JPS6032928B2 - Composite stranded wire - Google Patents

Composite stranded wire

Info

Publication number
JPS6032928B2
JPS6032928B2 JP4446078A JP4446078A JPS6032928B2 JP S6032928 B2 JPS6032928 B2 JP S6032928B2 JP 4446078 A JP4446078 A JP 4446078A JP 4446078 A JP4446078 A JP 4446078A JP S6032928 B2 JPS6032928 B2 JP S6032928B2
Authority
JP
Japan
Prior art keywords
wire
thermal expansion
alloy
coefficient
composite stranded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4446078A
Other languages
Japanese (ja)
Other versions
JPS54136563A (en
Inventor
謙一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4446078A priority Critical patent/JPS6032928B2/en
Publication of JPS54136563A publication Critical patent/JPS54136563A/en
Publication of JPS6032928B2 publication Critical patent/JPS6032928B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】 本発明は、鋼心アルミニウム撚線(ACSR)として知
られる架空送電線の特性の向上に関し、特に送電線を架
線した場合の弛度が少ないことを特徴とする複合撚線に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the characteristics of overhead power transmission lines known as steel core aluminum stranded wires (ACSR), and in particular to composite stranded wires characterized by less sag when the power transmission lines are overhead wires. It's about lines.

従来から架空送電線の弛度については種々考察が加えら
れており、架線張力を鋼心のみに負荷させて、架線後の
通電による温度上昇時の熱膨脹を鋼心のみに受け持たせ
、弛度の減少をはかり、通電容量を増大できる間隙型A
CSRは良く知られている。
Various considerations have been made in the past regarding the sag of overhead power transmission lines. Gap type A which can reduce the current carrying capacity and increase the current carrying capacity.
CSR is well known.

本発明は、鋼線に代わり、熱膨脹係数の小さなFe−N
i系合金を使うことにより、弛度を減少させることを特
徴とし、既に特開昭48一100671号で提案された
構成の複合撚線の鋼線の弛度向上を目的としたものであ
る。
The present invention uses Fe-N, which has a small coefficient of thermal expansion, instead of steel wire.
It is characterized by reducing the sag by using an i-based alloy, and is aimed at improving the sag of a composite stranded steel wire having the structure already proposed in JP-A-48-100671.

本発明は、Ni30〜50%、Tio.5〜5%、総量
2%以下のMn,Cr,Co,C,P,S,Sj,山お
よびCuのうちの一種以上を含み、最終サイズまでに8
0%以上の伶間加工度を加えたFe合金線と、電気用山
又は0.28%以下のZrを含む山合金よりなる線とを
より合せて成ることを特徴とする複合燃線である。
The present invention uses 30 to 50% Ni, Tio. Contains one or more of Mn, Cr, Co, C, P, S, Sj, mountain and Cu in a total amount of 2% or less, and contains 8 to 5% by the final size.
It is a composite fuel wire characterized by being made by twisting an Fe alloy wire which has been subjected to 0% or more of inter-edge workability and a wire made of an electrical thread or a thread alloy containing 0.28% or less of Zr. .

本発明者らは、Fe−Ni2元合金では、冷間加工を9
0%近く施こしても、高々90k9/桝の強度であるが
、Fe−Ni合金に徴量のTiを添加することにより、
従来のACSRに用いられている鋼線と同程度以上の強
度が得られることを見し、出したもので、Tio.5〜
5%を添加したFe−30〜50%Ni合金が強度、熱
膨ヒ脹係数、加工性の特性から評価して適当であること
を確認した。
The present inventors have demonstrated that cold working is 90% for Fe-Ni binary alloys.
Even if applied at nearly 0%, the strength is at most 90k9/m2, but by adding a certain amount of Ti to the Fe-Ni alloy,
The Tio. 5~
It was confirmed that a Fe-30 to 50% Ni alloy containing 5% of Ni was suitable as evaluated from the characteristics of strength, coefficient of thermal expansion, and workability.

本発明に用いるFe合金線において、Niが30%未満
では熱膨脹係数が鋼線に比べ、低下せず、50%を超え
るとやはり熱膨脹係数が同様の挙動をとる。
In the Fe alloy wire used in the present invention, when Ni is less than 30%, the coefficient of thermal expansion does not decrease compared to a steel wire, and when it exceeds 50%, the coefficient of thermal expansion behaves similarly.

又Tiが0.5%未満では強度増加に効果なく、5%を
超えると加工性が著しく劣化する。又、総量2%以下の
Mn,Cr,Co,C,P,S,Si,AIおよびCu
のうちの一種以上を含むことは何ら差支えなく、特に0
.5%〜1.2%のMnは熱間加工性を改善するために
添加することができる。また、本発明のFe−Ni−T
i系合金は最終サイズまでに80%以上の冷間加工をし
ているが、これは強度、線膨張係数の改善に必要である
からである。
Further, if Ti is less than 0.5%, there is no effect on increasing the strength, and if it exceeds 5%, workability is significantly deteriorated. In addition, Mn, Cr, Co, C, P, S, Si, AI and Cu with a total amount of 2% or less
There is no problem with including one or more of the following, especially 0
.. 5% to 1.2% Mn can be added to improve hot workability. Moreover, the Fe-Ni-T of the present invention
I-series alloys are cold-worked by 80% or more to reach their final size, as this is necessary to improve their strength and coefficient of linear expansion.

この合金についてはMe細s Handbook,VO
L.1,がh Editior P.816−819(
AmericanSocietyforMetals
発行)に既に明らかにされているように、熔体化処理、
水焼れ、袷間加工、時効硬化と言う加工工程で135k
9/孫の引張強さが得られているものの、この場合は、
Fe一Ni−Ti系合金の熱膨脹係数の変曲点以上の温
度で時効硬化させる必要があり、熱膨脹係数が鋼線より
小さいものの、鋼線に近い値となり、メリットが消失し
てしまうので好ましくなく、本発明のように、最終サイ
ズまでに80%以上の袷間加工を加えることにより、強
度、熱膨脹係数がともに改善できる。また、本発明にお
いて、Fe合金線の上にZnまたはAIを被覆して、F
e合金線の耐食性向上、AI線との接触腐蝕性を防止す
ることも何ら差支えなく、被覆の方法としては、雷気め
つき、溶融めつき、圧着成形、押出成形が可能である。
Regarding this alloy, please refer to Mess Handbook, VO.
L. 1, is h Editor P. 816-819(
American Society for Metals
As already revealed in the publication), the melting process,
135k in the processing process of water tanning, lining processing, and age hardening.
Although the tensile strength of 9/Grandson has been obtained, in this case,
It is necessary to age harden at a temperature above the inflection point of the coefficient of thermal expansion of the Fe-Ni-Ti alloy, and although the coefficient of thermal expansion is smaller than that of steel wire, it becomes a value close to that of steel wire, which is not preferable because the merit disappears. As in the present invention, by adding 80% or more of the line spacing to the final size, both strength and coefficient of thermal expansion can be improved. Further, in the present invention, Zn or AI is coated on the Fe alloy wire to form an F
There is no problem in improving the corrosion resistance of the e-alloy wire and preventing contact corrosion with the AI wire, and the coating methods include lightning plating, melt plating, pressure molding, and extrusion molding.

次に本発明において、山線として0.28%以下のZr
を含むAI合金を使用する場合は、複合撚線の状態で後
述のように熱膨脹係数が小さく、弛度を少なくしうるの
で、その本来の耐熱性と合せて、電気用山線を用いた複
合撚線よりも高温で使用可能であり、更にメリットが出
てくる。
Next, in the present invention, as a mountain line, 0.28% or less Zr
When using an AI alloy containing stranded wires, the coefficient of thermal expansion is small and the sag can be reduced in the state of composite stranded wires, as described below. It can be used at higher temperatures than stranded wire, giving it an added advantage.

ここでZrを0.28%以下としたのは、0.28%を
超えると、それ以上の耐熱性向上の効果がなく、かつ導
電率が低下するためである。又この種合金に通常添加さ
れる他の元素や、AI中に通常含まれる不純物の含有は
何ら差支えない。以下、,実施例により本発明を説明す
る。
The reason why Zr is set to 0.28% or less is that if it exceeds 0.28%, there is no effect of further improving heat resistance and the electrical conductivity decreases. Further, there is no problem with the inclusion of other elements normally added to this type of alloy and impurities normally contained in AI. The present invention will be explained below with reference to Examples.

実施例 1: Ni 37.5%,Ti l.1%,Mn 0.7%,
P O.01%,C O.01%,Si o.09%,
Coo.27%,Cuo.07%,S O.007%,
AIO.01%、残部FeよりなるFe−Ni−Ti系
合金を、40側めの金型へ鋳造後熱間加工により12側
めの荒引線を得た。
Example 1: Ni 37.5%, Ti l. 1%, Mn 0.7%,
P.O. 01%, CO. 01%, Si o. 09%,
Coo. 27%, Cuo. 07%, SO. 007%,
AIO. A Fe-Ni-Ti alloy consisting of 0.01% and the balance Fe was cast into a mold on the 40th side, and hot worked to obtain a rough drawing line on the 12th side.

12側めから伸線加工を加えながら下記の加工を施こし
た。
The following processing was performed while adding wire drawing processing from the 12th side.

No.1 熱処理を加えず、3仰ぐまで伸線加工(本発
明)No.2 5肋めで1000qo、1時間の溶体化
処理後水焼入れし、3側ぐまで伸線加工を行ない、その
後550oo、5時間の時効を行なった。
No. 1 Wire drawing processing up to 3 degrees without heat treatment (invention) No. After solution treatment at 1000 qo for 1 hour at the 25th rib, water quenching was performed, wire drawing was performed up to the 3rd side, and then aging was performed at 550 qo for 5 hours.

(比較例)No.1および2の線材の特性は表1に示す
通りであった。
(Comparative example) No. The properties of wire rods Nos. 1 and 2 were as shown in Table 1.

表I 注 ※印、室温〜200つ0の平均熱膨脹係数を示す。Table I Note: * indicates the average coefficient of thermal expansion from room temperature to 200 x 0.

表1から明らかな様に、本発明による線材は、強度はA
CSRに用いられている鋼線と同等で、熱膨脹係数が著
しく小さい。それに比べ、比較例の時効硬化させた線材
は、強度は高いが、熱膨脹係数が鋼のそれに比べ、低下
の割合が小さい。
As is clear from Table 1, the wire rod according to the present invention has a strength of A
It is equivalent to the steel wire used in CSR, and has a significantly smaller coefficient of thermal expansion. In comparison, the age-hardened wire rod of the comparative example has high strength, but the coefficient of thermal expansion decreases at a smaller rate than that of steel.

実施例 2: Ni 41.5%,Ti 2.7%,Mn o.94%
,P O.01%,C O.01%,Si o.07%
,Coo.42%,Cuo.06%,S O.009%
,AIO.01%、残部FeよりなるFe−Ni−Tj
系合金を、実施例1と同一の加工工程で加工を施こした
Example 2: Ni 41.5%, Ti 2.7%, Mno. 94%
,P.O. 01%, CO. 01%, Si o. 07%
, Coo. 42%, Cuo. 06%, SO. 009%
, AIO. 01%, balance Fe-Ni-Tj
The alloy was processed in the same processing steps as in Example 1.

ここでNo.3はNo.1と、M.4はNo.2と同−
の加工工程とした。線材の特性を調査した結果は表2の
示す通りであった。表2 注 ※印、室温〜200ooの平均熱膨脹係数を示す。
Here No. 3 is No. 1 and M. 4 is No. Same as 2-
The processing process was as follows. The results of investigating the characteristics of the wire rods are as shown in Table 2. Table 2 Note: * indicates the average coefficient of thermal expansion from room temperature to 200 oo.

表2から明らかな様に、本発明による線材は、実施例1
と同様に、強度は鋼線と同時で、熱膨脹係数が著しく小
さく、比較例は、強度が高いものの、熱膨脹係数が鋼線
の値に近い。実施例 3: 実施例1に示す合金および実施例2に示す合金を、12
側めの荒引線から3.1収めまで伸線し、この素線7本
をより合せて撚線としてそれぞれ芯線とした。
As is clear from Table 2, the wire rod according to the present invention was obtained in Example 1.
Similarly, the strength is the same as that of steel wire, and the coefficient of thermal expansion is extremely small.Although the comparative example has high strength, the coefficient of thermal expansion is close to the value of steel wire. Example 3: The alloy shown in Example 1 and the alloy shown in Example 2 were
The wire was drawn from the side rough drawing wire to the 3.1-length wire, and the seven strands were twisted together to form a core wire.

Zro.12%を含んだAI合金を11.7肌?から4
側めまで伸線した素線26本を、Fe−Ni−Ti系合
金撚線の上により合わせて複合撚線を作った。比較のた
めに、この複合撚線と同一の構造を持ち、通常の鋼線7
本をより合せた芯線を持った従来例のACSRを用意し
、榎合撚線としての熱膨脹特性を測定した。結果は表3
に示す通りであった。表3 注 ※印、室温〜20000の平均熱膨脹係数を示す。
Zro. 11.7 skin of AI alloy containing 12%? from 4
Twenty-six strands of wire drawn to the side were twisted together on top of the Fe--Ni--Ti alloy stranded wire to make a composite stranded wire. For comparison, a normal steel wire 7 with the same structure as this composite stranded wire
A conventional ACSR having a core wire made of twisted books was prepared, and the thermal expansion characteristics of the Enoki twisted wire were measured. The results are in Table 3
It was as shown in Table 3 Note: * indicates the average coefficient of thermal expansion from room temperature to 20,000.

表3から明らかな様に、本発明による複合撚線の熱膨脹
係数は、従来のACSRに比較して、著しく低い値を持
つことが判る。実施例 4: 実施例2に示す合金を実施例3と同様の加工工程で作成
した7/3.1柵?のFe−Ni−Tj系合金撚線の上
に、電気用アルミニウムおよびZro.06%を含んだ
N合金の4側めの素線26本をより合せて実施例3と同
一構造の複合撚線を作った。
As is clear from Table 3, the thermal expansion coefficient of the composite stranded wire according to the present invention is significantly lower than that of the conventional ACSR. Example 4: 7/3.1 fence made from the alloy shown in Example 2 using the same processing steps as Example 3? electrical aluminum and Zro. A composite stranded wire having the same structure as Example 3 was made by twisting together 26 strands of the fourth side of the N alloy containing 0.06%.

これらの撚線について、実施例3と同様に複合撚線とし
ての熱膨脹特性を測定した。
Regarding these stranded wires, the thermal expansion characteristics as composite stranded wires were measured in the same manner as in Example 3.

結果は表4に示す通りであった。表4 注 ※印、室温〜200℃の平均熱膨脹係数を示す。The results were as shown in Table 4. Table 4 Note: * indicates the average coefficient of thermal expansion from room temperature to 200°C.

表4から明らかな様に、本発明による複合撚線は、AI
線の材質によらず、芯線のFe−Ni−Tj系合金の特
性により、大幅に熱膨脹係数が低下していることが判る
As is clear from Table 4, the composite stranded wire according to the present invention has AI
It can be seen that the coefficient of thermal expansion is significantly reduced due to the characteristics of the Fe-Ni-Tj alloy of the core wire, regardless of the material of the wire.

以上実施例で述べた様に、本発明の複合撚線は芯線とし
て用いる所定の組成のFe−Ni−Ti合金線は熱膨脹
係数が小さいため、複合撚線としての熱膨脹係数が、従
来のACSRに比べ小さく、送電線架線後の弛度を小さ
くすることができるので、従来のACSRに比べ、■鉄
塔の高さを低くできる、■運転温度を上昇できる、■従
来の鉄塔と同一の鉄塔に、同一サイズのACSRを架線
しても、通電容量が増加できる、などの著しい効果が期
待できる。
As described in the examples above, since the Fe-Ni-Ti alloy wire of a predetermined composition used as the core wire of the present invention has a small coefficient of thermal expansion, the coefficient of thermal expansion of the composite stranded wire is lower than that of conventional ACSR. Compared to conventional ACSR, it is smaller in size and can reduce the sag after the transmission line is installed.Compared to conventional ACSR, the height of the tower can be lowered, the operating temperature can be raised, and the same tower as the conventional ACSR can be used. Even if ACSRs of the same size are connected to overhead lines, significant effects such as an increase in current carrying capacity can be expected.

Claims (1)

【特許請求の範囲】[Claims] 1 Ni30〜50%、Ti0.5〜5%、総量2%以
下のMn,Cr,Co,C,P,S,Si,Alおよび
Cuのうちの一種以上を含み、最終サイズまでに80%
以上の冷間加工度を加えたFe合金線と、電気用Al又
は0.28%以下のZrを含むAl合金よりなる線とを
より合せて成ることを特徴とする複合撚線。
1 Contains 30-50% Ni, 0.5-5% Ti, and one or more of Mn, Cr, Co, C, P, S, Si, Al, and Cu in a total amount of 2% or less, and 80% by the final size.
A composite stranded wire characterized in that it is made by twisting an Fe alloy wire subjected to the above degree of cold working and a wire made of electrical Al or an Al alloy containing 0.28% or less of Zr.
JP4446078A 1978-04-14 1978-04-14 Composite stranded wire Expired JPS6032928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4446078A JPS6032928B2 (en) 1978-04-14 1978-04-14 Composite stranded wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4446078A JPS6032928B2 (en) 1978-04-14 1978-04-14 Composite stranded wire

Publications (2)

Publication Number Publication Date
JPS54136563A JPS54136563A (en) 1979-10-23
JPS6032928B2 true JPS6032928B2 (en) 1985-07-31

Family

ID=12692095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4446078A Expired JPS6032928B2 (en) 1978-04-14 1978-04-14 Composite stranded wire

Country Status (1)

Country Link
JP (1) JPS6032928B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165627A (en) * 1995-01-23 2000-12-26 Sumitomo Electric Industries, Ltd. Iron alloy wire and manufacturing method
JP3447830B2 (en) * 1995-01-23 2003-09-16 住友電気工業株式会社 Invar alloy wire and method of manufacturing the same
DE69725639T3 (en) * 1996-04-09 2009-10-08 Sunstar Inc., Takatsuki Interdental brush and wire for its manufacture
FR2855185B1 (en) * 2003-05-21 2006-08-11 Usinor FE-NI ALLOY METAL WIRE HAVING HIGH MECHANICAL STRENGTH AND LOW THERMAL EXPANSION COEFFICIENT FOR HIGH VOLTAGE CABLES AND METHOD OF MANUFACTURE
CN111112365A (en) * 2019-12-24 2020-05-08 法尔胜泓昇集团有限公司 Multi-component aluminum alloy welding wire and preparation method thereof
CN112962033B (en) * 2021-02-01 2021-11-19 山西太钢不锈钢股份有限公司 High-strength invar alloy and processing method thereof

Also Published As

Publication number Publication date
JPS54136563A (en) 1979-10-23

Similar Documents

Publication Publication Date Title
JP6240424B2 (en) Method for producing Al alloy conductive wire
CN103572091B (en) Cu alloy material, its preparation method and copper conductor prepared therefrom
JPS633936B2 (en)
JPS6032928B2 (en) Composite stranded wire
JPS6239235B2 (en)
JPS6328971B2 (en)
JPS5919183B2 (en) Manufacturing method of high-strength heat-resistant aluminum alloy conductor
US3711339A (en) Aluminum alloy conductor
JP3483736B2 (en) Production method of silver alloy
JPH0689621A (en) Manufacture of high conductivity and high strength stranded wire
JP2002275562A (en) Copper electric wire for aerial insulated distribution line
JPH0660722A (en) Wire conductor for crimp connection
JPH0689620A (en) Manufacture of high conductivity and high strength stranded wire
JP2618560B2 (en) Production method of copper alloy
JP2004027294A (en) Corrosion resistant and heat resistant aluminum alloy wire, and overhead transmission line
JPS59107067A (en) Production of heat resistant aluminum alloy conductor
JPH036984B2 (en)
JPH0432146B2 (en)
JPS6054387B2 (en) Manufacturing method of high strength heat resistant aluminum alloy conductor
JP2500143B2 (en) Copper alloy member with both conductivity and strength
JP2020186450A (en) Method for manufacturing aluminum alloy twisted wire, method for manufacturing electric wire using the same and method for manufacturing wire harness
JPS634893B2 (en)
JPH0525925B2 (en)
CN113278822A (en) Manufacturing method of aluminum alloy clad steel wire with long service life and super corrosion resistance
JPH01152248A (en) Manufacture of high-strength and heat-resistant conductive aluminum alloy