JP2778673B2 - Driving method of solid-state imaging device - Google Patents

Driving method of solid-state imaging device

Info

Publication number
JP2778673B2
JP2778673B2 JP2077939A JP7793990A JP2778673B2 JP 2778673 B2 JP2778673 B2 JP 2778673B2 JP 2077939 A JP2077939 A JP 2077939A JP 7793990 A JP7793990 A JP 7793990A JP 2778673 B2 JP2778673 B2 JP 2778673B2
Authority
JP
Japan
Prior art keywords
potential
transfer
diffusion region
region
information charges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2077939A
Other languages
Japanese (ja)
Other versions
JPH03277083A (en
Inventor
浩也 伊藤
良仁 東堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2077939A priority Critical patent/JP2778673B2/en
Publication of JPH03277083A publication Critical patent/JPH03277083A/en
Application granted granted Critical
Publication of JP2778673B2 publication Critical patent/JP2778673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、フレーム転送方式のCCD固体撮像素子の駆
動方法に係り、特に暗電流の低減に関する。
The present invention relates to a method of driving a frame transfer type CCD solid-state imaging device, and more particularly to a method for reducing dark current.

(ロ)従来の技術 CCD固体撮像素子を形成するSi(シリコン)基板に
は、P型或いはN型が用いられ、基板のタイプに依り素
子構造も異なる。P型基板を用いる場合、基板の一面に
N型の拡散領域を設け、この拡散領域が情報電荷の蓄積
転送チャネルとして用いられる。この拡散領域は、LOCO
S等のチャネル分離領域に依り区画されており、このチ
ャネル分離領域内に拡散領域から漏れ出す過剰な情報電
荷を受けるオーバーフロードレインが形成される。一
方、N型基板を用いる場合、基板の一面にP型の拡散領
域、所謂P−Well領域を形成した後に、このP−Well領
域内に蓄積転送チャネルとなるN型拡散領域が形成され
る。このようにN型基板を用いる場合には、拡散領域内
の過剰な情報電荷をN型基板側に排出する縦型オーバー
フロードレイン構造となるために、拡散領域を区画する
チャネル分離領域内にオーバーフロードレインを形成す
る必要がなく、微細化、即ち画素の高密度化に有効であ
り、今後の発展が期待されている。しかしながら、P型
基板を用いたCCDに於いても、N型基板を用いた場合に
比して赤外線領域での感度が高く、製造も容易なことか
ら、赤外線カメラや高感度カメラ等に広く利用されてい
る。
(B) Conventional technology A P-type or N-type is used for a Si (silicon) substrate for forming a CCD solid-state imaging device, and the element structure differs depending on the type of the substrate. When a P-type substrate is used, an N-type diffusion region is provided on one surface of the substrate, and this diffusion region is used as a storage channel for information charges. This diffusion area is LOCO
An overflow drain is defined by a channel isolation region such as S, and receives an excess information charge leaking from the diffusion region in the channel isolation region. On the other hand, when an N-type substrate is used, after forming a P-type diffusion region on one surface of the substrate, a so-called P-Well region, an N-type diffusion region serving as a storage transfer channel is formed in the P-Well region. When an N-type substrate is used as described above, a vertical overflow drain structure in which excess information charges in the diffusion region are discharged to the N-type substrate side is provided. This is effective for miniaturization, that is, for increasing the density of pixels, and future development is expected. However, CCDs using P-type substrates have higher sensitivity in the infrared region and are easier to manufacture than those using N-type substrates, so they are widely used in infrared cameras and high-sensitivity cameras. Have been.

第5図は、フレーム転送方式のCCDの撮像部の断面図
である。
FIG. 5 is a sectional view of an image pickup unit of a frame transfer type CCD.

P型のSi基板(1)の一方の面には、N型の拡散領域
(2)が形成され、埋込チャネル構造を成している。こ
の拡散領域(2)は、LOCOS等のチャネル分離領域に依
り区画され、情報電荷の転送方向に沿って形成される。
この拡散領域(2)上には、拡散領域(2)の延在方向
に直交して複数の転送電極(3)(4)がSiO2膜(5)
を介して配列される。この転送電極(3)(4)は、一
部が重なり合った2層構造を成し、4相の転送クロック
φ〜φが夫々印加される。
An N-type diffusion region (2) is formed on one surface of the P-type Si substrate (1) to form a buried channel structure. The diffusion region (2) is partitioned by a channel isolation region such as LOCOS, and is formed along the information charge transfer direction.
On the diffusion region (2), a plurality of transfer electrodes (3) and (4) are formed on the SiO 2 film (5) at right angles to the extending direction of the diffusion region (2).
Are arranged through. The transfer electrode (3) (4), form a two-layer structure in which partially overlap, the four-phase transfer clocks phi 1 to [phi] 4 are respectively applied.

CCDをインターレース駆動する場合、4相の転送クロ
ックφ〜φは、垂直走査信号VDに同期し、第6図に
示すように与えられる。先ず、偶数フィールドEVENで
は、転送クロックφ1がHレベル、例えば+5V、転
送クロックφ2がLレベル、例えば−7Vに固定さ
れ、第7図に示すように転送クロックφ2が印加さ
れる転送電極(3)(4)下に形成されるポテンシャル
の障壁に依り画素分離が成されると共に、転送クロック
φ1が印加される転送電極(3)(4)下に形成さ
れるポテンシャルの井戸内に情報電荷eが蓄積される。
続いて、奇数フィールドODDでは、各転送クロックφ
〜φが反転し、転送クロックφ1がLレベル、転
送クロックφ2がHレベルに固定され、転送クロッ
クφ2が印加される転送電極(3)(4)下のポテ
ンシャルの井戸に情報電荷eが蓄積される。以上の場
合、ポテンシャルの障壁が形成されている領域で発生す
る情報電荷は、図中矢印で示す如くポテンシャルの井戸
に流れ込み、2画素分の情報電荷が混合される。そし
て、各フィールドで蓄積された情報電荷eは、各フィー
ルドの終わりに設定される垂直走査信号VDのブランキン
グ期間内に所定の方向へ転送出力される。従って、偶数
フィールドEVENに偶数ラインの画素に蓄積された情報電
荷が読み出され、奇数フィールドODDに奇数ラインの画
素に蓄積された情報電荷が読み出される。
When interlacing the CCD, the four-phase transfer clocks φ 1 to φ 4 are applied in synchronization with the vertical scanning signal VD as shown in FIG. First, in the even field EVEN, transfer clocks phi 1, phi 4 is H level, for example + 5V, the transfer clock phi 2, phi 3 is L level, for example, is fixed to -7V, transfer clock phi 2 as shown in FIG. 7 , transfer electrodes phi 3 is applied (3) (4) with the pixel separation depends on a potential barrier formed under done, transfer clocks phi 1, transfer electrodes phi 4 is applied (3) ( 4) Information charges e are accumulated in the potential well formed below.
Subsequently, in the odd field ODD, each transfer clock φ 1
To [phi] 4 is reversed, the transfer clock phi 1, phi 4 is L level, the transfer clock phi 2, phi 3 is fixed to the H level, the transfer clock phi 2, the transfer electrode (3) which phi 3 is applied (4 ) Information charges e are accumulated in the lower potential well. In the above case, the information charge generated in the region where the potential barrier is formed flows into the potential well as shown by the arrow in the figure, and the information charges for two pixels are mixed. The information charges e accumulated in each field are transferred and output in a predetermined direction within a blanking period of the vertical scanning signal VD set at the end of each field. Therefore, the information charges stored in the pixels of the even lines are read in the even field EVEN, and the information charges stored in the pixels of the odd line are read in the odd field ODD.

転送電極(3)(4)に所定の電位を与えたときの深
さ方向のポテンシャルの状態を第8図に示す。転送電極
(3)(4)の電位、即ち転送クロックφ〜φがL
レベルのときには、図中lの如くSi基板(1)の表面か
ら拡散領域(2)内部に向って深くなり、表面から少し
離れた所で最も深くなった後にSi基板(1)の裏面に向
って浅くなるようなポテンシャルが形成される。このポ
テンシャルは、Si基板(1)の深部で一定の深さP0に収
束し、且つSi基板(1)内部ではこの深さP0より浅くは
ならない。従って、転送電極(3)(4)の電位をSi基
板(1)表面のポテンシャルの深さがP0となる電位(ピ
ンニング電位)より低くしても、Si基板(1)内のポテ
ンシャルの深さは変化せず、Si基板(1)上のSiO2
(5)内でポテンシャルが変化する。
FIG. 8 shows the state of the potential in the depth direction when a predetermined potential is applied to the transfer electrodes (3) and (4). The potential of the transfer electrode (3) (4), i.e., the transfer clock phi 1 to [phi] 4 is L
In the case of the level, as shown by l in the figure, the surface becomes deeper from the surface of the Si substrate (1) toward the inside of the diffusion region (2), becomes deepest at a position slightly away from the surface, and then reaches the back surface of the Si substrate (1). Thus, a potential that is shallower is formed. This potential is converged to a predetermined depth P 0 at depth of the Si substrate (1), and the Si substrate (1) not in shallower than the depth P 0 inside. Therefore, even if the potential of the transfer electrodes (3) and (4) is lower than the potential (pinning potential) at which the potential depth on the surface of the Si substrate (1) becomes P 0 , the potential depth within the Si substrate (1) is reduced. The potential does not change, and the potential changes in the SiO 2 film (5) on the Si substrate (1).

(ハ)発明が解決しようとする課題 上述の如きCCDに於いては、Si基板(1)とSiO2
(5)との界面(Si−SiO2界面)に不飽和結合が生じて
界面準位を成し、この界面準位が電荷の発生を招くため
に、Si−SiO2界面近傍から暗電流が発生する。この暗電
流は、場所に依り発生する量が不均一であり、このよう
な暗電流が情報電荷に混入すると再生画面上に明暗のム
ラが生じる。特に、CCDの温度が高くなると暗電流は増
大し、再生画面上の明暗のムラがさらに顕著に表われ
る。
(C) Problems to be Solved by the Invention In the above-described CCD, an unsaturated bond is generated at the interface (Si-SiO 2 interface) between the Si substrate (1) and the SiO 2 film (5), and the interface state is increased. Since the interface state causes the generation of electric charge, a dark current is generated from the vicinity of the Si—SiO 2 interface. The amount of the dark current generated varies depending on the location, and if such a dark current is mixed with the information charge, unevenness of brightness and darkness is generated on the reproduction screen. In particular, as the temperature of the CCD increases, the dark current increases, and the unevenness of light and darkness on the reproduction screen appears more remarkably.

ところで、第8図中のlに示すようにSiO2膜(5)内
のポテンシャルがP0より浅くなっている場合には、Si基
板(1)の表面近傍に反転層が形成されるため、この反
転層に蓄積される正孔に依りSi−SiO2界面から拡散領域
(2)に流れ込む電荷が再結合され、情報電荷の蓄積さ
れる領域まで達することがなくなる。従って、Si−SiO2
界面の界面準位から発生する暗電流が情報電荷に混入す
ることがなくなる。
When the potential in the SiO 2 film (5) is shallower than P 0 , as shown by 1 in FIG. 8, an inversion layer is formed near the surface of the Si substrate (1). The charge flowing into the diffusion region (2) from the Si—SiO 2 interface is recombined by the holes accumulated in the inversion layer, and does not reach the region where information charges are accumulated. Therefore, Si-SiO 2
The dark current generated from the interface state of the interface does not mix with the information charge.

しかしながら、情報電荷を蓄積する領域は、第8図中
のhに示すように拡散領域(2)内のポテンシャルが十
分に深くなるように転送電極(3)(4)に高い電位が
与えられているために、Si基板(1)の表面に反転層は
形成されておらず、Si−SiO2界面で発生する暗電流はそ
のまま拡散領域(2)内に流れ込み、拡散領域(2)内
に蓄積される情報電荷に混入する。
However, a high potential is applied to the transfer electrodes (3) and (4) so that the potential in the diffusion region (2) becomes sufficiently deep as shown by h in FIG. Therefore, no inversion layer is formed on the surface of the Si substrate (1), and the dark current generated at the Si—SiO 2 interface flows directly into the diffusion region (2) and accumulates in the diffusion region (2). Mixed with the information charge.

そこで本発明は、Si−SiO2界面で発生する暗電流が情
報電荷の蓄積される領域に流れ込むのを防止することを
目的とする。
Therefore, an object of the present invention is to prevent a dark current generated at an Si-SiO 2 interface from flowing into a region where information charges are stored.

(ニ)課題を解決するための手段 本発明は、上述の課題を解決するためになされたもの
で、その特徴とするところは、一導電型の半導体基板の
一主面に逆導電型の拡散領域が設けられると共に、この
拡散領域上に複数の転送電極が配列され、この転送電極
下に形成されるチャネル領域に光電変換に依り発生する
情報電荷を蓄積する固体撮像素子の駆動方法に於いて、
上記情報電荷の蓄積期間中、上記拡散領域の表面近傍に
正孔を蓄積する反転層が形成され得る電位より低い電位
を上記転送電極に与え、上記拡散領域内に一定の間隔を
おいて設けられる低濃度領域に依り画素分離を成し、上
記低濃度領域の間に上記情報電荷を蓄積することにあ
る。
(D) Means for Solving the Problems The present invention has been made to solve the above-mentioned problems, and the feature of the present invention is that a reverse conductivity type diffusion is provided on one main surface of a one conductivity type semiconductor substrate. A region is provided, a plurality of transfer electrodes are arranged on the diffusion region, and a driving method of a solid-state imaging device that stores information charges generated by photoelectric conversion in a channel region formed under the transfer electrode. ,
During the information charge accumulation period, a potential lower than a potential at which an inversion layer that accumulates holes is formed in the vicinity of the surface of the diffusion region is applied to the transfer electrode, and provided at regular intervals in the diffusion region. The object is to separate pixels by the low-density region and to accumulate the information charges between the low-density regions.

(ホ)作用 本発明に依れば、情報電荷が蓄積される領域の半導体
基板表面にも反転層が形成され、Si−SiO2界面の界面準
位から発生する電荷は反転層に蓄積される正孔と再結合
し、情報電荷が蓄積される領域には流れ込まなくなる。
(E) Function According to the present invention, an inversion layer is also formed on the surface of the semiconductor substrate in a region where information charges are accumulated, and charges generated from the interface state at the Si—SiO 2 interface are accumulated in the inversion layer. The electrons recombine with holes and do not flow into a region where information charges are accumulated.

(ヘ)実施例 本発明の一実施例を図面に従って説明する。(F) Embodiment One embodiment of the present invention will be described with reference to the drawings.

第1図は本発明駆動方法を示す図で、(a)はCCD固
体撮像素子の撮像部の断面図、(b)は(a)のA−
A′線断面のポテンシャルの状態を示す図、(c)は
(a)のB−B′線断面のポテンシャルの状態を示す図
であり、夫々情報電荷の蓄積期間の状態を示している。
これらの図に於いて、CCD自体は第5図と同一であり、
同一部分には同一符号が付してある。
1A and 1B are diagrams showing a driving method according to the present invention, in which FIG.
FIG. 7C is a diagram showing the state of the potential in the cross section along the line A ′, and FIG. 7C is a diagram showing the state of the potential in the cross section along the line BB ′ in FIG.
In these figures, the CCD itself is the same as in FIG.
The same parts are denoted by the same reference numerals.

情報電荷を蓄積する期間には、各転送電極(3)
(4)の電位がピンニング電位以下、例えば−12Vに固
定され、下層側の転送電極(3)下(A−A′線断面)
及び上層側の転送電極(4)下(B−B′線断面)に第
1図(b)及び(c)のようなポテンシャルが形成され
る。ここで、上層側の転送電極(4)下には、不純物濃
度の低い低濃度領域(10)が形成されており、この低濃
度領域(10)で画素分離がなされる。即ち、拡散領域
(2)に形成されるポテンシャルの深さは、転送電極
(3)(4)に印加される電圧に従うと共に拡散領域
(2)の不純物濃度の違いに依り第2図のA,Bに示す如
く差を生じるため、夫々の転送電極(3)(4)下に反
転層を形成し得る電圧Va,Vbより低い電圧を転送電極
(3)(4)に印加したとのポテンシャルの深さの差d
が画素分離を成すポテンシャルの障壁の高さとなる。従
って、上層側の転送電極(4)下に形成されるポテンシ
ャルの障壁に囲まれた下層側の転送電極(3)下に情報
電荷が蓄積される。
During the period for storing information charges, each transfer electrode (3)
The potential of (4) is fixed below the pinning potential, for example, -12 V, and below the lower transfer electrode (3) (cross section taken along line AA ').
A potential as shown in FIGS. 1B and 1C is formed below the transfer electrode 4 on the upper layer side (cross section taken along the line BB '). Here, a low-concentration region (10) having a low impurity concentration is formed below the upper transfer electrode (4), and pixels are separated in the low-concentration region (10). That is, the depth of the potential formed in the diffusion region (2) depends on the voltage applied to the transfer electrodes (3) and (4) and also depends on the difference in the impurity concentration of the diffusion region (2). Since a difference is generated as shown in B, a potential lower than voltages Va and Vb that can form an inversion layer under each of the transfer electrodes (3) and (4) is applied to the transfer electrodes (3) and (4). Depth difference d
Is the height of the potential barrier forming pixel separation. Therefore, information charges are accumulated under the lower transfer electrode (3) surrounded by a potential barrier formed below the upper transfer electrode (4).

第3図は、CCDをインターレース駆動する場合の転送
クロックφ〜φのタイミング図で、第4図は各転送
電極下のポテンシャルの状態を示す図である。
FIG. 3 is a timing chart of transfer clocks φ 1 to φ 4 when the CCD is interlaced, and FIG. 4 is a diagram showing a potential state under each transfer electrode.

各転送クロックφ〜φは、垂直走査信号VDに同期
して与えられ、情報電荷を蓄積する期間は、偶数フィー
ルドEVEN、奇数フィールドODDに拘わらず夫々Lレベ
ル、例えば−12Vに固定される。従って、情報電荷の蓄
積期間に於いては、拡散領域(2)内のポテンシャルが
第4図に示すように偶数フィールドEVENと奇数フィール
ドODDとで一致する。このようなポテンシャル状態に於
いて、下層側の転送電極(3)下に蓄積される情報電荷
eは、偶数フィールドEVENでは次に転送クロックφ1
をHレベル、例えば0Vとすることで転送クロックφ
に対応する転送電極(3)下から転送クロックφ1
に対応する転送電極(3)(4)下に転送される。一方
奇数フィールドODDでは、次に転送クロックφ2
Hレベルとすることで転送クロックφに対応する転送
電極(3)下の情報電荷が転送クロックφ2に対応
する転送電極(3)(4)下に転送される。そして、各
転送電極(3)(4)下に集められた情報電荷eは、垂
直走査信号VDのブランキング期間内で所定の方向に転送
出力される。
Each of the transfer clocks φ 1 to φ 4 is given in synchronization with the vertical scanning signal VD, and the period for accumulating the information charges is fixed to the L level, for example, −12 V regardless of the even field EVEN and the odd field ODD. . Therefore, during the storage period of the information charge, the potential in the diffusion region (2) coincides between the even field EVEN and the odd field ODD as shown in FIG. In such a potential state, the information charges e accumulated under the lower transfer electrode (3) are transferred to the transfer clocks φ 1 , φ 1 in the even field EVEN next.
4 is set to H level, for example, 0V, so that the transfer clock φ 3
Transfer clocks φ 1 and φ 4 from below the transfer electrode (3) corresponding to
Are transferred under the transfer electrodes (3) and (4) corresponding to On the other hand, in the odd-numbered field ODD, the transfer charges φ 2 and φ 3 are then set to the H level so that the information charges under the transfer electrode (3) corresponding to the transfer clock φ 1 are transferred to the transfer clocks φ 2 and φ 3. It is transferred under the electrodes (3) and (4). The information charges e collected under the transfer electrodes (3) and (4) are transferred and output in a predetermined direction within a blanking period of the vertical scanning signal VD.

従って、情報電荷の蓄積期間中に各画素毎に蓄積され
る情報電荷eは、蓄積期間の終了後に隣接する2画素毎
に混合され、各転送電極(3)(4)のパルス駆動に依
り順次転送出力される。このようなCCDの駆動方法に依
ると、情報電荷の蓄積期間中Si−SiO2界面に反転層が形
成され、この反転層に蓄積される正孔に暗電流成分の電
荷が再結合されるために情報電荷への暗電流の混入が抑
圧される。即ち、各転送電極(3)(4)の電位が十分
に低い場合、SiO2膜(5)の転送電極(3)(4)側に
電荷が蓄えられるのに対応してSiO2膜(5)のSi基板
(1)側に正孔が蓄えられ、Si−SiO2界面に発生する暗
電流電荷がSiO2膜(5)のSi基板(1)側に蓄えられる
正孔と再結合するために、Si基板(1)(拡散領域
(2))の内部にまで暗電流電荷が侵入することがなく
なる。
Therefore, the information charges e accumulated for each pixel during the accumulation period of the information charges are mixed for every two adjacent pixels after the end of the accumulation period, and sequentially driven by the pulse driving of the transfer electrodes (3) and (4). Transferred and output. According to such a CCD driving method, an inversion layer is formed at the Si-SiO 2 interface during the storage period of the information charge, and the charge of the dark current component is recombined with the holes accumulated in the inversion layer. In addition, the dark current is suppressed from being mixed into the information charges. That is, each transfer electrode (3) (4) when the potential of sufficiently low, the transfer electrode (3) of the SiO 2 film (5) (4) SiO 2 film corresponding to the charge is accumulated in the side (5 )), Holes are stored on the Si substrate (1) side, and dark current charges generated at the Si—SiO 2 interface recombine with holes stored on the Si substrate (1) side of the SiO 2 film (5). In addition, the dark current charge does not enter the inside of the Si substrate (1) (diffusion region (2)).

(ト)発明の効果 本発明に依れば、Si−SiO2界面に発生する暗電流電荷
が反転層の正孔と再結合するために、情報電荷が蓄積転
送される基板内部にまで暗電流電荷は侵入できず、情報
電荷への暗電流の混入が防止できる。従って、特に高温
時に目立つ再生画面上の明暗のムラがなくなり、安定し
て高い画質を提供することができる。
(G) Effects of the Invention According to the present invention, dark current charges generated at the Si—SiO 2 interface recombine with holes in the inversion layer, so that dark currents reach the inside of the substrate where information charges are accumulated and transferred. Charges cannot penetrate, and dark current can be prevented from being mixed into information charges. Therefore, the unevenness of brightness on the reproduction screen, which is particularly conspicuous at high temperatures, is eliminated, and a high image quality can be stably provided.

また、暗電流成分を抑圧できることに依り、低輝度被
写体の撮像に於いてS/N比を向上できるため、CCDのダイ
ナミックレンジの拡大が図れる。
In addition, since the S / N ratio can be improved in imaging a low-luminance object by suppressing the dark current component, the dynamic range of the CCD can be expanded.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明駆動方法を示す断面図及びポテンシャル
図、第2図は転送電極の電位とポテンシャルとの関係を
示す図、第3図はインターレース駆動する際の各転送ク
ロックの波形図、第4図は第1図の内部ポテンシャルの
状態を示す図、第5図は従来の固体撮像素子の断面図、
第6図はインターレース駆動する際の各転送クロックの
波形図、第7図は第5図の内部ポテンシャルの状態を示
す図、第8図は第5図の深さ方向のポテンシャル図であ
る。 (1)……Si基板、(2)……拡散領域、(3)(4)
……転送電極、(5)……SiO2膜、(10)……低濃度領
域。
FIG. 1 is a sectional view and a potential diagram showing a driving method of the present invention, FIG. 2 is a diagram showing a relationship between a potential of a transfer electrode and a potential, FIG. 3 is a waveform diagram of each transfer clock at the time of interlace driving. 4 is a diagram showing the state of the internal potential of FIG. 1, FIG. 5 is a cross-sectional view of a conventional solid-state image sensor,
6 is a waveform diagram of each transfer clock at the time of interlace driving, FIG. 7 is a diagram showing a state of the internal potential in FIG. 5, and FIG. 8 is a potential diagram in a depth direction of FIG. (1) ... Si substrate, (2) ... Diffusion area, (3) (4)
...... transfer electrodes, (5) .... SiO 2 film, (10) ... low-concentration region.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一導電型の半導体基板の一主面に逆導電型
の拡散領域が設けられると共に、この拡散領域上に複数
の転送電極が配列され、この転送電極下に形成されるチ
ャネル領域に光電変換に依り発生する情報電荷を蓄積す
る固体撮像素子の駆動方法に於いて、 上記情報電荷の蓄積期間中、 上記拡散領域の表面近傍に正孔を蓄積する反転層が形成
され得る電位より低い電位を上記転送電極に与え、 上記拡散領域内に一定の間隔をおいて設けられる低濃度
領域に依り画素分離を成し、上記低濃度領域の間に上記
情報電荷を蓄積することを特徴とする固体撮像素子の駆
動方法。
A semiconductor substrate of one conductivity type is provided with a diffusion region of the opposite conductivity type on one main surface, a plurality of transfer electrodes are arranged on the diffusion region, and a channel region formed below the transfer electrode. In the method of driving a solid-state imaging device for storing information charges generated by photoelectric conversion, a potential at which an inversion layer for storing holes near the surface of the diffusion region can be formed during the storage period of the information charges. Applying a low potential to the transfer electrode, separating pixels by a low-density region provided at a constant interval in the diffusion region, and accumulating the information charge between the low-density regions. Of driving a solid-state imaging device.
【請求項2】上記蓄積期間に蓄積された情報電荷を2画
素毎に混合した後に所定の方向に読出転送することを特
徴とする請求項第1項記載の固体撮像素子の駆動方法。
2. The driving method for a solid-state imaging device according to claim 1, wherein information charges accumulated in said accumulation period are read out and transferred in a predetermined direction after mixing for every two pixels.
JP2077939A 1990-03-27 1990-03-27 Driving method of solid-state imaging device Expired - Fee Related JP2778673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2077939A JP2778673B2 (en) 1990-03-27 1990-03-27 Driving method of solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2077939A JP2778673B2 (en) 1990-03-27 1990-03-27 Driving method of solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH03277083A JPH03277083A (en) 1991-12-09
JP2778673B2 true JP2778673B2 (en) 1998-07-23

Family

ID=13648039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2077939A Expired - Fee Related JP2778673B2 (en) 1990-03-27 1990-03-27 Driving method of solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2778673B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69410147T2 (en) * 1993-03-03 1998-12-03 Philips Electronics Nv Charge coupled arrangement
JP2008277861A (en) * 2008-07-15 2008-11-13 Toshiba Corp Solid imaging device and charge transfer device

Also Published As

Publication number Publication date
JPH03277083A (en) 1991-12-09

Similar Documents

Publication Publication Date Title
JP2525781B2 (en) Driving method for solid-state imaging device
JP2001267548A (en) Solid-state image pickup device
US4794279A (en) A solid state imaging device which applies two separate storage voltages for the signal charges so as to reduce the smear level and the dark current
KR100276971B1 (en) Driving Method of Solid State Imaging Device
US5757427A (en) Image pick-up apparatus having a charge coupled device with multiple electrodes, a buffer layer located below some of the electrodes
JPH03117281A (en) Solid-state image pickup device
JP3317248B2 (en) Solid-state imaging device
JP2778673B2 (en) Driving method of solid-state imaging device
JP4444754B2 (en) Driving method of solid-state imaging device
JPH0642723B2 (en) Driving method for solid-state imaging device
US6891243B2 (en) Solid-state image pick-up device
JPH0150156B2 (en)
JPH0360226B2 (en)
JPH06339081A (en) Driving method for solid-state image pickup element
JPH08279965A (en) Solid state image pickup element and method for driving the element
JPH08279608A (en) Charge transfer element and its drive method
JP2825075B2 (en) Solid-state imaging device and driving method thereof
JP3148459B2 (en) Driving method of solid-state imaging device
JPH08293592A (en) Solid state imaging apparatus
JP2594923B2 (en) Solid-state imaging device
JP2500438B2 (en) Solid-state image sensor and driving method thereof
JP3277385B2 (en) Solid-state imaging device
JPH06268923A (en) Drive method for solid-state image pickup device
JPH02126778A (en) Solid-state image pickup device
JPH0955883A (en) Drive method for solid-state image pickup element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees