JP4032673B2 - Sludge treatment method - Google Patents

Sludge treatment method Download PDF

Info

Publication number
JP4032673B2
JP4032673B2 JP2001204179A JP2001204179A JP4032673B2 JP 4032673 B2 JP4032673 B2 JP 4032673B2 JP 2001204179 A JP2001204179 A JP 2001204179A JP 2001204179 A JP2001204179 A JP 2001204179A JP 4032673 B2 JP4032673 B2 JP 4032673B2
Authority
JP
Japan
Prior art keywords
sludge
raw material
cement
kiln
preheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001204179A
Other languages
Japanese (ja)
Other versions
JP2003010896A (en
Inventor
英樹 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001204179A priority Critical patent/JP4032673B2/en
Publication of JP2003010896A publication Critical patent/JP2003010896A/en
Application granted granted Critical
Publication of JP4032673B2 publication Critical patent/JP4032673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Public Health (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セメント焼成工程に汚泥を投入して焼却処分する汚泥の処理方法に関する。
【0002】
【従来の技術】
下水処理場から排出される汚泥は、その大部分が、陸上埋め立て及び海上投棄により処分されている。しかし、下水処理場からの下水汚泥排出量は、特に都市圏において増加の一途をたどっており、陸上埋め立てや海上投棄のための処分場の不足、更には環境汚染防止上の制約を受けて、汚泥処理は焼却に移行しているのが現状である。この汚泥の焼却方法として、最近ではセメント製造プラントの焼成工程に投入する方法が注目されている。この場合、汚泥中に含まれるアンモニア成分は、セメント焼成工程の窯尻部等の高温部分からロータリーキルンの排ガス中に投入されたときに、その排ガス中に含まれる窒素酸化物を還元分解する作用があり、その効果も注目されている。
【0003】
【発明が解決しようとする課題】
しかしながら、処理する汚泥量が増加するに従い、窯尻部に投入された下水汚泥中のアンモニア成分が、微量ではあるが完全に分解されず、プレヒータを下から上に向かって流れるキルン排ガスに乗ってプレヒータから外に出ていく現象が見られた。このガスは、原料ミルやドライヤを経て電気集塵機後の煙突から外気に排出されることになり、排出濃度も振れることがわかった。この対策として、汚泥の霧化や分散投入が試みられた。しかしそれらの方法は、多少の効果はあったものの、アンモニア分解を完全に行わせるまでには至らなかった。このため、大量の汚泥を処理するためには、ハウジング内やプレヒータ内で汚泥を処理するよりも、より高温のキルン排気に直接接触させたり、あるいは、キルン内で汚泥焼却処理を確実に行わせることが重要であることが分かった。
【0004】
本発明は、上記事情を考慮し、セメント焼成工程に投入した汚泥中のアンモニア成分を完全分解させることができ、プレヒータから外部にアンモニア成分が漏れ出るおそれのない汚泥の処理方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1の発明は、汚泥をセメント焼成工程に投入してセメントクリンカを製造する汚泥の処理方法において、前記汚泥の投入ポイントを、セメント焼成工程のプレヒータの最下段サイクロンの原料シュートの途中に設定し、上記汚泥が上記原料シュートを流れるセメント原料の上に乗るようにしたことを特徴としている。
【0006】
この発明では、プレヒータの最下段サイクロンの原料シュートの途中において、汚泥を、上記原料シュートを流れるセメント原料の上に乗るように直接投入するので、汚泥を高温下で素早く燃焼させることができて、アンモニア成分を分解しやすくすることができる。この場合、汚泥の投入場所を下に下げる程、滞留時間を増加させることができて、アンモニア成分の分解を促進させることができる。ここで、汚泥の投入は、空気等の分散媒体を使って分散させた状態で行ってもよいし、分散させずに塊状のまま行ってもよい。後者の場合、ハウジング底面を流れる原料上に汚泥塊を落下させることができ、原料上に乗ったままの汚泥塊を、キルンの窯尻部から回転している1100℃以上のキルン内部に直接到達させる割合を増加させることも可能である。このようにしてアンモニア成分の燃焼を促進させ、プレヒータから外部へのアンモニア成分の漏出を防止することができる。
【0010】
また、最下段サイクロンの原料シュートの途中に汚泥の投入ポイントを設定しているために、粒状や塊状の汚泥を投入した場合でも、流れる原料の上に汚泥をスムーズに乗せることができ、キルンに入らせることが可能となる。
【0013】
請求項2に記載の発明は、請求項1に記載の発明において、前記汚泥の投入ポイントを、複数箇所に分散して設けたことを特徴としている。
【0014】
この発明のように複数の投入ポイントで汚泥を分散して投入することにより、各投入箇所の燃焼条件を高めることができ、アンモニア成分の完全分解を促進させることができる。
【0015】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
図1は本発明の処理方法を実施するセメント製造設備の概要を示す図である。図において、このセメント製造設備は、石灰石、粘土、珪石、鉄原料よりなるセメント原料を貯蔵する原料貯蔵庫1、原料を粉砕混合する原料ミル2、電気集塵機3、粘土ドライヤ4、原料混合貯蔵サイロ5、プレヒータ6、ロータリーキルン7、クリンカクーラー8、クリンカサイロ9、仕上ミル10、セメントサイロ11等を備えて構成されている。
【0016】
セメント原料(石灰石、粘土、珪石、鉄原料)は、必要に応じてドライヤ4を経て、原料ミル2に導入される。これらの原料は、原料ミル2にて粉砕されて原料混合貯蔵サイロ5に導入され、その後、プレヒータ6にて予熱された後、セメント焼成用のロータリーキルン7に投入されて焼成されてセメントクリンカとなり、クリンカクーラー8で冷却された後、クリンカサイロ9に導入される。
【0017】
プレヒータ6は、複数のサイクロンを多段に接続した多段サイクロン式のものであり、粉砕されたセメント原料を、ロータリーキルン7の排気を利用して、所定温度(800〜900℃)まで予熱する。ロータリーキルン7は、若干下流側へ下方傾斜した横向き円筒状のキルンシェルを有し、このキルンシェルをその中心軸線回りに回転させながら、重油や微粉石炭を燃料にしてバーナーで加熱することで、プレヒータ6からのセメント原料を温度1450℃以上に昇温して焼成反応させて、セメントクリンカを生成する。
【0018】
図2に示すように、プレヒータ6の下から2番目のサイクロン34の捕集原料は、その原料シュート31を経てライザーダクト32に入る。ここで、ライザーダクト32の下から上に向かって流れるキルン排気と合流して上昇し、最下段サイクロン33に入り、原料粉が分離捕集されてその原料シュート30を経てハウジング20の傾斜した面を流れ、キルン7の窯尻部7aの内部に入る。ロータリーキルン7で焼成されたクリンカは、ついでロータリーキルン7の窯前部に連結されたクリンカクーラー8により冷却されて、クリンカサイロ9に蓄えられた後、仕上工程の仕上ミル10へと送られる。
【0019】
仕上ミル10は、焼成工程で生産されたセメントクリンカに石膏を混ぜながらクリンカを微粉砕してセメントを排出する。そして、仕上ミル10から排出されたセメントは、セメントサイロ11に導入された後、供給先へと送られる。
【0020】
次に汚泥を処理する場合の方法を説明する。
この方法の特徴は、図1及びその要部を拡大した図2に示すように、汚泥Kをセメント焼成工程に投入してセメントクリンカを製造するに当たり、汚泥の投入ポイントA〜Eを、セメント焼成工程のプレヒータ6の下から2番目のサイクロン34の原料シュート31がライザーダクト32と接合する位置を含んでそれより下からロータリーキルン7の窯尻部7aの内部に至るまでの範囲に設定したことにある。
【0021】
前記の複数の候補の投入ポイントA〜Eのうち、投入ポイントAは、セメント焼成工程のプレヒータ6の下から2番目のサイクロン34の原料シュート31がライザーダクト32と接合する位置を含んでそれより下からロータリーキルン7の窯尻部7aの内部に至る範囲に設定されるライザーダクト32のいずれかの面あるいはハウジング20の垂直面のいずれかの面である。また、投入ポイントBは、ハウジング20の曲がり部21の傾斜した下面側に設定している。投入ポイントCは、最下段サイクロンからの原料シュート30の途中に設定している。投入ポイントDは、ハウジング20の曲がり部21の上面側に設定している。投入ポイントEは、ロータリーキルン7の窯尻部7aの内部に設定している。
【0022】
投入ポイントAについては、ライザーダクト32の壁あるいはハウジング20の垂直壁に投入口を開けて直接汚泥を投入することができる。また、投入ポイントBについては、原料が流れるハウジング20の下面側であることから、必要に応じて図3(a)に示すように導管25を介して汚泥K(矢印で示す)を導入してもよい。投入ポイントCについては、最下段サイクロンの原料シュートに直接投入口を付けたものである。また、投入ポイントEについては、直接届かないから、図3(b)に示すように、ハウジング20に導管25を設けて、導管25を通して汚泥K(矢印で示す)を導入するようにする。
【0023】
また、投入ポイントDについては、図4(a)に示すように、ハウジング20の曲がり部21の上面側の任意の点D1〜D3に設定することができる。この場合も、直接ハウジング20の壁に開口を設けて汚泥を導入してもよいし、導管をハウジング20に取り付けて、導管の先から投入してもよい。また、図4(b)に示すように、両サイドに近づけた点D4、D5に投入ポイントを設定することも可能である。
【0024】
なお、汚泥を投入するに際しては、1000℃以上の高温領域においては、分散媒体によって分散させることによってアンモニア成分を完全分解させることが可能であるが、基本的には塊状として投入し、キルン内の1100℃以上の高温領域に導いて徐々にアンモニア成分を分解させる方が好ましい。なお、投入ポイントを低温領域側に設定する程、即ち、1000℃以下で800℃以上となる範囲で、下から2段目のサイクロンの原料がライザーダクト32に入る点に近づける程、投入時において汚泥を塊状としてハウジング20まで落下させ、その底面上を流れる原料に乗せた状態で、キルン7の窯尻部7aの内部に導くことが好ましい。
【0025】
上記のような投入ポイントA〜Eから汚泥を投入することにより、投入した汚泥をいきなり高温条件で分解することができる。従って、プレヒータ6から外部へのアンモニア成分の漏出を防止することができる。特に、投入ポイントDで汚泥を投入した場合は、投入した汚泥をプレヒータ6内とは異なった、より高温のガスに接触させることが可能となり、アンモニアの分解を促進させることができる。また、投入ポイントB、Cで汚泥を投入した場合は、粒状や塊状の状態で汚泥を投入した場合であっても、流れる原料の上に汚泥をスムーズに乗せることができるので、原料と共に汚泥を高温のロータリーキルン7内に素早く入らせることができ、アンモニアの分解を促進させることができる。また、導管25を介して投入ポイントEで汚泥を投入した場合は、投入した汚泥を直接、内部温度1100℃以上の回転する環境に導入することになるため、キルン排気による逆飛散の可能性なく、アンモニア成分を非常に高い高温条件で熱分解させることができる。
【0026】
【発明の効果】
以上説明したように、請求項1または2に記載の発明によれば、投入した汚泥をいきなり高温条件で分解することができるので、プレヒータから外部へのアンモニア成分の漏れを確実に防止することができる。
【0027】
特に、粒状や塊状の汚泥を投入した場合であっても、流れる原料の上に汚泥をスムーズに乗せることができて、投入した汚泥を、即座にロータリーキルン内の高温領域に到達させることができ、速やかに完全分解させることができる。また、請求項2の発明のように複数の投入ポイントで汚泥を分散して投入することにより、各投入箇所の燃焼条件をそれぞれ高めることができ、アンモニア成分の完全分解を一層促進させることができる。
【図面の簡単な説明】
【図1】本発明の処理方法を実施するセメント製造設備の概略構成図である。
【図2】本発明における汚泥の投入ポイントを示す図である。
【図3】(a)は図2の投入ポイントBに対し導管を介して汚泥を供給する場合の例を示す図、(b)は図2の投入ポイントEに対し導管を介して汚泥を供給する場合の例を示す図である。
【図4】(a)は図2の投入ポイントDの位置をハウジングの断面上において示す図、(b)は投入ポイントDの変形例を示す図である。
【符号の説明】
A〜E 汚泥の投入ポイント
K 汚泥
6 プレヒータ
7 ロータリーキルン
7a 窯尻部
20 ハウジング
21 曲がり部
30 最下段のサイクロンの原料シュート
31 下から2番目のサイクロンの原料シュート
32 ライザーダクト
33 最下段のサイクロン
34 下から2番目のサイクロン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sludge treatment method in which sludge is introduced into a cement firing process and incinerated.
[0002]
[Prior art]
Most of the sludge discharged from sewage treatment plants is disposed of by land reclamation and ocean dumping. However, sewage sludge emissions from sewage treatment plants are increasing steadily, especially in urban areas, and due to the shortage of landfills for land reclamation and ocean dumping, as well as restrictions on preventing environmental pollution, At present, sludge treatment has shifted to incineration. As a method for incinerating this sludge, recently, a method of putting it into a firing process of a cement manufacturing plant has attracted attention. In this case, the ammonia component contained in the sludge has a function of reducing and decomposing nitrogen oxides contained in the exhaust gas when it is introduced into the exhaust gas of the rotary kiln from a high temperature part such as a kiln bottom in the cement firing process. Yes, the effect is also attracting attention.
[0003]
[Problems to be solved by the invention]
However, as the amount of sludge to be treated increases, the ammonia component in the sewage sludge input to the kiln bottom is not completely decomposed, but rides on the kiln exhaust gas flowing from the bottom to the top of the preheater. There was a phenomenon of going out of the preheater. This gas was discharged from the chimney after the electrostatic precipitator through the raw material mill and dryer to the outside air, and it was found that the exhaust concentration also fluctuated. As countermeasures, atomization of sludge and dispersed input were attempted. However, although these methods had some effects, they did not achieve complete ammonia decomposition. For this reason, in order to treat a large amount of sludge, it is necessary to directly contact the higher-temperature kiln exhaust than to treat the sludge in the housing or the preheater, or to ensure that the sludge incineration process is performed in the kiln. It turns out that is important.
[0004]
In view of the above circumstances, the present invention provides a method for treating sludge that can completely decompose the ammonia component in the sludge that has been input to the cement firing step and that does not cause the ammonia component to leak out of the preheater. Objective.
[0005]
[Means for Solving the Problems]
According to the first aspect of the present invention, in the sludge treatment method for producing cement clinker by introducing sludge into the cement firing step, the sludge introduction point is set in the middle of the raw material chute of the lowermost cyclone of the preheater in the cement firing step. The sludge is placed on the cement raw material flowing through the raw material chute .
[0006]
In this invention, in the middle of the raw material chute of the lowermost cyclone of the preheater, since the sludge is directly put on the cement raw material flowing through the raw material chute , the sludge can be burned quickly at high temperature, The ammonia component can be easily decomposed. In this case, the residence time can be increased and the decomposition of the ammonia component can be promoted as the sludge charging place is lowered. Here, the introduction of the sludge may be performed in a state of being dispersed using a dispersion medium such as air, or may be performed in a lump without being dispersed. In the latter case, the sludge lump can be dropped onto the raw material flowing on the bottom of the housing, and the sludge lump remaining on the raw material reaches directly inside the kiln at 1100 ° C or higher rotating from the kiln bottom of the kiln. It is also possible to increase the ratio to be generated. Thus, combustion of the ammonia component can be promoted, and leakage of the ammonia component from the preheater to the outside can be prevented.
[0010]
Further, in order to have set-up point of the sludge in the middle of the raw material chute lowermost cyclone, even when charged with sludge granular or massive, sludge can be a place smoothly on top of the raw material flowing in the kiln It becomes possible to enter.
[0013]
The invention according to claim 2 is characterized in that, in the invention according to claim 1, the input points of the sludge are provided dispersedly at a plurality of locations.
[0014]
By dispersing and introducing sludge at a plurality of input points as in the present invention, the combustion conditions at each input location can be increased, and complete decomposition of the ammonia component can be promoted.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an outline of a cement production facility for carrying out the treatment method of the present invention. In the figure, this cement production facility includes a raw material storage 1 for storing cement raw materials made of limestone, clay, silica, and iron raw materials, a raw material mill 2 for pulverizing and mixing raw materials, an electrostatic precipitator 3, a clay dryer 4, and a raw material mixing storage silo 5 , Preheater 6, rotary kiln 7, clinker cooler 8, clinker silo 9, finishing mill 10, cement silo 11, and the like.
[0016]
Cement raw materials (limestone, clay, silica stone, and iron raw materials) are introduced into the raw material mill 2 through a dryer 4 as necessary. These raw materials are pulverized by the raw material mill 2 and introduced into the raw material mixing and storage silo 5, and then preheated by the preheater 6, and then put into a rotary kiln 7 for cement firing and fired to become a cement clinker, After being cooled by the clinker cooler 8, it is introduced into the clinker silo 9.
[0017]
The preheater 6 is of a multistage cyclone type in which a plurality of cyclones are connected in multiple stages, and preheats the crushed cement raw material to a predetermined temperature (800 to 900 ° C.) using the exhaust of the rotary kiln 7. The rotary kiln 7 has a horizontal cylindrical kiln shell that is slightly inclined downward to the downstream side. While rotating the kiln shell around its central axis, the fuel kiln is heated with a burner using heavy oil or fine coal as a fuel. The cement raw material is heated to a temperature of 1450 ° C. or higher and subjected to a firing reaction to produce a cement clinker.
[0018]
As shown in FIG. 2, the collected raw material of the second cyclone 34 from the bottom of the preheater 6 enters the riser duct 32 through the raw material chute 31. Here, the riser duct 32 joins with the kiln exhaust flowing upward from below, enters the lowest cyclone 33, and the raw material powder is separated and collected, and the inclined surface of the housing 20 through the raw material chute 30. And enter the kiln bottom 7a of the kiln 7. The clinker fired in the rotary kiln 7 is then cooled by a clinker cooler 8 connected to the front of the kiln 7 of the rotary kiln 7, stored in the clinker silo 9, and then sent to the finishing mill 10 in the finishing process.
[0019]
The finishing mill 10 finely pulverizes the clinker while mixing gypsum into the cement clinker produced in the firing step, and discharges the cement. Then, the cement discharged from the finishing mill 10 is introduced into the cement silo 11 and then sent to the supplier.
[0020]
Next, a method for treating sludge will be described.
As shown in FIG. 1 and FIG. 2 in which the main part is enlarged, this method is characterized in that sludge input points A to E are used for cement calcination when sludge K is added to the cement calcination process to produce cement clinker. That the raw material chute 31 of the second cyclone 34 from the bottom of the preheater 6 in the process includes the position where it joins with the riser duct 32 and is set to the range from below to the inside of the kiln bottom 7a of the rotary kiln 7 is there.
[0021]
Among the plurality of candidate charging points A to E, the charging point A includes a position where the raw material chute 31 of the second cyclone 34 from the bottom of the preheater 6 in the cement firing step is joined to the riser duct 32. This is either one of the surfaces of the riser duct 32 or the vertical surface of the housing 20 set in a range from the bottom to the inside of the kiln bottom 7 a of the rotary kiln 7. Further, the insertion point B is set on the inclined lower surface side of the bent portion 21 of the housing 20. The charging point C is set in the middle of the raw material chute 30 from the lowest cyclone. The charging point D is set on the upper surface side of the bent portion 21 of the housing 20. The charging point E is set inside the kiln bottom portion 7 a of the rotary kiln 7.
[0022]
As for the charging point A, sludge can be directly charged by opening a charging port on the wall of the riser duct 32 or the vertical wall of the housing 20. In addition, since the introduction point B is on the lower surface side of the housing 20 through which the raw material flows, the sludge K (indicated by an arrow) is introduced through the conduit 25 as shown in FIG. Also good. With respect to the charging point C, the raw material chute of the lowermost cyclone is directly provided with the charging port. Further, since the injection point E does not reach directly, as shown in FIG. 3B, a conduit 25 is provided in the housing 20, and sludge K (indicated by an arrow) is introduced through the conduit 25.
[0023]
Further, the insertion point D can be set to any point D1 to D3 on the upper surface side of the bent portion 21 of the housing 20, as shown in FIG. Also in this case, the sludge may be introduced by providing an opening directly on the wall of the housing 20, or the conduit may be attached to the housing 20 and introduced from the tip of the conduit. In addition, as shown in FIG. 4B, it is possible to set the input points at points D4 and D5 close to both sides.
[0024]
In addition, when introducing sludge, it is possible to completely decompose the ammonia component by dispersing with a dispersion medium in a high temperature region of 1000 ° C. or higher. It is preferable to lead to a high temperature region of 1100 ° C. or higher to gradually decompose the ammonia component. In addition, as the charging point is set to the low temperature region side, that is, within a range of 1000 ° C. or lower and 800 ° C. or higher, the closer to the point where the raw material of the second-stage cyclone enters the riser duct 32, It is preferable that the sludge is dropped to the housing 20 as a lump and is introduced into the kiln bottom 7a of the kiln 7 in a state where it is placed on the raw material flowing on the bottom surface.
[0025]
By introducing the sludge from the input points A to E as described above, the introduced sludge can be suddenly decomposed under high temperature conditions. Therefore, leakage of the ammonia component from the preheater 6 to the outside can be prevented. In particular, when the sludge is charged at the charging point D, the charged sludge can be brought into contact with a higher-temperature gas different from that in the preheater 6 and the decomposition of ammonia can be promoted. In addition, when the sludge is introduced at the input points B and C, even if the sludge is introduced in a granular or lump state, the sludge can be smoothly placed on the flowing raw material. It is possible to quickly enter the high temperature rotary kiln 7 and promote the decomposition of ammonia. In addition, when the sludge is introduced through the conduit 25 at the introduction point E, the introduced sludge is directly introduced into a rotating environment having an internal temperature of 1100 ° C. or higher, so there is no possibility of reverse scattering due to kiln exhaust. The ammonia component can be thermally decomposed under very high temperature conditions.
[0026]
【The invention's effect】
As described above, according to the first or second aspect of the invention, the introduced sludge can be suddenly decomposed under high temperature conditions, so that leakage of the ammonia component from the preheater to the outside can be reliably prevented. it can.
[0027]
In particular, even when granular or massive sludge is charged, the sludge can be smoothly put on the flowing raw material, and the charged sludge can be immediately reached to the high temperature region in the rotary kiln. It can be completely decomposed quickly. In addition, by dispersing and introducing sludge at a plurality of input points as in the invention of claim 2 , the combustion conditions at each input location can be increased, and the complete decomposition of the ammonia component can be further promoted. .
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic configuration diagram of a cement production facility for carrying out a treatment method of the present invention.
FIG. 2 is a diagram showing a sludge charging point in the present invention.
3A is a diagram showing an example in which sludge is supplied to a charging point B in FIG. 2 through a conduit, and FIG. 3B is a diagram in which sludge is supplied to a charging point E in FIG. 2 through a conduit. It is a figure which shows the example in the case of doing.
4A is a diagram showing the position of the insertion point D in FIG. 2 on the cross section of the housing, and FIG. 4B is a diagram showing a modification of the insertion point D. FIG.
[Explanation of symbols]
A to E Sludge input point K Sludge 6 Preheater 7 Rotary kiln 7a Kiln bottom 20 Housing 21 Curved portion 30 Lowermost cyclone raw material chute 31 Lower cyclone raw material chute 32 Riser duct 33 Lowermost cyclone 34 Lower 2nd cyclone from

Claims (2)

汚泥をセメント焼成工程に投入してセメントクリンカを製造する汚泥の処理方法において、前記汚泥の投入ポイントを、セメント焼成工程のプレヒータの最下段サイクロンの原料シュートの途中に設定し、上記汚泥が上記原料シュートを流れるセメント原料の上に乗るようにしたことを特徴とする汚泥の処理方法。In the sludge treatment method for producing cement clinker by introducing sludge into the cement firing step, the sludge charging point is set in the middle of the raw material chute of the lowermost cyclone of the preheater in the cement firing step, and the sludge is used as the raw material. A method for treating sludge, characterized in that it is placed on a cement material flowing through a chute . 前記汚泥の投入ポイントを、複数箇所に分散して設けたことを特徴とする請求項1に記載の汚泥の処理方法。The sludge treatment method according to claim 1, wherein the sludge charging points are distributed at a plurality of locations .
JP2001204179A 2001-07-05 2001-07-05 Sludge treatment method Expired - Lifetime JP4032673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001204179A JP4032673B2 (en) 2001-07-05 2001-07-05 Sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001204179A JP4032673B2 (en) 2001-07-05 2001-07-05 Sludge treatment method

Publications (2)

Publication Number Publication Date
JP2003010896A JP2003010896A (en) 2003-01-14
JP4032673B2 true JP4032673B2 (en) 2008-01-16

Family

ID=19040684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001204179A Expired - Lifetime JP4032673B2 (en) 2001-07-05 2001-07-05 Sludge treatment method

Country Status (1)

Country Link
JP (1) JP4032673B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242146A (en) * 2008-03-31 2009-10-22 Taiheiyo Cement Corp Method for fuelization of automobile shredder residue for cement firing
US8695370B2 (en) 2005-05-18 2014-04-15 Whirlpool Corporation Refrigerator ice compartment with intermediate temperature
US8733123B2 (en) 2004-09-27 2014-05-27 Whirlpool Corporation Apparatus and method for dispensing ice from a bottom mount refrigerator
US8794024B2 (en) 2005-05-18 2014-08-05 Whirlpool Corporation Refrigerator ice compartment latch and cover
US8844311B2 (en) 2005-01-03 2014-09-30 Whirlpool Corporation Refrigerator with a water and ice dispenser having an improved ice chute air seal
US9879898B2 (en) 2005-05-18 2018-01-30 Whirlpool Corporation Insulated ice compartment for bottom mount refrigerator with controlled damper

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908031B2 (en) * 2006-03-30 2012-04-04 住友大阪セメント株式会社 High moisture content waste treatment method and treatment equipment
JP4793309B2 (en) * 2007-04-04 2011-10-12 三菱マテリアル株式会社 Method for processing ammonia / sulfide-containing raw materials
JP5783449B2 (en) * 2011-07-15 2015-09-24 住友大阪セメント株式会社 Cement clinker manufacturing method and cement clinker manufacturing apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10208998B2 (en) 2004-09-27 2019-02-19 Whirlpool Corporation Apparatus and method for dispensing ice from a bottom mount refrigerator
US8733123B2 (en) 2004-09-27 2014-05-27 Whirlpool Corporation Apparatus and method for dispensing ice from a bottom mount refrigerator
US8756952B2 (en) 2004-09-27 2014-06-24 Whirlpool Corporation Apparatus and method for dispensing ice from a bottom mount refrigerator
US8844311B2 (en) 2005-01-03 2014-09-30 Whirlpool Corporation Refrigerator with a water and ice dispenser having an improved ice chute air seal
US9222717B2 (en) 2005-05-18 2015-12-29 Whirlpool Corporation Ice compartment assembly for refrigerator
US9267724B2 (en) 2005-05-18 2016-02-23 Whirlpool Corporation Refrigerator with temperature control
US8794024B2 (en) 2005-05-18 2014-08-05 Whirlpool Corporation Refrigerator ice compartment latch and cover
US9097455B2 (en) 2005-05-18 2015-08-04 Whirlpool Corporation Refrigerator with temperature control
US9200827B2 (en) 2005-05-18 2015-12-01 Whirlpool Corporation Refrigerator with temperature control
US9207009B2 (en) 2005-05-18 2015-12-08 Whirlpool Corporation Ice compartment assembly for refrigerator
US9222718B2 (en) 2005-05-18 2015-12-29 Whirlpool Corporation Ice compartment assembly for refrigerator
US9222716B2 (en) 2005-05-18 2015-12-29 Whirlpool Corporation Refrigerator with temperature control
US8695370B2 (en) 2005-05-18 2014-04-15 Whirlpool Corporation Refrigerator ice compartment with intermediate temperature
US9250004B2 (en) 2005-05-18 2016-02-02 Whirlpool Corporation Refrigerator with temperature control
US9255728B2 (en) 2005-05-18 2016-02-09 Whirlpool Corporation Refrigerator with temperature control
USD712440S1 (en) 2005-05-18 2014-09-02 Whirpool Corporation Ice bin and cover assembly for a refrigerator
US9285151B2 (en) 2005-05-18 2016-03-15 Whirlpool Corporation Refrigerator with temperature control
US9404682B2 (en) 2005-05-18 2016-08-02 Whirlpool Corporation Refrigerator with temperature control
US9447999B2 (en) 2005-05-18 2016-09-20 Whirlpool Corporation Refrigerator with temperature control
US9476627B2 (en) 2005-05-18 2016-10-25 Whirlpool Corporation Refrigerator with temperature control
US9683770B2 (en) 2005-05-18 2017-06-20 Whirlpool Corporation Refrigerator with temperature control
US9683769B2 (en) 2005-05-18 2017-06-20 Whirlpool Corporation Ice compartment assembly for refrigerator
US9879898B2 (en) 2005-05-18 2018-01-30 Whirlpool Corporation Insulated ice compartment for bottom mount refrigerator with controlled damper
US10203142B2 (en) 2005-05-18 2019-02-12 Whirlpool Corporation Ice compartment assembly for refrigerator
JP2009242146A (en) * 2008-03-31 2009-10-22 Taiheiyo Cement Corp Method for fuelization of automobile shredder residue for cement firing

Also Published As

Publication number Publication date
JP2003010896A (en) 2003-01-14

Similar Documents

Publication Publication Date Title
KR100212093B1 (en) Lightweight aggregate from flyash and sewage sludge
EP0020735B1 (en) Flash drying sludge derived fuel process
CN102206091B (en) Method for making ceramsite by using sludge
US20050066860A1 (en) Use of organic waste/mineral by-product mixtures in cement manufacturing processes
US20050039638A1 (en) Method and process for co-combustion in a waste to-energy facility
TWI532701B (en) Waste disposal equipment
US6183242B1 (en) Rotary kiln for forming lightweight aggregate from flyash and sewage sludge
JP4032673B2 (en) Sludge treatment method
JP7278385B2 (en) Combustibles treatment method and equipment
US7361014B2 (en) Injection of waste-derived materials into pre-calcining stage of a clinker production system
US4198201A (en) Method of and apparatus for operating industrial furnace systems
KR100775568B1 (en) Drying apparatus of sludge and method of manufacturing for cell
JP2005270874A (en) Treatment method of polluted soil and apparatus thereof
JP3551960B2 (en) Treatment of soil contaminated with organic matter
JP3666940B2 (en) How to make sewage sludge into cement
JP2003002705A (en) Treating method of waste gypsum material
JP2003212618A (en) Method for treating organic contaminated soil
JP2005221195A (en) Method for treating organic waste and device therefor
KR20000023550A (en) Method of manufacturing sintered ore for blast furnace
Hiraoka Advanced sludge thermal processes in Japan
TWI819065B (en) Combustible material processing methods and processing devices
JP3957232B2 (en) Pretreatment equipment for reusing municipal waste incineration ash
JP3241792B2 (en) Industrial waste treatment equipment
JP4269525B2 (en) Sludge treatment equipment and sludge treatment method
KR101802063B1 (en) the air supplying system of the rotary incineration system using vehicle waste or waste wood

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070403

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4032673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

EXPY Cancellation because of completion of term