JP2771114B2 - Waste incineration method - Google Patents

Waste incineration method

Info

Publication number
JP2771114B2
JP2771114B2 JP6126355A JP12635594A JP2771114B2 JP 2771114 B2 JP2771114 B2 JP 2771114B2 JP 6126355 A JP6126355 A JP 6126355A JP 12635594 A JP12635594 A JP 12635594A JP 2771114 B2 JP2771114 B2 JP 2771114B2
Authority
JP
Japan
Prior art keywords
ash
granulated
furnace
particle
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6126355A
Other languages
Japanese (ja)
Other versions
JPH07332636A (en
Inventor
一博 小泉
隆之 森
理 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GAISHI KK
Original Assignee
NIPPON GAISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GAISHI KK filed Critical NIPPON GAISHI KK
Priority to JP6126355A priority Critical patent/JP2771114B2/en
Publication of JPH07332636A publication Critical patent/JPH07332636A/en
Application granted granted Critical
Publication of JP2771114B2 publication Critical patent/JP2771114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば下水汚泥、都市
ゴミ、産業廃棄物等の廃棄物を流動層焼却炉を用いて焼
却する廃棄物焼却方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste incineration method for incinerating waste such as sewage sludge, municipal waste and industrial waste using a fluidized bed incinerator.

【0002】[0002]

【従来の技術】従来の流動層焼却炉による廃棄物焼却方
法は、流動媒体として粒径が0.3 〜0.9 mm程度のケイ砂
を用いて流動層を形成し、この流動媒体を700 〜900 ℃
に保持した状態で廃棄物を投入し、流動媒体の持つ熱容
量と攪拌作用により難燃性の廃棄物をも燃焼させること
ができるようにしたものである。
2. Description of the Related Art In a conventional waste incineration method using a fluidized bed incinerator, a fluidized bed is formed using silica sand having a particle size of about 0.3 to 0.9 mm as a fluidized medium, and the fluidized medium is heated to 700 to 900 ° C.
In this state, the waste is put into the storage medium and the heat capacity and the stirring action of the fluidized medium can burn even the flame-retardant waste.

【0003】しかしこのような流動層焼却炉より排出さ
れる焼却灰は粒径が100μm 以下の微粒子であって粉塵
を発生しやすく、嵩密度が0.5 〜0.8t/m3 と非常に小さ
いために処理容積が大きく、ハンドリングしにくい欠点
を有する。またこの焼却灰はサイクロン、電気集塵機、
バグフィルタ等の集塵装置により捕集され、最終的に埋
め立て処分されているため、この焼却灰の処理のために
多くの費用が必要となる欠点を有する。
However, incineration ash discharged from such a fluidized bed incinerator is a fine particle having a particle size of 100 μm or less, and is liable to generate dust, and has a very low bulk density of 0.5 to 0.8 t / m 3. It has the drawback that the processing volume is large and it is difficult to handle. This incineration ash is also used for cyclones, electric dust collectors,
Since it is collected by a dust collecting device such as a bag filter and finally disposed of in a landfill, there is a disadvantage that a large amount of cost is required for treating this incinerated ash.

【0004】さらに従来の流動層焼却炉による廃棄物焼
却方法は、流動層の流動状態および流動媒体の吹き飛び
高さの関係から炉内の流速は0.5 〜1.2m/s程度に限られ
るため、焼却炉の単位面積当たりの処理量が決定されて
しまい、この処理量を増加させることは不可能である。
Further, in the conventional waste incineration method using a fluidized bed incinerator, the flow rate in the furnace is limited to about 0.5 to 1.2 m / s due to the fluidized state of the fluidized bed and the height of the fluidized medium. The throughput per unit area of the furnace is determined and it is impossible to increase this throughput.

【0005】さらにまた、流動媒体は高温で激しく攪拌
されるために摩耗、破砕により微粒化し、排ガスととも
に炉外へ排出されるので、流動媒体を外部から定期的に
補充しなければならないという問題もある。
Further, the fluid medium is vigorously stirred at a high temperature, so that the fluid medium becomes fine due to wear and crushing and is discharged together with the exhaust gas to the outside of the furnace. Therefore, the fluid medium must be periodically replenished from the outside. is there.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決し、粉塵の発生がなく、焼却灰を骨材と
して有効利用することができ、焼却炉の単位面積当たり
の処理量を増加させることができ、しかも流動媒体を外
部から定期的に補充する必要のない廃棄物焼却方法を提
供するためになされたものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned conventional problems, does not generate dust, can effectively use incinerated ash as aggregate, and treats the incinerator in a unit area per unit area. The purpose of the present invention is to provide a waste incineration method which can increase the amount of waste and does not need to periodically replenish the fluid medium from the outside.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明の廃棄物焼却方法は、廃棄物を焼却
する循環流動層焼却炉の排ガスから回収された焼却灰を
造粒機により1〜8mmの粒径に造粒し、この造粒灰を
内流速を4〜8m/s とした循環流動層焼却炉に投入して
焼結させるとともに、このようにして得られた造粒焼結
灰を循環流動層焼却炉の炉下部の粒子濃厚部へ循環させ
流動媒体として使用することを特徴とするもので
る。
Means for Solving the Problems To solve the above problems, a waste incineration method according to the present invention is directed to a granulating machine for incinerated ash recovered from exhaust gas of a circulating fluidized bed incinerator for incinerating waste. the granulated to a particle size of 1 to 8 mm, furnace granulated ash
The granulated sintered ash thus obtained is put into a circulating fluidized bed incinerator with an internal flow rate of 4 to 8 m / s and sintered, and the granulated sintered ash obtained in this manner is transferred to a particle-rich portion at the lower part of the circulating fluidized bed incinerator . Circulate
Oh characterized in that used as the fluidized medium Te
You.

【0008】[0008]

【作用】本発明によれば、焼却灰を粒径1〜8mmに造粒
して循環流動層焼却炉で焼結して造粒焼結灰とし、有用
な粒状骨材を製造することができるとともに、この造粒
焼結灰を循環流動層焼却炉の炉下部の粒子濃厚部へ循環
させて流動媒体として使用する。このため、従来のよう
に粉塵が発生することがなく、また流動化開始速度およ
び終端速度が従来のケイ砂よりも大きい造粒焼結灰を流
動媒体として使用しているため、炉内流速を従来の0.5
〜1.2 m /sから4〜8m /sへと大幅に増加させることが
できる。従って単位面積当りの焼却能力を従来の5倍程
度まで高めることができる。更に従来のように流動媒体
を外部から定期的に補充する必要もない。以下に本発明
を図面を参照しつつ更に詳細に説明する。
According to the present invention, useful incinerated ash can be produced by granulating incinerated ash to a particle size of 1 to 8 mm and sintering in a circulating fluidized bed incinerator to obtain granulated sintered ash. At the same time, the granulated sintered ash is circulated to the particle-rich part at the bottom of the circulating fluidized bed incinerator.
And used as a fluid medium. For this reason, dust is not generated unlike the conventional case, and since the granulated sintered ash having a fluidization start speed and a terminal speed higher than that of the conventional silica sand is used as the fluidizing medium, the flow velocity in the furnace is reduced. Conventional 0.5
It can be greatly increased from ~ 1.2 m / s to 4-8 m / s. Therefore, the incineration capacity per unit area can be increased to about five times the conventional value. Further, there is no need to periodically replenish the fluid medium from the outside as in the prior art. Hereinafter, the present invention will be described in more detail with reference to the drawings.

【0009】[0009]

【実施例】図1において、1はサイクロン14を備えた循
流動層焼却炉であり、下水汚泥等の廃棄物は焼却物投
入口2から炉内に投入され、炉内の流動媒体3との接触
により900 〜1100℃で焼却される。排ガスは炉頂部から
取り出され、サイクロン14 によって微粒焼却灰と粗大焼
却灰とを分離する。微粒焼却灰を含んだ排ガスは第1の
熱交換器4と第2の熱交換器5を通過する間にブロワ
6、7から供給される空気との間で熱交換を行い、更に
集塵装置8に導かれる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, reference numeral 1 denotes a circulation provided with a cyclone 14.
It is an annular fluidized bed incinerator, and waste such as sewage sludge is introduced into the furnace through an incineration material inlet 2 and incinerated at 900 to 1100 ° C. by contact with a fluidized medium 3 in the furnace. Exhaust gas is withdrawn from the furnace top, fine ash and coarse sintered by cyclone 14
Separate from the ashes. The exhaust gas containing the fine incineration ash exchanges heat with the air supplied from the blowers 6 and 7 while passing through the first heat exchanger 4 and the second heat exchanger 5, and furthermore, a dust collector. It is led to 8.

【0010】この排ガス中に含まれる微粒焼却灰は、集
塵装置8において集塵され回収される。回収された焼却
灰は造粒機9により造粒されて粒径が1〜8mmの造粒灰
とされ、更に乾燥機10により乾燥されたうえ、造粒灰投
入口11から炉内に投入される。このようにして炉内に投
入された造粒灰は炉内の900 〜1100℃の高温で焼結さ
れ、一軸圧潰強度3kgf/粒子以上の造粒焼結灰となる。
一方、粗大焼却灰は炉下部の粒子濃厚部へ循環させる。
このようにすれば集塵装置8で回収される焼却灰を未燃
分が1%以下とすることができる。またその粒径分布も
非常に狭いので、造粒機9による造粒も安定して行える
利点がある。さらに高温の灰粒子の作用により造粒焼結
灰および未焼結の造粒灰で形成される炉下部の粒子濃厚
部の攪拌作用が促進されるとともに、炉内温度分布が均
一になることから安定した性状の焼結物が得られること
となる。これにより造粒焼結灰を原料として製造される
透水性ブロック等の二次加工品の強度や収縮率も安定す
るため、優れた製品を得ることが可能となる。
The fine incineration ash contained in the exhaust gas is collected and collected by the dust collecting device 8. The collected incinerated ash is granulated by a granulator 9 to form granulated ash having a particle size of 1 to 8 mm, further dried by a drier 10 and put into a furnace through a granulated ash inlet 11. You. The granulated ash charged into the furnace in this manner is sintered at a high temperature of 900 to 1100 ° C. in the furnace to form granulated ash having a uniaxial crush strength of 3 kgf / particle or more.
On the other hand, the large incinerated ash is circulated to the particle dense part at the bottom of the furnace.
In this way, the incinerated ash collected by the dust collecting device 8 is not burned.
Can be 1% or less. Also the particle size distribution
Since it is very narrow, granulation by the granulator 9 can be performed stably.
There are advantages. Granulation and sintering by the action of hot ash particles
Particle concentration at the bottom of the furnace formed by ash and unsintered granulated ash
The agitating action of the part is promoted and the temperature distribution in the furnace is evened.
Stable products with stable properties can be obtained
Becomes This produces granulated sintered ash as raw material
Stabilizes the strength and shrinkage of secondary processed products such as water-permeable blocks
Therefore, an excellent product can be obtained.

【0011】本発明においてはこの造粒焼結灰がそのま
ま流動媒体3として用いられる。このため、従来のよう
に流動媒体を外部から定期的に補充する必要がない。ま
た粒径が1〜8mmの造粒焼結灰を流動媒体3としたた
め、その流動開始速度は1.5 〜3m/s となり、炉内流速
をその2〜3倍の4〜8m/s として安定した流動層を形
成することができる。従って焼却炉の単位面積当たりの
処理量を従来の5倍程度まで高めることができる。
In the present invention, this granulated sintered ash is used as the fluid medium 3 as it is. Therefore, there is no need to regularly replenish the fluid medium from the outside as in the conventional case. Further, since the granulated sintered ash having a particle size of 1 to 8 mm was used as the fluidized medium 3, the flow start speed was 1.5 to 3 m / s, and the flow rate in the furnace was stabilized to 4 to 8 m / s, which is 2 to 3 times the flow rate. A fluidized bed can be formed. Therefore, the throughput per unit area of the incinerator can be increased to about five times the conventional value.

【0012】炉の下端部には抜き出し量制御弁12を備え
た抜き出し口13が設けられており、造粒焼結灰で構成さ
れる流動層の高さを一定に保つように造粒焼結灰を抜き
出す。この造粒焼結灰は嵩密度が0.8 〜1.2t/m3 と従来
に比較して大きくなり、粉塵の発生もなく処分が容易と
なる。また圧潰強度が3kgf/ 粒子以上であり、重金属等
の溶出安定性が高いため、コンクリート用骨材、雨水流
出抑制用骨材等としてそのまま使用できるほか、透水性
ブロック等の二次加工品の原料として使用することがで
きる。
At the lower end of the furnace, there is provided a discharge port 13 provided with a discharge amount control valve 12, so that the height of the fluidized bed made of the granulated sinter ash is kept constant. Extract the ash. The granulated sintered Yuihai increases as compared with the conventional and bulk density of 0.8 ~1.2t / m 3, it is easy to dispose of without generation of dust. In addition, the crushing strength is 3 kgf / particle or more, and the elution stability of heavy metals etc. is high, so it can be used as it is as aggregate for concrete and aggregate for rainwater runoff, etc. Can be used as

【0013】本発明により下水汚泥を焼却した結果を次
に示す。下水汚泥は高分子薬注汚泥を脱水機により水分
80%まで脱水したものを使用した。またその特性値は表
1に示す通りである。
The results of incineration of sewage sludge according to the present invention are shown below. For sewage sludge, polymer chemical sludge is dehydrated by a dehydrator.
Dehydrated to 80% was used. The characteristic values are as shown in Table 1.

【0014】[0014]

【表1】 ┌────────┬──────┐ │水分 │80.1% │ │固形分中可燃分 │79.8% │ │固形分中灰分 │20.2% │ │固形分高位発熱量│4680kcal/kg │ ├────────┼──────┤ │灰分組成 SiO2 │42.5% │ │ CaO │ 9.0% │ │ Al2O3 │18.4% │ │ P2O5 │ 9.7% │ │ Fe2O3 │ 9.5% │ │ その他│10.9% │ └────────┴──────┘[Table 1] │ │ Moisture │ 80.1% │ │ Flammables in solids │ 79.8% │ │ Ash in solids │ 20.2% │ │ Higher solids Calorific value │4680kcal / kg │ ├────────┼──────┤ │ Ash composition SiO 2 │42.5% │ │ CaO │ 9.0% │ │ Al 2 O 3 │18.4% │ │ P 2 O 5 │ 9.7% │ │ Fe 2 O 3 │ 9.5% │ │ Others │ 10.9% │ └────────┴──────┘

【0015】この実施例では攪拌式の造粒機9を用い、
焼結時の粒子強度を増加させるために焼成助剤を3.0 %
添加して造粒を行い、その後に造粒灰を粒径0.5〜10mm
の間で表中に示すそれぞれの粒径範囲に分級して使用し
た。分級範囲外の造粒灰については粉砕機により粉砕し
た後、再度造粒機9に戻した。造粒灰は造粒後の状態で
約30%の水分を含んでおり、そのまま炉内に投入すると
急激な水分蒸発により粒子が破壊してしまい、回収率が
低下する。そこで本実施例では第2の熱交換器5により
200 ℃に加熱された熱風を用い、乾燥機10により水分が
3%以下となるまで乾燥させてから炉内に投入した。
In this embodiment, a stirring type granulator 9 is used.
3.0% firing aid to increase particle strength during sintering
Add and granulate, then granulated ash 0.5 to 10 mm in particle size
The particles were classified into the respective particle size ranges shown in the table . The granulated ash outside the classification range was pulverized by a pulverizer and returned to the granulator 9 again. Granulated ash contains about 30% moisture in the state after granulation, and if it is put into a furnace as it is, particles are destroyed due to rapid evaporation of moisture, and the recovery rate is reduced. Therefore, in this embodiment, the second heat exchanger 5
Using hot air heated to 200 ° C., drying was performed by a drier 10 until the water content became 3% or less, and then the product was put into a furnace.

【0016】使用した流動層焼却炉1は内径0.3 m、高
さ6.5 mの小型の炉であり、焼却量は120 〜180 kg/h、
空気比は約1.3 とした。また流動層の温度を所定の炉内
温度に維持するために、補助燃料としてLNG(13A) を
使用した。
The fluidized bed incinerator 1 used was a small furnace having an inner diameter of 0.3 m and a height of 6.5 m, and the incineration amount was 120 to 180 kg / h.
The air ratio was about 1.3 . In addition , LNG (13A) was used as an auxiliary fuel to maintain the temperature of the fluidized bed at a predetermined furnace temperature.

【0017】表4〜表6に、得られた造粒焼結灰の一軸
圧潰強度と粒子残存率を示す。表4と表5は焼結温度
(炉内温度)を950 ℃として粒径及び炉内流速を変化さ
せたケースを示し、表6は粒径及び炉内流速を一定とし
て焼結温度を変化させたケースを示す。ここで一軸圧潰
強度は、炉底より抜き出した造粒焼結灰20個の平均値を
示す。また粒子残存率は、下記の式により簡易的に算出
したものである。 粒子残存率 [%] =焼結物量[kg/h]÷ (投入造粒物量−造粒物中水分−造粒物 中可燃分)[kg/h]×100 なお、この式における焼結物量は流動層高さを一定に保
つように粒子を炉底より抜き出した場合の時間当たりの
排出量である。またこの場合、サイクロン14によって補
集した粒子は循環量制御弁により粒子循環量が炉の単位
断面積当り25kg/sになるよう制御した。サイクロン14に
よって補集されない微粒焼却灰は後段の集塵装置8(バ
グフィルタ)により集塵されるが、その補集灰は強熱減
量1%以下であった。この集塵装置8による補集灰に炉
内循環量が一定となるようダウンカマー15から粒子を抜
き出し、混合して造粒した。この混合割合は、実施例で
は集塵装置8による補集灰に対して、ダウンカマー14か
らの抜き出し粒子が5〜15%程度である。混合後の強熱
減量は1.0 〜1.5重量%である。
Tables 4 to 6 show the uniaxial crushing strength and the residual particle ratio of the obtained granulated sintered ash. Table 4 and Table 5 shows the case of changing the particle size and furnace velocity sintering temperature (furnace temperature) as 950 ° C., Table 6 by changing the sintering temperature particle size and furnace flow rate as a constant Here is the case. Here, the uniaxial crushing strength indicates an average value of 20 pieces of granulated sintered ash extracted from the furnace bottom. The particle residual ratio is simply calculated by the following equation. Particle residual rate [%] = amount of sintered material [kg / h] / (amount of granulated material-moisture in granulated material-combustible content in granulated material) [kg / h] x 100 Is the discharge per hour when particles are extracted from the furnace bottom so as to keep the height of the fluidized bed constant. In this case, it is supplemented by cyclone 14.
The amount of particles collected is controlled by the circulation amount control valve so that the amount of particles
It was controlled to be 25 kg / s per sectional area. To cyclone 14
Therefore, the fine incineration ash that is not collected is collected in the dust collector 8 (bath) at the subsequent stage.
Dust), but the collected ash is reduced by ignition
The amount was 1% or less. The dust is collected by the dust collector 8 and the furnace
Remove the particles from the downcomer 15 so that the internal circulation amount is constant.
The mixture was granulated by mixing. This mixing ratio is determined in Examples.
Is the downcomer 14 for the ash collected by the dust collector 8?
The extracted particles account for about 5 to 15%. Ignition after mixing
The weight loss is between 1.0 and 1.5% by weight.

【0018】[0018]

【表2】[Table 2]

【0019】[0019]

【表3】[Table 3]

【0020】本明細書の表中の評価基準は次の通りであ
る。 流動状態については、全体が均一に流動しているも
のを◎、一時的に流動していない部分が発生するものを
〇、流動状態が悪いものを×とした。 粒子の吹き飛びについては、吹き飛び量が投入造粒
物量の5%以下を◎、5〜20%を〇、20%以上を×とし
た。 一軸圧潰強度は5kgf/粒子以上を◎、3〜5kgf/粒
子を〇、3kgf/粒子以下を×とした。 粒子残存率については、80%以上を◎、70〜80%を
〇、70%以下を×とした。 総合評価は、〜の全て◎の場合を◎、〜に
おいて×はなく〇が一つでもある場合を〇、〜にお
いて×が一つでもある場合を×とした。
The evaluation criteria in the tables in this specification are as follows. Regarding the flow state, ◎ indicates that the whole is flowing uniformly, Δ indicates that a part that does not flow temporarily occurs, and X indicates that the flow state is poor. Regarding the blow-off of the particles, を indicates that the blow-off amount was 5% or less of the amount of the granulated material, Δ indicates 5 to 20%, and x indicates 20% or more. The unconfined crushing strength was evaluated as ◎ when 5 kgf / particle or more, 〇 when 3 to 5 kgf / particle, and × when 3 kgf / particle or less. Regarding the particle residual ratio, ◎ indicates 80% or more, Δ indicates 70 to 80%, and X indicates 70% or less. The comprehensive evaluation was evaluated as ◎ when all of 〜 were, 〇 when there was no X and no 〇 in 〇, and × when there was even one X in 〜.

【0021】[0021]

【0022】[0022]

【0023】[0023]

【0024】[0024]

【0025】[0025]

【表4】 ┌─┬─────┬────┬──┬───┬─────┬────┬──┐ │番│ 粒径 │炉内流速│流動│粒子吹│一軸圧潰 │粒子残存│総合│ │号│ │ │状態│き飛び│強度 │率 │評価│ │ │ mm │ m/s │ │ │kgf/粒子 │ % │ │ ├─┼─────┼────┼──┼───┼─────┼────┼──┤ │18│0.5 〜1.0 │ 4 │◎ │ × │× 1.4 │× 21 │× │ │19│1.0 〜2.0 │ 4 │◎ │ ◎ │〇 3.6 │〇 76 │〇 │ │20│2.0 〜4.0 │ 4 │◎ │ ◎ │◎ 7.6 │◎ 85 │◎ │ │21│4.0 〜6.0 │ 4 │◎ │ ◎ │◎ 14.6 │◎ 91 │◎ │ │22│6.0 〜8.0 │ 4 │〇 │ ◎ │◎ 23.4 │◎ 92 │〇 │ │23│8.0 〜10 │ 4 │× │ − │ ── │ ── │× │ │24│10 〜12 │ 4 │× │ − │ ── │ ── │× │ ├─┼─────┼────┼──┼───┼─────┼────┼──┤ │25│0.5 〜1.0 │ 8 │◎ │ × │× 1.9 │× 12 │× │ │26│1.0 〜2.0 │ 8 │◎ │ 〇 │〇 3.8 │〇 73 │〇 │ │27│2.0 〜4.0 │ 8 │◎ │ ◎ │◎ 8.3 │◎ 81 │◎ │ │28│4.0 〜6.0 │ 8 │◎ │ ◎ │◎ 15.2 │◎ 86 │◎ │ │29│6.0 〜8.0 │ 8 │◎ │ ◎ │◎ 25.1 │◎ 89 │◎ │ │30│8.0 〜10 │ 8 │○ │ ◎ │◎ 36.2 │◎ 91 │○ │ │31│10 〜12 │ 8 │× │ − │ ── │ ── │× │ └─┴─────┴────┴──┴───┴─────┴────┴──┘[Table 4] ┌─┬─────┬────┬──┬───┬─────┬────┬──┐ │ number │ particle size │ flow rate in furnace │ flow │Particle blowing│Uniaxial crushing │Particle surviving│Overall││No.│ │ │State│Skip│Strength │Ratio │Evaluation│ │ │ mm │ m / s │ │ │kgf / Particle │% │ │ ├─┼── ├─┼── │ │18│0.5 ~ 1.0 │ 4 │ ◎ │ × │ × 1.4 │ × 21 │ × │ │19│1.0 to 2.0 │ 4 │ ◎ │ ◎ │〇 3.6 │〇 76 │〇 │ │20│2.0 to 4.0 │ 4 │ ◎ │ ◎ │ ◎ 7.6 │ ◎ 85 │ ◎ │ │21│4.0 to 6.0 │ │ 4 │ ◎ │ ◎ │ ◎ 14.6 │ ◎ 91 │ ◎ │ │22│6.0 to 8.0 │ 4 │〇 │ ◎ │ ◎ 23.4 │ ◎ 92 │〇 │ │23│8.0 〜10 │4 │ × │ − │ ── │ ── │ × │ │24│10 〜 12 │ 4 │ × │ − │ ── │ ── │ × │ ├─┼─────┼────┼──┼── │ │25│0.5 to 1.0 │ 8 │ ◎ │ × │ × 1.9 │ × 12 │ × │ │26│1.0 to 2.0 │ 8 │ ◎ │ 〇 │〇 3.8 │〇 73 │〇 │ │27│2.0 to 4.0 │ 8 │ ◎ │ ◎ │ ◎ 8.3 │ ◎ 81 │ ◎ │ │28│4.0 to 6.0 │ 8 │ ◎ │ ◎ │ ◎ 15.2 │ ◎ 86 │ ◎ │ │ │ │ 29│6.0 〜 8.0 │8 │ ◎ │ ◎ │ ◎ 25.1 │ ◎ 89 │ ◎ │ │30│8.0 〜10 │8 │ ○ │ ◎ │ ◎ 36.2 │ ◎ 91 │ ○ │ │31│10 〜12 │ 8 │ × │ − │ ── │ ── │ × │ └─┴─────┴────┴──┴───┴─────┴────┴──┘

【0027】[0027]

【表5】 ┌─┬─────┬────┬──┬───┬─────┬────┬──┐ │番│ 粒径 │炉内流速│流動│粒子吹│一軸圧潰 │粒子残存│総合│ │号│ │ │状態│き飛び│強度 │率 │評価│ │ │ mm │ m/s │ │ │kgf/粒子 │ % │ │ ├─┼─────┼────┼──┼───┼─────┼────┼──┤ │32│ 2.0〜4.0 │ 2 │× │ − │ ── │ ── │× │ │33│ 2.0〜4.0 │ 4 │◎ │ ◎ │◎ 7.6 │◎ 85 │◎ │ │34│ 2.0〜4.0 │ 6 │◎ │ ◎ │◎ 7.8 │◎ 82 │◎ │ │35│ 2.0〜4.0 │ 8 │◎ │ ◎ │◎ 8.3 │◎ 81 │◎ │ │36│ 2.0〜4.0 │10 │◎ │ × │◎ 8.9 │× 31 │× │ ├─┼─────┼────┼──┼───┼─────┼────┼──┤ │37│ 6.0〜8.0 │ 2 │× │ − │ ── │ ── │× │ │38│ 6.0〜8.0 │ 4 │○ │ ◎ │◎ 23.4 │◎ 92 │○ │ │39│ 6.0〜8.0 │ 6 │◎ │ ◎ │◎ 24.1 │◎ 90 │◎ │ │40│ 6.0〜8.0 │ 8 │◎ │ ◎ │◎ 25.1 │◎ 89 │◎ │ │41│ 6.0〜8.0 │10 │◎ │ ○ │◎ 27.3 │〇 77 │○ │ │42│ 6.0〜8.0 │12 │◎ │ × │◎ 28.2 │× 28 │× │ └─┴─────┴────┴──┴───┴─────┴────┴──┘[Table 5] ┌─┬─────┬────┬──┬───┬─────┬────┬──┐ │ number │ particle size │ flow rate in furnace │ flow │Particle blowing│Uniaxial crushing │Particle surviving│Overall││No.│ │ │State│Skip│Strength │Ratio │Evaluation│ │ │ mm │ m / s │ │ │kgf / Particle │% │ │ ├─┼── ├─┼── │ │32│ 2.0〜4.0 │2 │ × │ − │ ── │ ── │ × │ │33│ 2.0-4.0 │ 4 │ ◎ │ ◎ │ ◎ 7.6 │ ◎ 85 │ ◎ │ │34│ 2.0-4.0 │ 6 │ ◎ │ ◎ │ ◎ 7.8 │ ◎ 82 │ ◎ │ │35│ 2.0-4.0 │ 8 │ ◎ │ ◎ │ ◎ 8.3 │ ◎ 81 │ ◎ │ │36│ 2.0 ~ 4.0 │10 │ ◎ │ × │ ◎ 8.9 │ × 31 │ × │ ├─┼─────┼────┼─ ─┼───┼─────┼────┼──┤ │37│ 6.0〜8.0 │2 │ × │ − │ ── │ ── │ × │ │38│ 6.0-8.0 │ 4 │ ○ │ ◎ │ ◎ 23.4 │ ◎ 92 │ ○ │ │39│ 6.0-8.0 │ 6 │ ◎ │ ◎ │ ◎ 24.1 │ ◎ 90 │ ◎ │ │40│ 6.0-8.0 │ 8 │ ◎ │ ◎ │ ◎ 25.1 │ ◎ 89 │ ◎ │ │41│ 6.0-8.0 │10 │ ◎ │ ○ │ ◎ 27.3 │〇 77 │ ○ │ │42│ 6.0-8.0 │12 │ ◎ │ × │ ◎ 28.2 │ × 28 │ × │ └─┴─────┴────┴──┴───┴─────┴────┴──┘

【0028】[0028]

【表6】 ┌─┬─────┬────┬────┬─────┬────┬──┐ │番│ 粒径 │炉内流速│焼結温度│一軸圧潰 │粒子残存│総合│ │号│ │ │ │強度 │率 │評価│ │ │ mm │ m/s │ ℃ │kgf/粒子 │ % │ │ ├─┼─────┼────┼────┼─────┼────┼──┤ │43│2.0 〜4.0 │ 5 │ 700 │× 0.9 │× 32 │× │ │44│2.0 〜4.0 │ 5 │ 800 │× 1.5 │× 43 │× │ │45│2.0 〜4.0 │ 5 │ 900 │○ 3.1 │○ 73 │○ │ │46│2.0 〜4.0 │ 5 │ 950 │◎ 7.7 │◎ 85 │◎ │ │47│2.0 〜4.0 │ 5 │ 1000 │◎ 18.8 │◎ 86 │◎ │ │48│2.0 〜4.0 │ 5 │ 1050 │◎ 22.8 │◎ 81 │◎ │ │49│2.0 〜4.0 │ 5 │ 1100 │◎ 15.6 │○ 77 │○ │ │50│2.0 〜4.0 │ 5 │ 1150 │ ── │クリンカ│× │ └─┴─────┴────┴────┴─────┴────┴──┘[Table 6] ┌─┬─────┬────┬────┬─────┬────┬──┐ │ number │ particle size │ flow rate in furnace │ sintering temperature │Uniaxial crush │Particle remaining│Overall│ │No.│ │ │ │Strength │Ratio │Evaluation│ │ │ mm │ m / s │ ℃ │kgf / particle │% │ │ ├─┼─────┼─── ─┼────┼─────┼────┼──┤ │43│2.0 〜4.0 │5 │ 700 │ × 0.9 │ × 32 │ × │ │44│2.0 〜4.0 │5 │ 800 │ × 1.5 │ × 43 │ × │ │45│2.0 to 4.0 │ 5 │ 900 │ ○ 3.1 │ ○ 73 │ ○ │ │46│2.0 to 4.0 │ 5 │ 950 │ ◎ 7.7 │ ◎ 85 │ ◎ │ │47│ 2.0 〜 4.0 │ 5 │ 1000 │ ◎ 18.8 │ ◎ 86 │ ◎ │ │ 48 │ 2.0 〜 4.0 │ 5 │ 1050 │ ◎ 22.8 │ ◎ 81 │ ◎ │ │ 49 │ 2.0 〜 4.0 │ 5 │ 1100 │ ◎ 15.6 │ ○ 77 │ ○ │ │50│2.0 〜 4.0 │ 5 │ 1150 │ ── │Clinker│ × │ └─┴─────┴────┴────┴─── ──┴────┴──┘

【0029】以上の表4〜表6から明らかなように、造
粒灰の粒径については1〜8mmとした場合に総合評価が
〇となり、特に2〜6mmとした場合に総合評価が◎とな
る。また炉内流速については4〜8m/s とした場合に総
合評価が〇となり、特に6〜8m/s 程度とした場合に総
合評価が◎となる。さらに焼結温度については、900 〜
1100℃とした場合に総合評価が〇となり、特に950 〜10
50℃とした場合に総合評価が◎となる。
As is apparent from the above Tables 4 6, overall evaluation 〇 next when the 1~8mm for the particle size of the granulated <br/> Tsubuhai, particularly comprehensive when the 2~6mm The evaluation is ◎. When the flow velocity in the furnace was 4 to 8 m / s, the overall evaluation was 〇, and when the flow velocity in the furnace was about 6 to 8 m / s, the overall evaluation was ◎. The sintering temperature is 900 ~
When the temperature is 1100 ° C, the overall evaluation is 〇, especially 950 to 10
When the temperature is 50 ° C., the overall evaluation is ◎.

【0030】[0030]

【発明の効果】以上に説明したように、本発明によれば
従来のように粉塵が発生することがなく、また造粒焼結
灰を流動媒体として使用しているため、単位面積当りの
焼却能力を従来の5倍程度まで高めることができる。更
に従来のように流動媒体を外部から定期的に補充する必
要もない。また本発明によれば、上記の作用効果に加え
て、造粒焼結灰の強度を一段と高めることができる利点
ある。よって本発明は従来の問題点を解決した廃棄物
焼却方法として、価値の大きいものである。
As described above, according to the present invention, no dust is generated unlike the prior art, and since granulated sintered ash is used as a fluidizing medium, incineration per unit area is possible. The capacity can be increased up to about five times the conventional capacity. Further, there is no need to periodically replenish the fluid medium from the outside as in the prior art. Further, according to the present invention , in addition to the above-mentioned effects, the strength of the granulated sintered ash can be further increased.
There is also . Therefore, the present invention is of great value as a waste incineration method that solves the conventional problems.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention .

【符号の説明】[Explanation of symbols]

1 流動層焼却炉、2 焼却物投入口、3 流動媒体、
4 第1の熱交換器、5 第2の熱交換器、6 ブロ
ワ、7 ブロワ、8 集塵装置、9 造粒機、10乾燥
機、11 造粒灰投入口、12 抜き出し量制御弁、13 抜
き出し口 14 サイクロン、15 ダウンカマー
1 fluidized bed incinerator, 2 incineration material inlet, 3 fluidized media,
4 First heat exchanger, 5 Second heat exchanger, 6 Blower, 7 Blower, 8 Dust collector, 9 Granulator, 10 Dryer, 11 Granulated ash inlet, 12 Extraction amount control valve, 13 Outlet 14 cyclone, 15 downcomer

フロントページの続き (56)参考文献 特開 昭60−194220(JP,A) 特開 昭64−75809(JP,A) 特開 昭55−102812(JP,A) (58)調査した分野(Int.Cl.6,DB名) F23G 5/30 F23J 1/00Continuation of front page (56) References JP-A-60-194220 (JP, A) JP-A-64-75809 (JP, A) JP-A-55-102812 (JP, A) (58) Fields investigated (Int) .Cl. 6 , DB name) F23G 5/30 F23J 1/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 廃棄物を焼却する循環流動層焼却炉の排
ガスから回収された焼却灰を造粒機により1〜8mmの粒
径に造粒し、この造粒灰を炉内流速を4〜8m/sとした
循環流動層焼却炉に投入して焼結させるとともに、この
ようにして得られた造粒焼結灰を循環流動層焼却炉の
下部の粒子濃厚部へ循環させて流動媒体として使用する
ことを特徴とする廃棄物焼却方法。
An incinerated ash collected from exhaust gas of a circulating fluidized bed incinerator for incineration of waste is granulated by a granulator into 1 to 8 mm particles.
And granulated to a diameter of 4 to 8 m / s.
Was charged into a circulating fluidized bed incinerator with is sintered, furnace granulated sintered Yuihai a circulating fluidized bed incinerator thus obtained
A waste incineration method characterized by being circulated to a lower particle concentration portion and used as a fluid medium.
【請求項2】 焼結温度を900 〜1100℃とした請求項に
記載の廃棄物焼却方法。
2. The method according to claim 1, wherein the sintering temperature is 900 to 1100 ° C.
The waste incineration method described.
JP6126355A 1994-06-08 1994-06-08 Waste incineration method Expired - Fee Related JP2771114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6126355A JP2771114B2 (en) 1994-06-08 1994-06-08 Waste incineration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6126355A JP2771114B2 (en) 1994-06-08 1994-06-08 Waste incineration method

Publications (2)

Publication Number Publication Date
JPH07332636A JPH07332636A (en) 1995-12-22
JP2771114B2 true JP2771114B2 (en) 1998-07-02

Family

ID=14933138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6126355A Expired - Fee Related JP2771114B2 (en) 1994-06-08 1994-06-08 Waste incineration method

Country Status (1)

Country Link
JP (1) JP2771114B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6940836B1 (en) * 2021-01-12 2021-09-29 株式会社リュウクス Concrete admixtures, concrete admixture manufacturing methods and concrete products

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102812A (en) * 1979-01-29 1980-08-06 Ebara Corp City refuse incinerating system
JPS60194220A (en) * 1984-03-15 1985-10-02 Okawara Mfg Co Ltd Fluidized combustion process of sludge
JPS6475809A (en) * 1987-09-14 1989-03-22 Sanki Eng Co Ltd Fluidized bed type waste incinerating device

Also Published As

Publication number Publication date
JPH07332636A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
EP0020735B1 (en) Flash drying sludge derived fuel process
US3508506A (en) Process and apparatus for reduction of unburned combustible in fly ash
CN1277342A (en) Drying, gasifying and melting process of treating domestic refuse
US3921543A (en) Method of incinerating salt-containing liquid sludge
US6119607A (en) Granular bed process for thermally treating solid waste in a flame
JP2005125234A (en) Dust collecting apparatus and dust collecting method of cement production facility
JP2771114B2 (en) Waste incineration method
JP3830096B2 (en) Carbonization system
JP4032673B2 (en) Sludge treatment method
JP2909421B2 (en) How to incinerate waste
JP2752333B2 (en) Waste incineration method and apparatus
JP3174527B2 (en) How to incinerate waste
JPH04327706A (en) Drying and incinerating method for water-containing solid
EP0545387A1 (en) Method and apparatus for gasifying or combusting solid carbonaceous material
JP2000249317A (en) Method for melting solid refuse
JP2000300953A (en) Method for treatment of combustion exhaust gas of waste
JP2001254915A (en) Method for disposing chlorine-containing waste by combustion
JPS6053805B2 (en) Combustible sludge treatment method
JPH11337040A (en) Sludge incineration method
JPH062813A (en) Heat recovery combustion facility
JPH0212324B2 (en)
JPH0160730B2 (en)
JP3027330B2 (en) Waste incineration / melting method
JPS5918343B2 (en) Sintering method of fly ash granules
KR20020063961A (en) Circulation Fluidized Bed Boiler System Mounted with Pelletizer for Anthracite

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110417

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees