JP2773865B2 - Heat- and oxidation-resistant conductor for coil winding - Google Patents

Heat- and oxidation-resistant conductor for coil winding

Info

Publication number
JP2773865B2
JP2773865B2 JP62118386A JP11838687A JP2773865B2 JP 2773865 B2 JP2773865 B2 JP 2773865B2 JP 62118386 A JP62118386 A JP 62118386A JP 11838687 A JP11838687 A JP 11838687A JP 2773865 B2 JP2773865 B2 JP 2773865B2
Authority
JP
Japan
Prior art keywords
conductor
heat
resistant
oxidation
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62118386A
Other languages
Japanese (ja)
Other versions
JPS63284717A (en
Inventor
道雄 奥野
三郎 見目
尚夫 折茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP62118386A priority Critical patent/JP2773865B2/en
Publication of JPS63284717A publication Critical patent/JPS63284717A/en
Application granted granted Critical
Publication of JP2773865B2 publication Critical patent/JP2773865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温酸化雰囲気中で使用するコイル巻線用耐
熱耐酸化性導体に関するもので、コイルの小型化と高温
での連続使用を可能にするものである。 〔従来の技術〕 エンジンルームや焼鈍加熱炉等の高温状態で使用され
るコイル巻線や、アルミニウムや亜鉛のダイキャスト製
造等における溶湯搬送用電磁ポンプに用いられるコイル
巻線には、耐熱耐酸化性に優れたNiメッキ銅線を導体と
し、その周囲にガラス繊維等の無機絶縁物を被覆した耐
熱巻線が使用されてきた。また近年では、絶縁物として
無機ポリマーを被覆し、コイル巻き後に高温で焼成して
セラミック化させたセラミック絶縁耐熱巻線が使用され
るようになった。 〔発明が解決しようとする問題点〕 このように耐熱巻線の使用許容温度向上の動きは活発
になっており、同時に従来のNiメッキ銅線では特性的に
満足できないようになってきている。即ちNiメッキ銅線
は銅又は銅合金の周囲に厚さ数μmのNiメッキを施した
もので、高温でのCuとNiの拡散反応によって、Ni層を透
過したCu元素が表面に析出し、酸化銅を生成するという
問題がある。この酸化銅の生成は、特に高温で焼成して
セラミック化させるセラミック絶縁耐熱巻線では、焼成
中にセラミック中に酸化銅が侵入して絶縁耐圧を低下さ
せるという問題がある。 またCuとNiの熱拡散は銅又は銅合金の経時的な電気抵
抗変化をもたらすという問題がある。従来この問題に対
してコイル全体を水冷するという方法が取られたりした
が、コイルが大型になるという別の問題が発生し、市場
からは高温で長時間連続使用できる小型コイル用の耐熱
耐酸化性導体の開発が望まれている。 〔問題点を解決するための手段〕 本発明は、上記問題を解決すべく種々検討の結果、導
体断面積を減ずることなく、コイルの小型化を可能に
し、かつ高温での連続使用が可能なコイル巻線用耐熱耐
酸化性導体を開発したものである。 即ち本発明導体は、Cuを主成分とする断面平角状の導
体周囲に、酸化物を10μm以下の厚さに形成し、更にそ
の周囲にFe基又はNi基耐熱合金を0.05〜0.5mmの厚さに
被覆したことを特徴とするものである。 〔作 用〕 本発明導体において、導体の断面形状を平角としたの
は、コイル巻き時の占積率を向上させるためであり、特
に導体断面積の大きい場合には、断面円形の導体をコイ
ル巻きした時よりもコイルの小型化への効果が大きい。
この断面平角状の導体周囲には、酸化物層を介在させて
Fe基又はNi基の耐熱合金が被覆される。 このように導体とFe基又はNi基耐熱合金被覆層の間に
酸化物層を形成させたのは、導体と被覆層との熱拡散を
積極的に防止するためであり、その厚さを10μm以下と
規定したのは、10μmを越えると巻き時に曲げ内側面に
シワが発生するからである。酸化物としてはCu2O,CuO,A
l2O3,SiO2,MgO,Cr2O3,ZnO,ZrO2,SnO2,NiO,酸化鉄の何れ
か1種又は2種以上の混合物が用いられる。また雲母や
セラミックス等の無機絶縁物でもよい。 また上記の被覆層は導体の酸化防止とCuの絶縁体への
侵入を防止するもので、例えば固溶化熱処理を施したJI
S G 4307規定のSUS 304やSUS 316などのオーステナイト
系ステンレス銅、JIS G 4902規定のFe基またはNi基の耐
食耐熱超合金などが用途に応じて使用される。 導体周囲の酸化物層と被覆層は機械的な密着状態が望
ましく、熱拡散等による金属的接合は高温連続使用中の
Cuと被覆金属との熱拡散の面でむしろ不利である。被覆
層の厚さ0.05〜0.5mmと規定したのは、0.5mmを越えると
耐熱導体の剛性が大きくなり、コイル巻き性に劣るため
であり、また0.05mm未満では、コイル巻き時の曲げ内側
面で圧縮応力の作用によりシワが発生するためである。
これは導体と被覆層を金属接合させないことに起因する
ものであるが、高温連続使用中熱拡散によるCuの表面へ
の析出及び酸化の面からも0.05mm以上の厚さとすること
が望ましい。 〔実施例〕 参考例 断面が2×10mmの0.2%Ag入Cu平角線の周囲に、第1
表に示す板厚のSUS 304条を、成形ロールとダイスを多
段に並べたフォーミング機によって被覆し、その重ね合
わせ部をシーム溶接してコイル巻線用耐熱耐酸化性導体
を作製した。これ等について外径200mmφのマンドレル
に巻き付け、その外観より巻き付け性を評価すると共
に、大気中で750℃に48時間加熱処理を行ない、加熱前
後の電気抵抗を測定して抵抗増加比率を求めた。その結
果を従来の厚さ約3μmのNiメッキを施したAg入Cu平角
線の結果と比較して第1表に併記した。 第1表から明らかなように、従来導体No.7は加熱後の
電気抵抗の増加が著しく、また表面は酸化銅の析出によ
って黒く変色したが、参考例導体No.1〜4は何れも巻き
付け性が良好で、電気抵抗の増加も小さいことが判る。 これに対し被覆層の薄い比較導体No.5は巻き付け時に
曲げ内側面にシワが発生すると共に、加熱後の表面が一
部変色していた。また被覆厚さの厚い比較導体No.6では
曲げ加工性が悪く、巻き付け後のスプリングバックも大
きく、コイル巻線用としては不向きであった。 実施例 断面が1.5×6mmのタフピッチ銅平角線を水酸化カリウ
ムと過硫酸カリウムの混合水溶液に浸漬して、その表面
