JPS634893B2 - - Google Patents

Info

Publication number
JPS634893B2
JPS634893B2 JP60047375A JP4737585A JPS634893B2 JP S634893 B2 JPS634893 B2 JP S634893B2 JP 60047375 A JP60047375 A JP 60047375A JP 4737585 A JP4737585 A JP 4737585A JP S634893 B2 JPS634893 B2 JP S634893B2
Authority
JP
Japan
Prior art keywords
weight
copper
magnesium
aluminum
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60047375A
Other languages
Japanese (ja)
Other versions
JPS61207542A (en
Inventor
Kosuke Oohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP4737585A priority Critical patent/JPS61207542A/en
Publication of JPS61207542A publication Critical patent/JPS61207542A/en
Publication of JPS634893B2 publication Critical patent/JPS634893B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は架空送電線などを製造するに好適に用
いられるアルミニウム合金に関する。 従来の技術 従来から高圧で大電力を遠隔地まで送電する場
合には、電線自体の重量を軽減しつつ送電容量の
増加を図る必要があり、鋼心アルミ撚線
(ACSR)が使用されることが多い。そして特に
大容量送電のように耐熱特性が要求される場合に
は、微量のジルコニウムを添加して耐熱特性の向
上を図つた電気用耐熱アルミ合金が採用されてい
る(TACSR)。 しかし、このようなジルコニウム添加合金は引
張強度が充分でないため、更に鉄、ケイ素、マグ
ネシウム、コバルト、ニツケル、ベリリウム、希
土類金属等の中から数種類を選択して添加するこ
とによつて、強度を改善した高力耐熱アルミニウ
ム合金が開発され、鋼心高力耐熱アルミ合金撚線
(KTACSR)として実用化されている。 しかしながら、このような高力耐熱アルミニウ
ム合金は機械的強度を高めるために副成分の添加
量が大量となり、また耐熱特性や導電性を高める
ために荒引線の段階で焼鈍や溶体化処理をした
り、また更に伸線後に中間焼鈍をしたりする複雑
な指数を要していた。従つて導電性が充分でない
上に耐食性が非常に劣り、その上電線の製造コス
トが高くなるという欠点があつた。 解決しようとする問題点 本発明は、上述のような欠点を改良して、機械
的強度、耐熱性、導電性ならびに耐食性において
優れた性質を備えた、鋼心アルミ撚線を製造する
に適したアルミニウム合金を提供しようとするも
のである。 問題点を解決するための手段 このような本発明の目的は、鉄0.2〜0.6重量
%、マグネシウム0.03〜0.15重量%、銅0.06〜0.3
重量%、ジルコニウム0.04〜0.2重量%および残
部がアルミニウムとアルミニウム地金に通常含ま
れる量のケイ素等の不純物とからなる合金であつ
て、鉄とマグネシウムと銅との合計量が0.7重量
%以下であり、また、銅、マグネシウムの重量比
が1.8〜2.3の範囲内にあるようなアルミニウム合
金によつて達成される。 本発明の合金おいて、鉄の添加は耐熱性、導体
の強度および伸線加工性を向上させるのに有効で
あるが、その量が0.2重量%未満では殆んど効果
がなく、また0.6重量%を超えると効果の増加が
著しくなくかえつて導電性や耐食性の点で不利と
なる。 マグネシウムの添加は導体の強度および耐食性
を改良するが、その量が0.03重量%未満では殆ん
ど効果がなく、一方0.15重量%を超えると効果は
あるものの導電性や耐熱性の低下が著しくなるの
で望ましくない。 銅は導体の強度を高めるためのものであるが、
添加量が0.06重量%未満では効果が著しくなく、
一方0.3重量%を超えると耐食性、耐熱性および
導電性の低下が大きい。 また、ジルコニウムの添加量が0.04重量%未満
では耐熱性の向上が不充分であり、また0.2重量
%を超えると耐熱性が著しく低下する。 さらに、鉄、マグネシウムおよび銅の合計量が
0.7重量%を超えると、導電性および耐食性が大
きく低下し、実用上望ましくない。銅とマグネシ
ウムの重量比が1.8〜2.3の範囲内にあれば、銅の
存在による耐食性の低下をマグネシウムの存在に
よつて最小限に押えて、耐食性と耐熱性のバラン
スのよい合金が得られる。若し、この値が2.3よ
り大きいと耐食性において不満足となり、またこ
の値が1.8より小さいと耐熱性が不充分である。 実施例 電気用アルミニウム地金(ケイ素0.04重量%、
鉄0.12重量%、銅0.001重量%、マンガン0.001重
量%、チタンおよびバナジウム0.001重量%、ア
ルミニウム純度99.83重量%)を電気炉中で溶解
したのち各成分を添加して、表−1に示す組成の
合金を溶製し、径30mmの銅製鋳型を用いて鋳造し
た。これらの鋳塊を熱間圧延して径9.5mmの荒引
線とし、さらにこれを冷間で伸線して径4.0mmに
引き落して試験用の線条件を得た。このようにし
て得た試験体について、引張強さ、導電率、耐熱
性、耐食性を測定した結果を表−2に示す。 尚、それぞれの試験条件は次の通りである。 引張強さ:インストロン型引張試験機による。 導電率:ケルビンダブルブリツジによる。 耐熱性:230℃で1時間加熱処理したときの、加
熱前の引張強さに対する加熱後の引張強さの比
で表示する。 耐食性:亜硫酸ガス腐食試験機を用い、SO2濃度
500PPM、運転8時間+休止16時間を60サイク
ル繰返したのちの引張強さの、腐食前の引張強
さに対する比で表示する。
INDUSTRIAL APPLICATION FIELD The present invention relates to an aluminum alloy suitably used for manufacturing overhead power transmission lines and the like. Conventional technology Traditionally, when transmitting large amounts of power at high voltage to remote locations, it was necessary to increase the power transmission capacity while reducing the weight of the wire itself, and steel-core aluminum stranded wires (ACSR) were used. There are many. Particularly in cases where heat resistance is required, such as in large-capacity power transmission, heat-resistant aluminum alloys for electrical applications are used, which have added a small amount of zirconium to improve heat resistance (TACSR). However, such zirconium-added alloys do not have sufficient tensile strength, so the strength can be improved by adding several types selected from iron, silicon, magnesium, cobalt, nickel, beryllium, rare earth metals, etc. A high-strength, heat-resistant aluminum alloy has been developed and put into practical use as steel-core high-strength, heat-resistant aluminum alloy stranded wire (KTACSR). However, such high-strength, heat-resistant aluminum alloys require the addition of large amounts of subcomponents to increase mechanical strength, and are often subjected to annealing or solution treatment during the rough drawing stage to increase heat resistance and conductivity. Moreover, complicated indexes were required, such as intermediate annealing after wire drawing. Therefore, there were disadvantages in that the electrical conductivity was not sufficient, the corrosion resistance was very poor, and the manufacturing cost of the electric wire was high. Problems to be Solved The present invention improves the above-mentioned drawbacks and provides a steel-core aluminum stranded wire that has excellent properties in terms of mechanical strength, heat resistance, electrical conductivity, and corrosion resistance. The purpose is to provide an aluminum alloy. Means for Solving the Problems The purpose of the present invention is to solve the following problems: iron 0.2~0.6% by weight, magnesium 0.03~0.15% by weight, copper 0.06~0.3% by weight.
An alloy consisting of 0.04 to 0.2% by weight of zirconium and the balance of aluminum and impurities such as silicon in amounts normally contained in aluminum base metal, where the total amount of iron, magnesium, and copper is 0.7% by weight or less. It is also achieved by an aluminum alloy in which the weight ratio of copper and magnesium is within the range of 1.8 to 2.3. In the alloy of the present invention, the addition of iron is effective in improving heat resistance, conductor strength, and wire drawability, but if the amount is less than 0.2% by weight, it has little effect; If it exceeds %, the effect will not increase significantly and on the contrary, it will be disadvantageous in terms of conductivity and corrosion resistance. Addition of magnesium improves the strength and corrosion resistance of the conductor, but if the amount is less than 0.03% by weight it has little effect, while if it exceeds 0.15% by weight it is effective but the conductivity and heat resistance are significantly reduced. Therefore, it is undesirable. Copper is used to increase the strength of conductors, but
If the amount added is less than 0.06% by weight, the effect is not significant;
On the other hand, if it exceeds 0.3% by weight, corrosion resistance, heat resistance, and conductivity will be significantly reduced. Furthermore, if the amount of zirconium added is less than 0.04% by weight, the improvement in heat resistance will be insufficient, and if it exceeds 0.2% by weight, the heat resistance will be significantly reduced. In addition, the total amount of iron, magnesium and copper
If it exceeds 0.7% by weight, the conductivity and corrosion resistance will be greatly reduced, which is undesirable for practical use. When the weight ratio of copper to magnesium is within the range of 1.8 to 2.3, the decrease in corrosion resistance caused by the presence of copper is minimized by the presence of magnesium, and an alloy with a good balance of corrosion resistance and heat resistance can be obtained. If this value is larger than 2.3, the corrosion resistance will be unsatisfactory, and if this value is smaller than 1.8, the heat resistance will be insufficient. Example Electrical aluminum ingot (silicon 0.04% by weight,
0.12% by weight of iron, 0.001% by weight of copper, 0.001% by weight of manganese, 0.001% by weight of titanium and vanadium, and 99.83% by weight of aluminum) were melted in an electric furnace, and each component was added to form the composition shown in Table 1. The alloy was melted and cast using a copper mold with a diameter of 30 mm. These ingots were hot rolled into rough drawn wires with a diameter of 9.5 mm, which were then cold drawn to a diameter of 4.0 mm to obtain wire conditions for testing. Table 2 shows the results of measuring the tensile strength, electrical conductivity, heat resistance, and corrosion resistance of the test specimens thus obtained. The test conditions for each test are as follows. Tensile strength: Based on Instron type tensile tester. Conductivity: by Kelvin double bridge. Heat resistance: Displayed as the ratio of the tensile strength after heating to the tensile strength before heating when heat treated at 230°C for 1 hour. Corrosion resistance: SO 2 concentration using a sulfur dioxide gas corrosion tester
It is expressed as the ratio of the tensile strength after 60 cycles of 8 hours of operation + 16 hours of rest at 500PPM to the tensile strength before corrosion.

【表】【table】

【表】【table】

【表】 ある。
表−1および表−2中において、本発明の実施
例であるNo.1乃至No.8の合金の特性を、比較例で
あるNo.9乃至No.15の合金のそれらと対比してみる
と、比較例の合金はいずれも引張強さ、導電率、
耐熱性および耐食性についての特性上のバランス
がとれておらず、性能上不満足な点があるのに対
し、本発明の合金は、いずれも耐食性が97.8%以
上という優れた値を示しており、また引張強さ、
導電率および耐熱性についても比較例の中のいず
れにも遜色のない値を持つている。このことか
ら、本発明のアルミニウム合金は、従来の技術で
は達成できなかつた優れた特性バランスを有して
いることがわかる。 発明の効果 本発明の高力耐熱アルミニウム合金は、鉄、マ
グネシウム、銅、およびジルコニウムを特定割合
で含有していて、特に製線工程において特別な処
理を施さなくても引張強さ、導電性、耐熱性およ
び耐食性の優れた電線を得ることができるという
特長を有するものである。従つて、本発明の合金
を用いて製造した導電線は、特性上のバランスが
良いばかりでなく、製造コストが低くてすむとい
う利点がある。
[Table] Yes.
In Tables 1 and 2, the characteristics of alloys No. 1 to No. 8, which are examples of the present invention, are compared with those of alloys No. 9 to No. 15, which are comparative examples. The comparative example alloys all have tensile strength, electrical conductivity,
The properties of heat resistance and corrosion resistance are unbalanced, resulting in unsatisfactory performance. However, the alloys of the present invention all exhibit excellent corrosion resistance of 97.8% or higher, and Tensile strength,
The conductivity and heat resistance are also comparable to those of the comparative examples. This shows that the aluminum alloy of the present invention has an excellent balance of properties that could not be achieved with conventional techniques. Effects of the Invention The high-strength heat-resistant aluminum alloy of the present invention contains iron, magnesium, copper, and zirconium in specific proportions, and has high tensile strength, conductivity, and This method has the advantage that it is possible to obtain electric wires with excellent heat resistance and corrosion resistance. Therefore, the conductive wire manufactured using the alloy of the present invention not only has a good balance of properties but also has the advantage of being low in manufacturing cost.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄0.2〜0.6重量%、マグネシウム0.03〜0.15
重量%、銅0.06〜0.3重量%、ジルコニウム0.04〜
0.2重量%および残部がアルミニウムとアルミニ
ウム地金に通常含まれる量のケイ素等の不純物と
からなる合金であつて、鉄とマグネシウムと銅と
の合計量が0.7重量%以下であり、また銅とマグ
ネシウムの重量比が1.8〜2.3の範囲内にあること
を特徴とする導電性および耐食性の優れた高力耐
熱アルミニウム合金。
1 Iron 0.2-0.6% by weight, Magnesium 0.03-0.15
wt%, copper 0.06~0.3 wt%, zirconium 0.04~
An alloy consisting of 0.2% by weight and the balance of aluminum and impurities such as silicon in amounts normally contained in aluminum bullion, in which the total amount of iron, magnesium, and copper is 0.7% by weight or less, and the balance is aluminum and impurities such as silicon in an amount normally contained in aluminum bullion, and the total amount of iron, magnesium, and copper is 0.7% by weight or less, and copper and magnesium A high-strength, heat-resistant aluminum alloy with excellent electrical conductivity and corrosion resistance, characterized by a weight ratio of 1.8 to 2.3.
JP4737585A 1985-03-12 1985-03-12 High tensile heat resisting aluminum alloy Granted JPS61207542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4737585A JPS61207542A (en) 1985-03-12 1985-03-12 High tensile heat resisting aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4737585A JPS61207542A (en) 1985-03-12 1985-03-12 High tensile heat resisting aluminum alloy

Publications (2)

Publication Number Publication Date
JPS61207542A JPS61207542A (en) 1986-09-13
JPS634893B2 true JPS634893B2 (en) 1988-02-01

Family

ID=12773350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4737585A Granted JPS61207542A (en) 1985-03-12 1985-03-12 High tensile heat resisting aluminum alloy

Country Status (1)

Country Link
JP (1) JPS61207542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103890U (en) * 1989-02-06 1990-08-17

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013102913A2 (en) * 2011-10-19 2013-07-11 Sterlite Technologies Ltd. Electrical power conductor
CN102978466B (en) * 2012-11-09 2015-08-19 安徽欣意电缆有限公司 Al-Fe-Zr-RE aluminium alloy and preparation method thereof and power cable

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596361A (en) * 1982-07-02 1984-01-13 Furukawa Electric Co Ltd:The Preparation of conductive high strength and heat resistant aluminum alloy twisted wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596361A (en) * 1982-07-02 1984-01-13 Furukawa Electric Co Ltd:The Preparation of conductive high strength and heat resistant aluminum alloy twisted wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103890U (en) * 1989-02-06 1990-08-17

Also Published As

Publication number Publication date
JPS61207542A (en) 1986-09-13

Similar Documents

Publication Publication Date Title
JPS5853057B2 (en) Highly conductive copper-based alloy
US4182640A (en) Aluminum alloy electric conductor wire
JPH06184679A (en) Copper alloy for electrical parts
US3278300A (en) Aluminum alloys for electric conductors
JPS634893B2 (en)
US4213800A (en) Electrical conductivity of aluminum alloys through the addition of yttrium
JPS58210140A (en) Heat resistant conductive copper alloy
JPH03111529A (en) High-strength and heat-resistant spring copper alloy
JPS6256937B2 (en)
JP2813652B2 (en) High strength copper alloy for conductive
US3525605A (en) Method for decreasing the softening temperature and improving the electrical conductivity of high conductivity oxygen-free copper
JPS62199741A (en) Copper alloy for terminal and connector having superior migration resistance
JPH0379417B2 (en)
JPH0416534B2 (en)
JPH042653B2 (en)
JPH1096036A (en) High strength and high conductivity copper alloy wire rod
JPS63161134A (en) Copper alloy for electrical parts
US1710805A (en) Loaded conductor
US4139372A (en) Copper-based alloy
JPS6239214B2 (en)
JPS63262437A (en) Copper alloy having excellent electroconductivity and strength
JPS5952943B2 (en) Cu alloy with high heat resistance and high conductivity
JPS606042B2 (en) Dissimilar metal coated aluminum alloy conductor
JPH036984B2 (en)
JPS5821015B2 (en) Conductive copper alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees