JPH0160730B2 - - Google Patents

Info

Publication number
JPH0160730B2
JPH0160730B2 JP57027159A JP2715982A JPH0160730B2 JP H0160730 B2 JPH0160730 B2 JP H0160730B2 JP 57027159 A JP57027159 A JP 57027159A JP 2715982 A JP2715982 A JP 2715982A JP H0160730 B2 JPH0160730 B2 JP H0160730B2
Authority
JP
Japan
Prior art keywords
fluidized bed
sludge
stage
bed process
stage fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57027159A
Other languages
Japanese (ja)
Other versions
JPS58145815A (en
Inventor
Takaharu Uchida
Shinya Takenaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP57027159A priority Critical patent/JPS58145815A/en
Publication of JPS58145815A publication Critical patent/JPS58145815A/en
Publication of JPH0160730B2 publication Critical patent/JPH0160730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、上水、下水、産業廃水処理等におい
て生ずる汚泥を焼成し、焼結物として処理する方
法に関するものである。 一般に、上水、下水、産業廃水処理等において
生ずる汚泥は、濃縮、脱水工程をへて埋立て等の
処理がなされていることが多いが、大都市におい
ては汚泥の発生量も多く、埋立地を求めることさ
え困難となつてきており、このため流動層などの
焼却法が広く採用されてきている。 しかし従来の流動層式焼却法は、残灰の未燃分
(熱灼減量成分)が少なく装置の設置面積も少な
く、臭気の排出もない等、極めて優れた性質を持
つているが、その焼却灰は比較的低温で処理され
るため、徴粒末で、取扱いが厄介であり、運搬途
中や埋立地において飛散、泥状流出が著しく、さ
らに残渣に含まれている重金属の溶出が生じて環
境を阻害するなど、改善されなければならない点
も多くあつた。 前記残渣の取扱いを容易にし、重金属の溶出を
防止するために、各種の固化技術が提案され、セ
メントやアスフアルト等の固化剤を添加する方法
や、加熱溶融したのち放冷固化する方法などが知
られている。これらのうち、固化剤を添加する方
法は、有害物質の封じ込め、埋立地の土質の改善
等に効果はあるが、固化剤の価格が高く、日々排
出される上記残渣の全量を固化することは困難で
ある。また従来の溶融法は、溶融物の体積が著し
く減少し、粒状若しくは塊状になるために取扱い
が容易で、重金属等の有害物質を封じ込めること
もでき、すぐれた方法であるが、ランニングコス
トが高く、利用価値が少ない。 このように、従来の廃棄物固化技術には解決し
なければならない問題がまだ数多くあり、省資
源、省エネルギー観点から新しい技術を開発する
必要にせまられているのが現状である。一般に汚
泥を焼成する場合、流動炉へ投入する前に、汚泥
を適宜分散、あるいは整形して、取り扱いおよび
再利用に便な形状としても、流動炉内において汚
泥の焼結温度の近くに達するや否や、汚泥は著し
く発泡、膨張して変形したり、クラツクを生ずる
ため、再利用に便な緻密な焼結物を得ることがで
きない。 また、汚泥がこのような著しい発泡、膨張を呈
するときは、汚泥相互は順次融着して、いわゆる
雪ダルマ式に肥大化して塊状となり、流動炉の円
滑な作動を妨げると共にその排出をも困難とし、
さらに排出機構を損傷する等の損害を生ずるに至
る。さらにまた、このように塊状化汚泥を再利用
に便とするためには、事後処理として破砕機構、
篩分機構等を別途に設けてこれら機構による再処
理を要するという不利益を生ずるため、焼成燥作
を断念せざるを得ない。 すなわち、汚泥を流動焼成して焼結物を得るた
めに、流動層炉を汚泥の焼結温度に上昇保持する
と、汚泥は著しく発泡、膨張し、かつ融着塊化し
てしまい、従つて汚泥処理方法に於いて汚泥を焼
結物とすることが有効であることが知られている
にもかかわらず、緻密で再利用に便利な焼結物を
得ることができる温度範囲(以下焼成温度範囲と
称す)が全くないか、あるいはきわめて狭少であ
ることにより、実際上においてはこの方法を採用
できないという不便、不経済があつた。 本発明は、かかる現状に対して、廃棄物の持つ
ているエネルギーを有効に利用することにより、
無機物は焼成して取扱いを容易にし、かつ重金属
等の有害物質の溶出を防止し、あわせて再利用の
道を拓くことを目的とするものである。特に本発
明では従来での汚泥処理の諸欠点を排除し、汚泥
の発泡、融着を防止し、緻密で強固な再利用に便
利な焼結物を容易に得る有効な処理方法を提供し
ようとするものである。 本発明は、上水、下水、産業廃水処理等におい
て生ずる汚泥の焼成方法について 汚泥無機物中にCaO成分が過剰(10%以上)
含まれていると焼成温度は上昇し、かつ焼成温
度近くで、急激に低粘性の融液を生成し、焼成
温度範囲を狭くすること。 これら汚泥中には、10〜80%の灼熱減量成分
(強熱減量成分とも言われている。以下灼熱減
量成分と称す)が含まれており、この灼熱減量
成分が汚泥焼成の際、CO又はCとして汚泥無
機物中に含まれている鉄分と反応し、低融点、
低粘性の融液を過剰に生成するために、焼成温
度範囲が狭くなること(後記第1表参照) の点に着目されてなされたものである。本発
明の特徴は、汚泥を無薬注又は有機凝集剤を用い
て、脱水後、含水率40%以下に造粒乾燥したもの
を灼熱減量成分5%以下、好ましくは、2%以下
になるまで600℃〜900℃の温度で流動燃焼させた
のち、該焼却灰をさらに第二段流動層工程で1000
℃〜1250℃の温度で焼成すると共に、前記第一段
流動層工程で使用する流動媒体が、第二段流動層
工程で焼成された焼成物を用いて処理して、焼結
物とすることにある。 このように本発明によれば、焼成工程において
汚泥の発泡が抑制され、汚泥相互はは融着塊化せ
ず、かつ緻密で強固な再用に便利な焼結物を得る
ことができ、しかも焼成温度範囲も広くなり、焼
成炉の温度制御もきわめて容易になるものであ
り、汚泥の処分或いは再利用するに便利な状態に
処理することが可能となるものである。 この場合比較的低い、均一な温度で有機物を効
率よく燃焼させるための第一段流動層と無機物を
さらに昇温して強固な焼結物とするための第2段
流動層を適切な温度に制御することが肝要であ
り、また、第一段流動層に導入する汚泥は含水率
40%以下(このましくは20%以下)に乾燥されか
つ径が2〜7mm程度に造粒することにより、汚泥
を効率よく流動焼却できると共に、無機物の焼結
も円滑に進行させることができるので乾燥造粒汚
泥として処理するのがよい。 本発明に用いる第一段流動層の流動媒体は第二
段流動層の焼成物を用いることにより、珪砂など
の補給もなく、又焼結物の持つ顕熱も有効に利用
され省エネルギー的で経済的な処理ができる。第
一段流動層に送られる汚泥は造粒されており、か
つ流動媒体は、その汚泥を焼成したのを用いてお
り、この流動層内で汚泥が微粉末化されることは
少ない。しかも第二段流動層に導かれると、急速
に焼きじまり、供給物と焼結完了物が適度に混合
され、特殊な流動媒体は必要がない。焼結が進む
と、比重差により、下部より選択的に排出され、
また第二段流動層炉からの高温排ガスは、第一段
流動層炉の熱源とし、第一段流動層炉の排ガスは
乾燥用に用いることにより、一般の流動層炉と同
程度の油消費量で焼成物を得ることができる。 本発明の実施例を図面を参照して詳述すると、
まず沈殿池A等から得られた95%程度の含水率を
有し、有機物を含む濃縮汚泥に有機凝集剤Cを添
加して脱水機Bで脱水し、70〜80%の含水率の脱
水ケーキDとする。(脱水汚泥性状は第1表に示
す)
The present invention relates to a method for burning sludge produced in the treatment of water, sewage, industrial wastewater, etc., and treating it as a sintered product. Generally, sludge generated in water supply, sewage, industrial wastewater treatment, etc. is often treated by landfilling after going through a thickening and dewatering process. It has become difficult to even determine the amount of carbon dioxide, and for this reason, incineration methods such as fluidized beds are being widely adopted. However, the conventional fluidized bed incineration method has extremely superior properties, such as having little unburned content (components reduced by burning) in the residual ash, requiring a small equipment footprint, and producing no odor. Since the ash is processed at a relatively low temperature, it is difficult to handle because it is a fine powder, and it is prone to scattering and muddy runoff during transportation and at landfill sites.Furthermore, the heavy metals contained in the residue are leached, which poses a threat to the environment. There were many points that needed to be improved, such as the fact that the In order to facilitate the handling of the residue and prevent the elution of heavy metals, various solidification techniques have been proposed, including a method of adding a solidifying agent such as cement or asphalt, and a method of heating and melting the residue and then allowing it to cool and solidify. It is being Among these methods, the method of adding a solidifying agent is effective in containing harmful substances and improving the soil quality of the landfill, but the price of the solidifying agent is high and it is not possible to solidify the entire amount of the above-mentioned residue that is discharged daily. Have difficulty. In addition, the conventional melting method is an excellent method because the volume of the molten material is significantly reduced and becomes granular or lumpy, making it easy to handle and containing harmful substances such as heavy metals, but the running cost is high. , has little utility value. As described above, there are still many problems that need to be solved with conventional waste solidification technology, and the current situation is that there is an urgent need to develop new technologies from the viewpoints of resource and energy conservation. Generally, when sludge is calcined, the sludge is dispersed or shaped as appropriate before being fed into a fluidized fluidized furnace to make it easier to handle and reuse. On the contrary, the sludge significantly foams, expands, deforms, and causes cracks, making it impossible to obtain a dense sintered material that is convenient for reuse. In addition, when the sludge exhibits such remarkable foaming and expansion, the sludge gradually fuses together and becomes swollen and lumpy in a so-called snowball style, which impedes the smooth operation of the fluidized bed furnace and makes it difficult to discharge. year,
Furthermore, damage such as damage to the ejection mechanism may occur. Furthermore, in order to make the agglomerated sludge easier to reuse, a crushing mechanism,
Since this creates the disadvantage of requiring a separate sieving mechanism and reprocessing using these mechanisms, baking and drying has no choice but to be abandoned. That is, when the fluidized bed furnace is raised and maintained at the sintering temperature of the sludge in order to obtain a sintered product by fluidized sludge sintering, the sludge foams and expands significantly, and becomes fused and agglomerated. Although it is known that it is effective to turn sludge into a sintered product, there is a temperature range (hereinafter referred to as sintering temperature range) in which a dense and easily recyclable sintered product can be obtained. In practice, this method was inconvenient and uneconomical because there was no or very limited number of methods (named). The present invention solves the current situation by effectively utilizing the energy contained in waste.
The purpose of inorganic materials is to make them easier to handle by firing them, to prevent the elution of harmful substances such as heavy metals, and to pave the way for reuse. In particular, the present invention aims to provide an effective treatment method that eliminates the various drawbacks of conventional sludge treatment, prevents foaming and fusion of sludge, and easily produces dense, strong sintered material that is convenient for reuse. It is something to do. The present invention relates to a method for burning sludge generated in the treatment of water, sewage, industrial wastewater, etc. Excessive CaO component (10% or more) in sludge inorganic matter
If it is contained, the firing temperature will rise, and near the firing temperature, a low-viscosity melt will be rapidly produced, narrowing the firing temperature range. These sludges contain 10 to 80% of ignition loss components (also referred to as ignition loss components.Hereinafter referred to as ignition loss components), and this ignition loss components are produced by CO or As C, it reacts with the iron contained in the sludge inorganic matter, resulting in a low melting point,
This method was developed based on the fact that the firing temperature range becomes narrow due to excessive production of low-viscosity melt (see Table 1 below). The feature of the present invention is that the sludge is dehydrated using chemical-free injection or an organic flocculant, and then granulated and dried to a moisture content of 40% or less, until the sludge loses its content by ignition to 5% or less, preferably 2% or less. After fluidized combustion at a temperature of 600°C to 900°C, the incinerated ash is further heated to 1000 ml in a second fluidized bed process.
℃~1250℃, and the fluidized medium used in the first stage fluidized bed process is treated using the fired product fired in the second stage fluidized bed process to obtain a sintered product. It is in. As described above, according to the present invention, foaming of sludge is suppressed in the firing process, the sludge does not fuse together to form a lump, and a sintered product that is dense and strong and convenient for reuse can be obtained. The firing temperature range is widened, and the temperature control of the firing furnace becomes extremely easy, making it possible to process the sludge into a state convenient for disposal or reuse. In this case, the first stage fluidized bed is used to efficiently burn organic matter at a relatively low and uniform temperature, and the second stage fluidized bed is heated to an appropriate temperature to further heat up the inorganic matter to form a strong sintered material. It is important to control the moisture content of the sludge introduced into the first stage fluidized bed.
By drying the sludge to 40% or less (preferably 20% or less) and granulating it to a diameter of about 2 to 7 mm, the sludge can be efficiently fluidized and incinerated, and the sintering of inorganic substances can proceed smoothly. Therefore, it is best to treat it as dry granulated sludge. By using the sintered material of the second-stage fluidized bed as the fluidized medium of the first-stage fluidized bed used in the present invention, there is no need to replenish silica sand, etc., and the sensible heat of the sintered material is effectively utilized, resulting in energy saving and economical. can be processed. The sludge sent to the first-stage fluidized bed is granulated, and the fluidized medium used is the sludge that has been calcined, so that the sludge is rarely pulverized in this fluidized bed. Moreover, when introduced into the second stage fluidized bed, the sintering is completed rapidly, and the feed material and the sintered product are appropriately mixed, so that no special fluidizing medium is required. As sintering progresses, due to the difference in specific gravity, it is selectively discharged from the bottom,
In addition, the high-temperature exhaust gas from the second-stage fluidized bed furnace is used as a heat source for the first-stage fluidized bed furnace, and the exhaust gas from the first-stage fluidized bed furnace is used for drying, reducing oil consumption to the same level as a general fluidized bed furnace. It is possible to obtain a baked product depending on the amount. Embodiments of the present invention will be described in detail with reference to the drawings.
First, organic flocculant C is added to the concentrated sludge obtained from settling tank A, etc., which has a moisture content of about 95% and contains organic matter, and is dehydrated in dehydrator B, resulting in a dehydrated cake with a moisture content of 70 to 80%. Let it be D. (Dehydrated sludge properties are shown in Table 1)

【表】 次にこの脱水ケーキDをベルトコンベア1で造
粒乾燥機2に導き、後述する第二段流動層炉から
の燃焼排ガス廃熱ボイラ12からの水蒸気を用い
て造流乾燥する。そして含水率10%以下で、粒径
2〜7mm程度に造粒乾燥した汚泥は一旦貯留槽3
に貯留する。 前記、造粒乾燥機2から排出される含塵ダスト
D′はサイクロン4により集塵され、ダストD′は
乾燥機に付いている造粒部に返送され、除塵され
た排ガスGはスクラバー5及び脱臭装置6により
脱集後大気に放出されるか又は熱交換器14へ送
られ、洗浄水G′は沈殿池A等に返送され再処理
される。 この様にして造粒乾燥された乾燥汚泥Eはベル
トコンベア′、スクリユーフイダー7で一定量
づつ第一段流動層炉9に供給される。この場合、
供給汚泥量は貯留槽3の下部に設置してある計量
機8によつて所定量に制御されて搬送される。 この乾燥汚泥Eは第一段流動層炉9内に均一に
分散供給され、瞬間的に着火温度に達し、熱分解
と一部酸化反応を起こす。そして反応温度は供給
量と送風量によつて制御され、滞留時間10分程度
で灼熱減量成分5%以下となつた反応生成物
(灰)となり、この反応生成物は第二段流動層炉
12に供給される、該第二段流動層炉12では燃
焼する物はほとんど含まれていないので、炉内容
物を流動化させるだけの所定の熱風を送風すれば
良いし、第二段流動層炉は流動媒体を使用しない
で処理すれば装置も小さくすることができ、送風
量も少なくてすむ。第二段流動層炉排ガスは、高
温でO2濃度も高いので、一部は汚泥の乾燥用に、
他部は第一段流動層炉12の燃焼用空気の酸素及
び熱源として使用することができる。(この場合
熱回収しない時と比較して燃費は1/2程度とする
ことができる) 第一段流動層温度を400〜800℃とし、又滞留時
間を変化させることにより灼熱減量成分を揮発さ
せて灼熱減量成分がそれぞれ60.5% 25% 10%
5% 4% 3% 2% 1%の汚泥とし、こ
れら灼熱減量成分含有量の異なる各汚泥を第二段
流動層炉で流動焼成したところ、第2表のごとき
結果を得た。
[Table] Next, this dehydrated cake D is led to a granulation dryer 2 by a belt conveyor 1, and is granulated and dried using steam from a combustion exhaust gas waste heat boiler 12 from a second stage fluidized bed furnace, which will be described later. The sludge, which has been granulated and dried to a particle size of approximately 2 to 7 mm with a moisture content of 10% or less, is temporarily stored in a storage tank.
to be stored. The dust-containing dust discharged from the granulation dryer 2
D' is collected by a cyclone 4, the dust D' is returned to the granulation unit attached to the dryer, and the removed exhaust gas G is collected by a scrubber 5 and a deodorizing device 6 and then released into the atmosphere. The washing water G' is sent to the heat exchanger 14, and is returned to the sedimentation tank A or the like for reprocessing. The dried sludge E granulated and dried in this manner is supplied in fixed amounts to the first stage fluidized bed furnace 9 by a belt conveyor' and a screw feeder 7. in this case,
The amount of sludge to be supplied is controlled to a predetermined amount by a measuring device 8 installed at the lower part of the storage tank 3, and the sludge is transported. This dried sludge E is uniformly distributed and supplied into the first stage fluidized bed furnace 9, instantaneously reaches the ignition temperature, and undergoes thermal decomposition and a partial oxidation reaction. The reaction temperature is controlled by the supply amount and air blowing amount, and a reaction product (ash) with a ignition loss component of 5% or less is produced in about 10 minutes of residence time, and this reaction product is transferred to the second stage fluidized bed furnace 12 Since the second stage fluidized bed furnace 12, which is supplied to If processing is performed without using a fluid medium, the equipment can be made smaller and the amount of air blown can be reduced. The second stage fluidized bed furnace exhaust gas has a high temperature and high O 2 concentration, so some of it is used for drying sludge.
The other part can be used as oxygen for the combustion air of the first stage fluidized bed furnace 12 and as a heat source. (In this case, the fuel consumption can be reduced to about 1/2 compared to when heat is not recovered.) By setting the temperature of the first stage fluidized bed to 400 to 800°C and varying the residence time, the ignition loss components are volatilized. Burning weight loss ingredients are 60.5% 25% 10% respectively
5% 4% 3% 2% 1% sludge and each of these sludges having different contents of ignition loss components was fluidized in a second stage fluidized bed furnace, and the results shown in Table 2 were obtained.

【表】 これらのことから、汚泥を焼結温度に上昇保持
する前に、燃焼して灼熱減量成分を揮散させれば
焼成温度範囲が拡大されることが分る。すなわ
ち、たとえ燃焼しても灼熱減量成分が6%以上あ
ると焼成は不可能であり、5〜3%で30℃巾、2
%以下で100℃巾の焼成温度範囲が存在し、その
範囲内で処理することできわめて易焼結性になつ
た。 前記第二段流動層炉12からの焼成灰は排出ロ
ツクダンパ13より系外に排出されるが燃焼排ガ
スFは誘引フアン19で煙突20から大気に放出
してもよいが、その一部をバイパスして前記第一
段流動層炉9へ循環させて熱源又は燃焼空気の一
部として用いてある。 図中15は熱風炉、16は重油などの燃料ポン
プ、17,18は燃焼用の給気フアン、21はバ
ーナーである。Hは給水を示す。 次に本発明の実施例を示す。 実施例 脱水汚泥を含水率10%以下、粒径3〜5mmに造
粒乾燥し、10KgDS/hの供給速度で、内径200mm
φ高さ3mの第一段流動層炉に、流動燃焼空気
1.5Nm3/min反応温度700℃で運転した。流動媒
体としては、汚泥焼成物(径径2〜4mm)を静止
層高さ400mmになるように加えて使用した。流動
媒体(焼成物)は500〜900℃で、安定した燃焼状
態を得、硅砂の代りに使用でき、静止層の圧力損
失も約2/3以下にすることができた。 第一段流動炉から排出される(灼熱減量2%以
下)流状焼却物は、バケツトコンベアにより第二
段流動層炉に送られる。第二段流動層炉は第一段
の約1/2〜1/4の断面積で良く、内径100φ、高さ
3mの流動層を使用し、流動媒体は用いずに、粒
状焼却物自身で流動層を形成した。流動層高は約
80〜100cmに保ち流動空気量0.5Nm3/min、流動
層温度1050℃〜1100℃で安定した操業が可能であ
つた。焼成物は粒径2〜4mmの固い焼結物が得ら
れ、また焼結物からの重金属の溶出は十分におさ
えられていることが判明した。 また比較のため、1mm以下の粉末を流動燃焼さ
せた所、約1/3〜1/2が排ガスと共に持ち去られ
た。又、この焼却灰を流動焼成炉で1050℃で運転
したところ、炉圧変動が激しく、安定した流動状
態が得られなかつた。 第一段を1050℃に制御して、造粒乾燥汚泥を供
給した所、塊状物が生成し、運転が不可能となつ
た。 焼成用流動層炉の排ガス(900〜1000℃)を燃
焼用に用い、燃焼用流動層炉の排ガス(600〜800
℃)を汚泥乾燥に用いることにより、、焼却のみ
の場内の油消費と同程度で焼結物が得られた。 本発明は、汚泥を含水率40%以下まで乾燥造粒
した乾燥汚泥を第一段流動層工程で600〜900℃で
熱灼減量が5%以下になるように焼却したのち、
該焼却灰を第二段流動層工程で1000〜1250℃で焼
成すると共に、前記第一段流動層工程で使用する
流動媒体が、第二段流動層工程で焼成された焼成
物を用いて処理されることにより、珪砂などの補
給もなく、又焼成物の持つ顕熱も有効に利用され
省エネルギー的で経済的な処理ができるし、第一
段流動層に送られる汚泥は造粒されており、かつ
流動媒体は、その汚泥を焼成したものを用いてお
り、この流動層内で汚泥が微紛末化されることは
少なく、しかも第二段流動層に導かれると、急速
に焼きじまり、供給物と焼結完了物が適度に混合
され、特殊な流動媒体は必要がないと共に、焼結
が進むと、比重差により下部より選択的に排出さ
れ、また第二段流動層炉からの高温排ガスは、第
一段流動層炉の熱源とし、第一段流動層炉の排ガ
スは乾燥用に用いることにより、一般の流動層炉
と同程度の油消費量で焼成物を得るほか焼成工程
において汚泥の発泡が抑制され、汚泥相互は融着
塊化せず、かつ緻密で強固な再利用に便利な焼結
物を得ることができ、しかも焼成温度範囲も広く
なり、焼成炉の温度制御もきわめて容易になるも
のであり、汚泥の処分或いは再利用するに便利な
状態に処理することが可能となり、二次公害を生
じない処理物として処分できライニングコストも
節減でき処理操作も容易であるなど従来法の問題
点をことごとく解消することができるものであ
る。
[Table] From these results, it can be seen that the sintering temperature range can be expanded if the sludge is combusted to volatilize the ignition loss components before raising and holding the sludge to the sintering temperature. In other words, even if it burns, it will be impossible to sinter if the ignition loss component is 6% or more;
% or less, there is a sintering temperature range of 100°C, and by processing within that range, it becomes extremely easy to sinter. The calcined ash from the second stage fluidized bed furnace 12 is discharged out of the system from the discharge lock damper 13, and the combustion exhaust gas F may be discharged into the atmosphere from the chimney 20 by the induction fan 19, but a part of it may be bypassed. The air is circulated to the first stage fluidized bed furnace 9 and used as a heat source or part of the combustion air. In the figure, 15 is a hot air stove, 16 is a fuel pump for fuel such as heavy oil, 17 and 18 are air supply fans for combustion, and 21 is a burner. H indicates water supply. Next, examples of the present invention will be shown. Example Dehydrated sludge is granulated and dried to a particle size of 3 to 5 mm with a moisture content of 10% or less, and an inner diameter of 200 mm at a feed rate of 10 KgDS/h.
Fluidized combustion air is supplied to the first stage fluidized bed furnace with a height of φ3m.
It was operated at a reaction temperature of 700°C at 1.5Nm 3 /min. As the fluidizing medium, calcined sludge (diameter 2 to 4 mm) was added so that the height of the static bed was 400 mm. The fluidized medium (fired product) achieved stable combustion conditions at 500 to 900°C, could be used in place of silica sand, and reduced the pressure loss in the stationary bed to about 2/3 or less. The fluidized incineration material discharged from the first-stage fluidized bed furnace (with a ignition loss of 2% or less) is sent to the second-stage fluidized bed furnace by a bucket conveyor. The second stage fluidized bed furnace has a cross-sectional area of about 1/2 to 1/4 of the first stage, uses a fluidized bed with an inner diameter of 100φ and a height of 3 m, and uses the granular incineration material itself without using a fluidized medium. A fluidized bed was formed. Fluidized bed height is approx.
Stable operation was possible with a fluidized air flow rate of 0.5 Nm 3 /min and a fluidized bed temperature of 1050°C to 1100°C, maintained at 80 to 100 cm. It was found that a hard sintered product with a particle size of 2 to 4 mm was obtained, and the elution of heavy metals from the sintered product was sufficiently suppressed. For comparison, when powder of 1 mm or less was fluidized and combusted, about 1/3 to 1/2 was carried away with the exhaust gas. Furthermore, when this incinerated ash was operated in a fluidized fluidized furnace at 1050°C, the furnace pressure fluctuated drastically and a stable fluidized state could not be obtained. When the first stage was controlled at 1050°C and granulated dry sludge was supplied, lumps were formed and operation became impossible. The exhaust gas (900 to 1000℃) of the fluidized bed furnace for firing is used for combustion, and the exhaust gas (600 to 800℃) of the fluidized bed furnace for combustion is
℃) for sludge drying, sintered material was obtained at the same level of oil consumption as in the case of incineration alone. In the present invention, dried sludge is dried and granulated to a water content of 40% or less, which is incinerated at 600 to 900°C in the first stage fluidized bed process so that the loss on burning is 5% or less.
The incinerated ash is calcined at 1000 to 1250°C in a second-stage fluidized bed process, and the fluidized medium used in the first-stage fluidized bed process is treated using the fired product calcined in the second-stage fluidized bed process. As a result, there is no need to replenish silica sand, etc., and the sensible heat of the sintered product is effectively used, making energy-saving and economical processing possible.The sludge sent to the first stage fluidized bed is granulated. , and the fluidized medium used is the sludge that has been calcined, and the sludge is rarely pulverized in this fluidized bed, and moreover, when it is led to the second stage fluidized bed, it quickly stops burning. , the feed material and the sintered product are appropriately mixed, no special fluidized medium is required, and as sintering progresses, it is selectively discharged from the bottom due to the difference in specific gravity, and it is also discharged from the second stage fluidized bed furnace. The high-temperature exhaust gas is used as the heat source for the first-stage fluidized bed furnace, and the exhaust gas from the first-stage fluidized bed furnace is used for drying, thereby producing a fired product with the same amount of oil consumption as a general fluidized bed furnace and improving the firing process. In this process, foaming of sludge is suppressed, the sludge does not fuse together and become lumps, and a dense, strong sintered product that is convenient for reuse can be obtained. Moreover, the firing temperature range is widened, and the temperature control of the firing furnace is easy. This makes it extremely easy to process sludge, making it possible to process it into a state that is convenient for disposal or reuse, allowing it to be disposed of as a treated product that does not cause secondary pollution, reducing lining costs, and making treatment operations easy. This method can completely eliminate all the problems of conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明法の実施態様のフローシートであ
る。 A……沈澱池、B……脱水機、1……ベルトコ
ンベア、2……造粒乾燥機、3……貯留槽、4…
…サイクロン、5……スクラツバー、6……脱臭
装置、7……スクリユーフイダー、8……計量
機、9……第一段流動層炉、10……灰排出ロツ
クダンパー、11……ベルトコンベア、12……
第二段流動層炉、13……焼成灰排出ロツクダン
パー、14……廃ガス熱交換器、15……熱風
炉、16……重油ポンプ、17,18……燃焼用
フアン、19……誘引フアン、20……煙突、2
1……バーナー。
The drawing is a flow sheet of an embodiment of the method of the invention. A... Sedimentation tank, B... Dehydrator, 1... Belt conveyor, 2... Granulation dryer, 3... Storage tank, 4...
... Cyclone, 5 ... Scrubber, 6 ... Deodorizing device, 7 ... Screw feeder, 8 ... Weighing machine, 9 ... First stage fluidized bed furnace, 10 ... Ash discharge lock damper, 11 ... Belt Conveyor, 12...
Second stage fluidized bed furnace, 13...Calcined ash discharge lock damper, 14...Waste gas heat exchanger, 15...Hot blast furnace, 16...Heavy oil pump, 17, 18...Combustion fan, 19...Induction Juan, 20...Chimney, 2
1...Burner.

Claims (1)

【特許請求の範囲】 1 汚泥を含水率40%以下まで乾燥造粒した乾燥
汚泥を第一段流動層工程で600〜900℃で熱灼減量
が5%以下になるように焼却したのち、該焼却灰
を第二段流動層工程で1000〜1250℃で焼成すると
共に、前記第一段流動層工程で使用する流動媒体
が、第二段流動層工程で焼成された焼成物を用い
て処理されることを特徴とする汚泥の流動焼成
法。 2 前記第一流動層工程が、前記第二段流動層工
程の排ガスを熱源として処理されるものであつ
て、該第一段流動層工程の排ガスを汚泥の乾燥用
熱源として用いて処理するものである特許請求の
範囲第1項記載の汚泥焼成法。 3 前記第二段流動層工程が、流動媒体を使用し
ないで処理されるものである特許請求の範囲第1
項又は第2項記載の汚泥焼成法。
[Scope of Claims] 1. Dried sludge is dried and granulated to a water content of 40% or less, which is incinerated at 600 to 900°C in the first stage fluidized bed process so that the loss on ignition is 5% or less. The incinerated ash is calcined at 1000 to 1250°C in the second stage fluidized bed process, and the fluidized medium used in the first stage fluidized bed process is treated using the fired product calcined in the second stage fluidized bed process. A fluidized sludge firing method characterized by: 2. The first fluidized bed process is performed using the exhaust gas from the second fluidized bed process as a heat source, and the exhaust gas from the first fluidized bed process is used as a heat source for drying sludge. A sludge burning method according to claim 1. 3. Claim 1, wherein the second stage fluidized bed process is performed without using a fluidized medium.
The sludge burning method described in Section 2 or Section 2.
JP57027159A 1982-02-22 1982-02-22 Method of fluidized incineration of sludge Granted JPS58145815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57027159A JPS58145815A (en) 1982-02-22 1982-02-22 Method of fluidized incineration of sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57027159A JPS58145815A (en) 1982-02-22 1982-02-22 Method of fluidized incineration of sludge

Publications (2)

Publication Number Publication Date
JPS58145815A JPS58145815A (en) 1983-08-31
JPH0160730B2 true JPH0160730B2 (en) 1989-12-25

Family

ID=12213273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57027159A Granted JPS58145815A (en) 1982-02-22 1982-02-22 Method of fluidized incineration of sludge

Country Status (1)

Country Link
JP (1) JPS58145815A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047054A (en) * 2000-07-28 2002-02-12 Kajima Corp Method of producing ceramic products utilizing sludge waste from water supply

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140000A (en) * 1983-01-29 1984-08-11 Mitsui Eng & Shipbuild Co Ltd Treatment of sludge
JP3905683B2 (en) * 2000-04-13 2007-04-18 カワサキプラントシステムズ株式会社 Method and apparatus for manufacturing ground improvement material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113352A (en) * 1975-02-27 1976-10-06 Ebara Infilco Co Ltd Sludge calcining method
JPS557531A (en) * 1978-06-30 1980-01-19 Okawara Mfg Treatment of combustible sludge
JPS55150415A (en) * 1979-05-10 1980-11-22 Ishikawajima Harima Heavy Ind Co Ltd Method of effectivley utilizing sludge melting slag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113352A (en) * 1975-02-27 1976-10-06 Ebara Infilco Co Ltd Sludge calcining method
JPS557531A (en) * 1978-06-30 1980-01-19 Okawara Mfg Treatment of combustible sludge
JPS55150415A (en) * 1979-05-10 1980-11-22 Ishikawajima Harima Heavy Ind Co Ltd Method of effectivley utilizing sludge melting slag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047054A (en) * 2000-07-28 2002-02-12 Kajima Corp Method of producing ceramic products utilizing sludge waste from water supply

Also Published As

Publication number Publication date
JPS58145815A (en) 1983-08-31

Similar Documents

Publication Publication Date Title
US3958920A (en) System for controlling the operation of a multiple hearth furnace
KR100212093B1 (en) Lightweight aggregate from flyash and sewage sludge
US4417529A (en) Method for melting and treating waste
EP0467929B1 (en) Method and apparatus for waste treatment
JPS63310691A (en) Method of treating contaminated mineral substance
US6119607A (en) Granular bed process for thermally treating solid waste in a flame
JPH0160730B2 (en)
JP5156253B2 (en) Energy saving method by setting up industrial waste incineration facility in Ascon factory
JP2004010673A (en) Carbonization system
JP4432047B2 (en) Waste treatment furnace and waste treatment equipment that treats dust and sludge together
JP3774803B2 (en) Sludge incineration method
JPS6053805B2 (en) Combustible sludge treatment method
JP2005270874A (en) Treatment method of polluted soil and apparatus thereof
JPH11337040A (en) Sludge incineration method
JPS6364689B2 (en)
JP2001294859A (en) Method for producing ground improving material and apparatus therefor
JP3174527B2 (en) How to incinerate waste
JPH0212324B2 (en)
JP2000034179A (en) Production of water-holding granular sintered compact
JP2005349366A (en) Treating method and treatment apparatus of sulfate pitch
JP2005221195A (en) Method for treating organic waste and device therefor
JP2771114B2 (en) Waste incineration method
JPH01184314A (en) Refuse melting furnace
JP2999686B2 (en) Waste melting method using vertical melting furnace
JPH10296206A (en) Method for treating molten slag of waste