に第2表に示す厚さの酸化銅を生成させた。その後参考
例と同様にフォーミング機を用いて、厚さ0.12mmのSUS
316テープを被覆し、重ね合わせ部をYAGレーザーで溶接
してコイル巻線用耐熱耐酸化性導体を作成した。これ等
について参考例と同様にて巻き付け性を評価すると共に
加熱前後の抵抗増加比率を求めた。その結果を第2表に
併記した。 第2表から明らかなように、タプピッチ銅平角線の表
面に酸化銅を生成させた本発明導体No.8〜13は巻き付け
性が良好で、電気抵抗の増加が小さく、特に0.10〜9.95
μmの厚さに酸化銅を生成させたものは、電気抵抗の増
加が全く認められず、高温で連続使用しても特性の変化
がなく、前記参考例と比べても優れた導体であることが
判る。 これに対し酸化銅の厚さが厚い比較導体ではマンドレ
ルへの巻き付け時に曲げ内側面にシワの発生が認められ
た。これは厚い酸化物の形成による割れに起因するもの
である。 〔発明の効果〕 このように本発明導体は、高温酸化雰囲気中での連続
使用に十分耐えられ、従来のNiメッキ銅線のような電気
抵抗の変化もほとんどない優れた特性を有し、コイル巻
線時の占積率も大きくとれ、コイルの容積を小さくでき
るという長所もあり、また中間層に形成した酸化物層が
絶縁層として機能するので、他の絶縁材料の被覆を必要
とせず、一般の低圧配線ケーブルとして使用することも
できる等、工業上顕著な効果を奏するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat-resistant and oxidation-resistant conductor for coil windings used in a high-temperature oxidizing atmosphere, which enables the miniaturization of a coil and continuous use at a high temperature. Is what you do. [Related Art] Coil windings used in a high temperature state such as an engine room or an annealing heating furnace, and coil windings used for an electromagnetic pump for conveying molten metal in die casting of aluminum or zinc are used. Heat-resistant windings have been used in which a Ni-plated copper wire having excellent properties is used as a conductor, and the periphery thereof is coated with an inorganic insulator such as glass fiber. In recent years, ceramic insulating heat-resistant windings coated with an inorganic polymer as an insulator, baked at a high temperature after coil winding and ceramicized, have come to be used. [Problems to be Solved by the Invention] As described above, the trend of improving the allowable temperature for use of heat-resistant windings has been active, and at the same time, the characteristics of conventional Ni-plated copper wires have become unsatisfactory. In other words, Ni-plated copper wire is made by plating Ni or Ni with a thickness of several μm around copper or a copper alloy, and the diffusion of Cu and Ni at a high temperature causes the Cu element that has passed through the Ni layer to precipitate on the surface, There is a problem of producing copper oxide. The formation of copper oxide has a problem that, in particular, in a ceramic insulating heat-resistant winding which is baked at a high temperature to be ceramicized, copper oxide penetrates into the ceramic during sintering and lowers the dielectric strength. Further, there is a problem that thermal diffusion of Cu and Ni causes a change in electric resistance of copper or a copper alloy with time. In the past, the method of cooling the entire coil with water was used to solve this problem, but another problem of increasing the size of the coil occurred. The development of a conductive material is desired. [Means for Solving the Problems] The present invention, as a result of various studies to solve the above problems, has enabled reduction in the size of the coil without reducing the conductor cross-sectional area, and enables continuous use at high temperatures. A heat and oxidation resistant conductor for coil windings was developed. That is, the conductor of the present invention is formed by forming an oxide to a thickness of 10 μm or less around a conductor having a rectangular cross section containing Cu as a main component, and further comprising a Fe-based or Ni-based heat-resistant alloy having a thickness of 0.05 to 0.5 mm around the periphery. It is characterized in that it has been further coated. [Operation] In the conductor of the present invention, the cross-sectional shape of the conductor is set to be a rectangular shape in order to improve the space factor when winding the coil. The effect on miniaturization of the coil is greater than when wound.
An oxide layer is interposed around this rectangular conductor.
An Fe-based or Ni-based heat-resistant alloy is coated. The reason why the oxide layer was formed between the conductor and the Fe-based or Ni-based heat-resistant alloy coating layer in order to positively prevent heat diffusion between the conductor and the coating layer was set to a thickness of 10 μm. The reason is defined as follows: when the thickness exceeds 10 μm, wrinkles are generated on the inner surface of the bend during winding. Cu 2 O, CuO, A as oxide
l 2 O 3, SiO 2, MgO, Cr 2 O 3, ZnO, ZrO 2, SnO 2, NiO, any one or a mixture of two or more of iron oxide is used. Further, inorganic insulators such as mica and ceramics may be used. The above-mentioned coating layer is for preventing oxidation of the conductor and for preventing Cu from entering the insulator.
Austenitic stainless steel such as SUS 304 or SUS 316 specified by SG 4307, Fe-based or Ni-based corrosion-resistant heat-resistant superalloy specified by JIS G 4902, etc. are used depending on the application. It is desirable that the oxide layer and the coating layer around the conductor be in close mechanical contact with each other.
It is rather disadvantageous in terms of thermal diffusion between Cu and the coating metal. The reason why the thickness of the coating layer is defined as 0.05 to 0.5 mm is that if the thickness exceeds 0.5 mm, the rigidity of the heat-resistant conductor increases and the coil winding property is poor. This is because wrinkles occur due to the action of compressive stress.
This is due to the fact that the conductor and the coating layer are not metal-bonded. However, it is preferable that the thickness be 0.05 mm or more from the viewpoint of precipitation and oxidation of Cu on the surface due to thermal diffusion during continuous use at high temperatures. [Example] Reference example Around a rectangular rectangular wire having a cross section of 2 x 10 mm and containing 0.2% Ag,
The SUS 304 strip having the thickness shown in the table was covered by a forming machine in which forming rolls and dies were arranged in multiple stages, and the overlapped portion was seam-welded to produce a heat-resistant and oxidation-resistant conductor for coil winding. These were wound around a mandrel having an outer diameter of 200 mmφ, and the windability was evaluated from the appearance thereof, and a heat treatment was performed at 750 ° C. for 48 hours in the air, and the electric resistance before and after heating was measured to determine a resistance increase ratio. The results are also shown in Table 1 in comparison with the results of a conventional Ni-plated Ag-flattened Cu rectangular wire having a thickness of about 3 μm. As is clear from Table 1, the conventional conductor No. 7 showed a remarkable increase in electrical resistance after heating, and the surface turned black due to the deposition of copper oxide. It can be seen that the properties are good and the increase in electric resistance is small. On the other hand, the comparative conductor No. 5 having a thin coating layer had wrinkles on the inner surface of the bend during winding, and a part of the surface after heating was discolored. Also, the comparative conductor No. 6 having a large coating thickness had poor bending workability, large springback after winding, and was not suitable for coil winding. Example A tough pitch copper rectangular wire having a cross section of 1.5 × 6 mm was immersed in a mixed aqueous solution of potassium hydroxide and potassium persulfate to form a copper oxide having a thickness shown in Table 2 on the surface thereof. Then, using a forming machine in the same manner as in the reference example, a 0.12 mm thick SUS
The 316 tape was covered, and the overlapped portion was welded with a YAG laser to prepare a heat- and oxidation-resistant conductor for coil winding. For these, the winding property was evaluated in the same manner as in Reference Example, and the resistance increase ratio before and after heating was determined. The results are shown in Table 2. As is clear from Table 2, the conductors Nos. 8 to 13 of the present invention, in which copper oxide was formed on the surface of the tappitch copper rectangular wire, had good wrapping properties and a small increase in electric resistance, especially 0.10 to 9.95.
The copper oxide formed to a thickness of μm does not show any increase in electrical resistance, has no change in characteristics even when used continuously at high temperatures, and is a conductor superior to the reference example. I understand. On the other hand, in the case of the comparative conductor having a large thickness of copper oxide, wrinkles were found on the inner surface of the bend when wound around the mandrel. This is due to cracking due to the formation of thick oxide. [Effect of the Invention] As described above, the conductor of the present invention has excellent characteristics that can withstand continuous use in a high-temperature oxidizing atmosphere and has almost no change in electrical resistance unlike conventional Ni-plated copper wires. There is also an advantage that the space factor at the time of winding can be increased and the volume of the coil can be reduced, and since the oxide layer formed on the intermediate layer functions as an insulating layer, there is no need to coat other insulating materials, It has an industrially remarkable effect, for example, it can be used as a general low-voltage wiring cable.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−116313(JP,A) 特開 昭59−205105(JP,A) 特開 昭59−228312(JP,A) 特開 昭56−6310(JP,A) 特開 昭61−253365(JP,A) 実公 昭57−13923(JP,Y2)   ────────────────────────────────────────────────── ─── Continuation of front page       (56) References JP-A-63-116313 (JP, A)                 JP-A-59-205105 (JP, A)                 JP-A-59-228312 (JP, A)                 JP-A-56-6310 (JP, A)                 JP-A-61-253365 (JP, A)                 Jiko 57-13923 (JP, Y2)

Claims (1)

(57)【特許請求の範囲】 1.Cuを主成分とする断面平角状の導体周囲に、酸化物
を10μm以下の厚さに形成し、更にその周囲にFe基又は
Ni基耐熱合金を0.05〜0.5mmの厚さに被覆したことを特
徴とするコイル巻線用耐熱耐酸化性導体。
(57) [Claims] An oxide is formed to a thickness of 10 μm or less around a conductor having a rectangular cross section containing Cu as a main component, and an Fe-based or
A heat-resistant and oxidation-resistant conductor for coil windings, characterized by being coated with a Ni-base heat-resistant alloy to a thickness of 0.05 to 0.5 mm.
JP62118386A 1987-05-15 1987-05-15 Heat- and oxidation-resistant conductor for coil winding Expired - Fee Related JP2773865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62118386A JP2773865B2 (en) 1987-05-15 1987-05-15 Heat- and oxidation-resistant conductor for coil winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62118386A JP2773865B2 (en) 1987-05-15 1987-05-15 Heat- and oxidation-resistant conductor for coil winding

Publications (2)

Publication Number Publication Date
JPS63284717A JPS63284717A (en) 1988-11-22
JP2773865B2 true JP2773865B2 (en) 1998-07-09

Family

ID=14735404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62118386A Expired - Fee Related JP2773865B2 (en) 1987-05-15 1987-05-15 Heat- and oxidation-resistant conductor for coil winding

Country Status (1)

Country Link
JP (1) JP2773865B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183909A (en) * 1989-01-09 1990-07-18 Sumitomo Electric Ind Ltd Insulated wire

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125B2 (en) * 1978-08-28 1983-01-05 日立電線株式会社 insulated wire
JPS5551898U (en) * 1978-10-03 1980-04-05
JPS566310A (en) * 1979-06-28 1981-01-22 Hitachi Cable Insulated wire
JPS6121773U (en) * 1984-07-11 1986-02-07 フジテツク株式会社 Elevator door safety device
JPS6151711A (en) * 1984-08-18 1986-03-14 株式会社フジクラ Insulated wire for electric device
JPS61253365A (en) * 1985-05-02 1986-11-11 Sumitomo Electric Ind Ltd Surface-coated body
JPH0243827B2 (en) * 1985-05-13 1990-10-01 Okuno Chem Ind Co FUNRYUTAIHENOMUDENKAIMETSUKIHOHO
JPS6280913A (en) * 1985-10-02 1987-04-14 日立電線株式会社 Lead wire
JPS63138607A (en) * 1986-11-29 1988-06-10 住友電気工業株式会社 Covered wire
JPS63127011U (en) * 1987-02-13 1988-08-19

Also Published As

Publication number Publication date
JPS63284717A (en) 1988-11-22

Similar Documents

Publication Publication Date Title
WO2002071563A1 (en) Power distribution assembly
JP2773865B2 (en) Heat- and oxidation-resistant conductor for coil winding
JPH08503808A (en) Insulation for superconductors
JPH0750566B2 (en) Heat resistant and oxidation resistant conductor for coil winding
JP3405069B2 (en) Electrode wire for electric discharge machining
JPH01289021A (en) Manufacture of copper clad steel stranded wire
JPH0429210B2 (en)
JP2001269820A (en) Method of manufacturing electrode wire for wire electric discharge machining
JPH0349111A (en) Electric sheathed wire and manufacture thereof
JPH0644412B2 (en) Copper composite wire for extra fine wire
JP3419055B2 (en) Insulated wire
JP2565892B2 (en) Electrical wire
JPS6032928B2 (en) Composite stranded wire
WO1990011603A1 (en) Insulated electric wire
JP2697735B2 (en) Ag-oxide-based material and method for producing the same
JP2003031029A (en) Overhead electric wire
JPS6246278B2 (en)
JPH07282645A (en) Heat resistant insulated wire and its manufacture
SU933154A1 (en) Method of producing bimelallic wire
JPH0644413B2 (en) Copper alloy composite wire for extra fine wire
US4320177A (en) Electrically conductive part with an insulation material which withstands high temperatures and a method of manufacturing such a part
JPH03230415A (en) Copper alloy wire rod
JP2021025084A (en) Method for manufacturing aluminum alloy wire, method for manufacturing electric wire using the same, and method for manufacturing wire harness
JPH07118223B2 (en) Lightweight heat-resistant magnet wire that can be soldered
JPS5827334B2 (en) summary line

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees