルトリメトキシシラン
、東しシリコーン@@5H−6040)と、黒着色剤(
カーボンブランク、東洋インキ■T S−0171)と
を表2に記載の割合で総重ffi 2.5 kgとなる
よう準備し、10Ilのリボン羽根型混合機に入れ10
分間混合した。得られた混合物をスクリュウ径30鶴φ
の2軸押出機に投入し、シリンダ一温度約290℃、ス
クリュウ回転数毎分45回転で溶融混練せしめ、押出機
先端に装置したホットカッターでベレット化した。
(Margin below the sailor) Table 1 Example 1 PPS powder of Reference Example 1 and chopped glass fiber (manufactured by Nippon Electric Glass ■, TN-101, diameter 13 microns,
length of about 10 vm), fused silica (Toshiba Ceramics GR-80, average particle size 20 microns), and epoxy silane (γ-glycidoxypropyltrimethoxysilane, Toshi Silicone@@5H-6040), Black colorant (
Carbon blank and Toyo Ink TS-0171) were prepared in the proportions shown in Table 2 to give a total weight ffi of 2.5 kg, and placed in a 10 Il ribbon blade mixer.
Mixed for a minute. The resulting mixture was passed through a screw with a diameter of 30 mm.
The mixture was put into a twin-screw extruder, and melt-kneaded at a cylinder temperature of about 290° C. and a screw rotation speed of 45 revolutions per minute, and pelletized using a hot cutter installed at the tip of the extruder.

このペレットをインサート専用射出成形機に供給し、シ
リンダ一温度340℃金型温度200℃で、半導体素子
の封止成形を行った。半導体素子は、10連の支持フレ
ーム上にそれぞれ半導体チップを載せ、直径30ミクロ
ンの金線(以下リード線と略する)で、半導体チップの
電極と支持フレームの端子とを連結させたものを用いた
。成形圧力は、金型内に樹脂が完全に充填される最低の
圧力を選択して行った。この成形下限圧は表2に記載の
通りであった。
This pellet was supplied to an injection molding machine exclusively for inserts, and a semiconductor element was encapsulated at a cylinder temperature of 340°C and a mold temperature of 200°C. For the semiconductor device, a semiconductor chip was placed on each of 10 support frames, and the electrodes of the semiconductor chip and the terminals of the support frame were connected using gold wires (hereinafter referred to as lead wires) with a diameter of 30 microns. there was. The molding pressure was selected to be the lowest pressure that would completely fill the mold with resin. The lower limit pressure for molding was as shown in Table 2.

封止成形品のリード線の変位又は損傷は軟エックス線法
で評価し、変位量は正常リード線位置に対する最大変位
ffi(mm)の10個の封止部品についての平均値で
評価した。耐熱性は、10個の封止部品について150
℃での高温動作試験を行い、5個の封止部品に故障が発
生する時間で評価した。
Displacement or damage to the lead wire of the sealed molded product was evaluated using a soft X-ray method, and the amount of displacement was evaluated as the average value of the maximum displacement ffi (mm) for 10 sealed parts with respect to the normal lead wire position. Heat resistance is 150 for 10 sealed parts
A high-temperature operation test was conducted at ℃, and evaluation was made based on the time required for failure to occur in five sealed components.

また耐熱性は121℃、2気圧の加圧水蒸気中に100
時間保持(表2ではこの操作をPCTと称する)した後
のリーク電流の値を、10個の封止部品についての平均
値で評価した。結果を表2に示す。
In addition, the heat resistance is 100℃ in pressurized steam at 121℃ and 2 atmospheres.
The value of leakage current after time holding (this operation is referred to as PCT in Table 2) was evaluated as an average value for 10 sealed parts. The results are shown in Table 2.

実施例2.3 実施例1で参考例1のPPSを用いた代りに、それぞれ
、参考例2,3のPPSを用いた以外は、実施例1と全
く同じ方法で封止成形およびその評価を行ない、結果を
第2表に示した。
Example 2.3 Encapsulation molding and its evaluation were carried out in exactly the same manner as in Example 1, except that PPS of Reference Examples 2 and 3 were used instead of PPS of Reference Example 1 in Example 1. The results are shown in Table 2.

比較例1.2 実施例1で、参考例1のPPSを用いた代りに、それぞ
れ、参考例4,5のPPSを用いたことのほかは、実施
例1とまったく同じ方法で封止成形および評価を行なっ
た。結果は第2表に記載の通りである。
Comparative Example 1.2 Sealing molding and molding were carried out in exactly the same manner as in Example 1, except that PPS of Reference Examples 4 and 5 was used instead of PPS of Reference Example 1. We conducted an evaluation. The results are shown in Table 2.

比較例3,4 実施例1で用いたエポキシシランをそれぞれ無配合及び
0.3重量%に減量したことのほかは、実施例1とまっ
た(同じ方法で封止成形および評価を行なった。結果は
表2中に記載の通りである。
Comparative Examples 3 and 4 Same as Example 1 except that the epoxy silane used in Example 1 was not added and the amount was reduced to 0.3% by weight (sealing molding and evaluation were performed in the same manner. Results) is as described in Table 2.

比較例5.6 実施例1で用いたガラス繊維の配合比をそれぞれ32重
重撥及び7重量%にしたことのほかは、実施例1とまっ
たく同じ方法で封止成形および評価を行なった。結果は
表2中に記載の通りである。
Comparative Example 5.6 Sealing molding and evaluation were performed in exactly the same manner as in Example 1, except that the blending ratio of the glass fibers used in Example 1 was 32% by weight and 7% by weight, respectively. The results are shown in Table 2.

(水兵以下余白) 〔発明の効果〕 本発明の電子部品封止用熱可塑性樹脂組成物は次のよう
な優れた効果を奏する。
(Margin below for sailor) [Effects of the Invention] The thermoplastic resin composition for encapsulating electronic components of the present invention exhibits the following excellent effects.

(1)  成形時の流動性が良いため、リード線の変位
が小さい。
(1) Due to good fluidity during molding, displacement of the lead wire is small.

(2)本発明の組成物で封止された電子部品は故障発生
が少なく、電流のリークも少なくなる。
(2) Electronic components sealed with the composition of the present invention have fewer failures and less current leakage.

Claims (1)

【特許請求の範囲】[Claims] メルトフロー指数12,000g/10分量上のポリフ
ェニレンスルフィド30〜50重量%、繊維状充填剤8
〜30重量%、エポキシシラン0.3〜3重量%および
シリカ30〜65重量%から成ることを特徴とする電子
部品封止用熱可塑性樹脂組成物。
Melt flow index 12,000 g/10 parts by weight polyphenylene sulfide 30-50%, fibrous filler 8
30% by weight of epoxy silane, 0.3 to 3% by weight of epoxysilane, and 30 to 65% by weight of silica.
JP80386A 1986-01-08 1986-01-08 Thermoplastic resin composition for use in sealing electronic component Pending JPS62158754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP80386A JPS62158754A (en) 1986-01-08 1986-01-08 Thermoplastic resin composition for use in sealing electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP80386A JPS62158754A (en) 1986-01-08 1986-01-08 Thermoplastic resin composition for use in sealing electronic component

Publications (1)

Publication Number Publication Date
JPS62158754A true JPS62158754A (en) 1987-07-14

Family

ID=11483844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP80386A Pending JPS62158754A (en) 1986-01-08 1986-01-08 Thermoplastic resin composition for use in sealing electronic component

Country Status (1)

Country Link
JP (1) JPS62158754A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151657A (en) * 1988-12-05 1990-06-11 Dainippon Ink & Chem Inc Polyarylene sulfide ketone composition
EP0392472A2 (en) * 1989-04-10 1990-10-17 Phillips Petroleum Company Glass-filled poly (arylene sulfide) compositions and methods
JPH0335058A (en) * 1989-06-05 1991-02-15 Phillips Petroleum Co Polyarylene sulfide) compound
JPH04222865A (en) * 1990-03-19 1992-08-12 Phillips Petroleum Co Glass-reinforced polyarylene sulfide composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151657A (en) * 1988-12-05 1990-06-11 Dainippon Ink & Chem Inc Polyarylene sulfide ketone composition
EP0392472A2 (en) * 1989-04-10 1990-10-17 Phillips Petroleum Company Glass-filled poly (arylene sulfide) compositions and methods
JPH0335058A (en) * 1989-06-05 1991-02-15 Phillips Petroleum Co Polyarylene sulfide) compound
JPH04222865A (en) * 1990-03-19 1992-08-12 Phillips Petroleum Co Glass-reinforced polyarylene sulfide composition

Similar Documents

Publication Publication Date Title
US5824729A (en) Silicone rubber composition
JPS59132506A (en) Sealing of electronic part with poly(arylene sulfide) composition containing calsium silicate
JPS62197451A (en) Resin composition for use in sealing electronic component
JPH02229858A (en) Resin composition for sealing electronic parts and sealed electronic parts
JPS62158754A (en) Thermoplastic resin composition for use in sealing electronic component
JP3652460B2 (en) Resin composition
JPS63189458A (en) Polyarylene sulfide resin composition for sealing electronic part and electric part
JPS63219147A (en) Pps sealed electronic component
JP3120429B2 (en) Polyarylene sulfide resin composition
JPS6317549A (en) Resin-sealed electronic part
WO2022009660A1 (en) Method for suppressing burrs of polyarylene sulfide resin composition
JPH0326483B2 (en)
JP2703609B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor used therein
JP2969654B2 (en) Resin composition for sealing electronic parts
JPH0739546B2 (en) Polyphenylene sulfide resin composition for molding
JPH11349813A (en) Polyarylene sulfide resin composition for sealing electronic component
KR930002983B1 (en) Electronic device sealing resin compositions and sealed electronic devices
EP0244188B1 (en) Polyarylene thioether molding product
JPH0759667B2 (en) Polyarylene sulfide resin composition and molded article thereof
JP2969655B2 (en) Composition for sealing electronic parts
JP2703617B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor used therein
JP2952980B2 (en) Polyarylene sulfide resin composition for sealing electronic parts and electronic parts
JP2778125B2 (en) Electronic component encapsulated with polyphenylene sulfide resin composition
JPS63219146A (en) Pps sealed electronic component
JPS62127347A (en) Polyarylene sulfide resin composition for use in sealing electronic component